Rivet+Contur: constraining BSM physics with precision collider measurements

Andy Buckley, University of Glasgow

COST School on Dark Matter & Hidden Sectors 19 October 2021

Outline

- The Rivet toolkit and project
- Generic analysis preservation
- Retooling for LHC precision
- BSM searches
- Contur
- Case studies
 - > Simple vector DM
 - > Vector-like quarks
 - Composite dark matter

What is Rivet?

- The "LHC standard" MC analysis toolkit
- More broadly a project to preserve the logic of HEP data analyses and further expt-pheno collaboration

Containing:

- > A good ol' event loop
- Physics object / observable calculators
- Fiducial / generator-independence emphasis
- Integration with HepData
- Transparent weight-stream handling
- 1000+ analyses!
- Rivet now sits at the centre of a web of analysis reinterpretation tools, linking experiment to theory

Just part of an LO pp event!

Design lessons learned

- Runnable preserved analyses is a simple/obvious idea, with surprising impact. First implemented in HZTool
 - Reproducing a key plot (or not) is *powerful*
 - ➤ ⇒ understand physics, communicate issues, improve MCs
 - > A common language for pheno and experiment

But...

- Partons, bosons, etc. direct from the event graph are frequently unphysical / depend on approximations / may not even exist!
- Adding a new generator meant patching ~all analyses!
- ➤ ⇒ predict "real" observables, from well-defined final states
- experiment needs to be careful in how it defines "corrected" observables, too

Boring but important

- Standardisation: event format conventions, PDG particle numbering, etc.
- Scalability: cache, not repeat, lots of expensive operations e.g. jet finding

Physically safe analysis methods

Physical insights from avoiding event-graph overinterpretation:

- refining the "fiducial" idea, defining unfolding targets
- Hadronisation as a "decoherence barrier" use the natural dividing line between the quantum-interfering hard process & semi-classical decays: ~ no tempting partons!
- Stringing truth tagging closer to reco first releases used *b*-ancestry of jet constituents to set HF labels: too inclusive! ⇒ associate the hard-fragmenting, weakly-decaying B
- Promptness/directness tests

don't identify a particle "from the hard process"; do it backward. Label as *indirect* via recursive checks for hadron parentage

Dressed leptons

we now primarily dress truth leptons with their photon halo

Early applications: tuning

Event generators have dirty secrets. Usually in non-perturbative QCD \Rightarrow tuning

"Professor" and ATLAS MC tunes, including ** the Pythia8 A14 and AZ

 $\langle \sum p_{\perp} / \delta \eta \delta \phi \rangle$

0.8

0.6

0.4

0.2

1.15

00 0.8

Data

Å

Return to some of this with * semi-visible-jet BSM models?

Nch

The state we're in

Version 3.1.0 crossed the 1000 analysis mark

A steady flow of analysis submissions, ~50/year, plus the occasional deluge from Herwig.

- ♦ Official support from 2008 2010 2012 2014 2016 2018 2020 the LHC experiments is crucial preservation has to be part of "how we do science"; still some way to go ⇒ coverage monitoring:
- * "New" features since the v1 vision: systematics multiweights, "perfect merging", detector smearing functions, analysis options

Rivet analysis coverage (no searches, no heavy ion)

Rivet analyses exist for 845/4241 papers = 20%. 153 priority analyses required.

Total number of Inspire papers scanned = 7280, at 2020-07-02

Breakdown by identified experiment (in development):

	ALICE	ATLAS	CMS	LHCb	Forward	HERA	$e^+e^- (\geq 12~{\rm GeV})$	$e^+e^- (\leq 12~{ m GeV}$
Rivet wanted (total):	72	111	126	183	43	461	765	647
Rivet REALLY wanted:	17	42	61	9	0	13	1	3
Rivet provided:	14 /86 = 16 %	135 /246 = 55 %	77 /203 = 38%	13 /196 = 7%	8 /51 = 16 %	9 /470 = 2 %	166 /931 = 18%	344 /991 = 35%
now grevist Show blacklist								
ALICE ATLAS	CMS LHCb	Forward		≥ 12 GeV)	$e^+e^- (\leq 12$ Ge	eV) Tevatro	n RHIC SPS	Other
ATLAS: Measuremen	nt of the $tar{t}$ produ	uction cross-sect	on in the lepton-	•jets channel at	$\sqrt{s}=13$ TeV	with the ATLA	S experiment	
Inspire ID: 1802524 a	rXIV ID: 2006.130	76 Report IDs: CEF	RN-EP-2020-096					
Links: Inspire arXiv								
ATI AS' Messuremer	te of ton-quark i	pair single, and d	ouble-differential		In the all-hadr	onic channel i	n nn collisions at .	- 13 TeV using
Inspire ID: 1801434 a	xiv ID: 2006.002	74 Report IDs: CE	N.EP.2020-063			onic channel i	n pp comsions at y s	- to rev using
Links: Inspire CDS ar	Kiv	ra Report IDS. OEI	(W-E) -2020-003					
							-	
ATLAS: Measuremen	nts of the Higgs I	ooson inclusive a	nd differential fic	lucial cross sec	tions in the 4 ℓ	decay channel	at \sqrt{s} = 13 TeV	
ATLAS: Measuremen Inspire ID: 1790439 a	nts of the Higgs I	ooson Inclusive a	nd differential fic RN-EP-2020-035	lucial cross sec	tions in the 4 ℓ	decay channel	at \sqrt{s} = 13 TeV	
ATLAS: Measuremen Inspire ID: 1790439 au Links: Inspire CDS ar	nts of the Higgs I IXIV ID: 2004.039 Kiv HepData ATLA	59 Report IDs: CEI AS_2020_I1790435	nd differential flo RN-EP-2020-035	lucial cross sec	tions in the 4 ℓ	decay channe	at \sqrt{s} = 13 TeV	
ATLAS: Measuremen Inspire ID: 1790439 al Links: Inspire CDS ar? ATLAS: Measuremen	nts of the Higgs I Xiv ID: 2004.039 Kiv HepData ATLA nt of the Lund jet	poson inclusive a 59 Report IDs: CER NS_2020_11790438 plane using char	nd differential fic RN-EP-2020-035) ged particles in 1	lucial cross sec 13 TeV proton-p	tions in the 4 ℓ roton collision	decay channel s with the ATL	at \sqrt{s} = 13 TeV AS detector	
ATLAS: Measuremen Inspire ID: 1790439 ai Links: Inspire CDS ar ATLAS: Measuremen Inspire ID: 1790256 ai	nts of the Higgs i rXiv ID: 2004.039 Kiv HepData ATLA nt of the Lund jet rXiv ID: 2004.035	59 Report IDS: CER NS_2020_11790436 plane using char 40 Report IDS: CER	nd differential fic RN-EP-2020-035) ged particles in 1 RN-EP-2020-030	lucial cross sec 13 TeV proton-p	tions in the 4ℓ roton collision	decay channel s with the ATL	at \sqrt{s} = 13 TeV AS detector	
ATLAS: Measuremer Inspire ID: 1790439 al Links: Inspire CDS ar ATLAS: Measuremer Inspire ID: 1790256 al Links: Inspire DOI/jour	nts of the Higgs I rXiv ID: 2004.039 Kiv HepData ATLA nt of the Lund Jet rXiv ID: 2004.035 mal CDS arXiv He	59 Report IDS: CEI S_2020_11790436 plane using char 40 Report IDS: CEI apData ATLAS_200	nd differential flo RN-EP-2020-035 9 ged particles in RN-EP-2020-030 20_11790256	lucial cross sec 13 TeV proton-p	tions in the 4ℓ roton collision	decay channel s with the ATL	at \sqrt{s} = 13 TeV AS detector	
ATLAS: Measuremer Inspire ID: 1790439 al Links: Inspire CDS ar? ATLAS: Measuremer Inspire ID: 1790256 al Links: Inspire DOl/Jou ATLAS: Measuremer	nts of the Higgs I Xiv ID: 2004.039 Xiv HepData ATLA It of the Lund jet Xiv ID: 2004.035 mail CDS arXiv He Its of the produc	poson Inclusive a 59 Report IDs: CEI (S_2020_11790436 plane using char 40 Report IDs: CEI opData ATLAS_202 tion cross-sectio	nd differential fic RN-EP-2020-035 ged particles in RN-EP-2020-030 20_11790256 n for a Z boson i	lucial cross sec 13 TeV proton-p in association w	tions in the 4 ℓ roton collision rith b -jets in pro	decay channel s with the ATL	at \sqrt{s} = 13 TeV AS detector Hisions at \sqrt{s} = 13	TeV with the ATLAS
ATLAS: Measuremer Inspire ID: 1790439 ai Links: Inspire CDS ar/ ATLAS: Measuremer Inspire ID: 1790256 ai Links: Inspire DOl/jou ATLAS: Measuremer Inspire ID: 1788444 ai	ts of the Higgs I rXIV ID: 2004.039 KIV HepData ATLA tt of the Lund jet rXIV ID: 2004.035 mail CDS arXIV He ts of the produce rXIV ID: 2003.119	soson Inclusive a 59 Report IDs: CEI (S_2020_1179043) plane using char 40 Report IDs: CEI (spData ATLAS_20) tion cross-section 30 Report IDs: CEI	nd differential fic RN-EP-2020-035 ged particles in RN-EP-2020-030 20_11790256 in for a Z boson in RN-EP-2020-022	tucial cross sec 13 TeV proton-p in association w	tions in the 4 ℓ roton collision rith b -jets in pro	decay channel s with the ATL oton-proton co	at \sqrt{s} = 13 TeV AS detector Histons at $\sqrt{s} = 13$	TeV with the ATLAS
ATLAS: Measurement Inspire ID: 1790439 au Links: Inspire CDS ar ATLAS: Measurement Inspire ID: 1790256 au Links: Inspire DOI/jour ATLAS: Measurement Inspire ID: 1788444 au Links: Inspire CDS ar	ts of the Higgs I Xiv ID: 2004.039 Xiv HepData ATLA at of the Lund jet Xiv ID: 2004.035 mal CDS arXiv He ats of the produc Xiv ID: 2003.1196 Xiv	soson Inclusive a 39 Report IDs: CEI (S_2020_11790436 plane using char 40 Report IDs: CEI apData ATLAS_200 tion cross-sectio 30 Report IDs: CEI	nd differential fic RN-EP-2020-035 9 ged particles in * RN-EP-2020-030 20_11790256 n for a Z boson i RN-EP-2020-022	lucial cross sec 13 TeV proton-p In association w	tions in the 4 ℓ roton collision rith b -jets in pro	decay channel s with the ATL oton-proton co	Lat \sqrt{s} = 13 TeV AS detector	TeV with the ATLAS
ATLAS: Measuremer Inspire ID: 1790439 au Links: Inspire IDS an ATLAS: Measuremer Inspire ID: 1790256 a Links: Inspire Dolljou ATLAS: Measuremer Inspire ID: 1786444 a Links: Inspire CDS an ATLAS: Measuremer	tts of the Higgs I xXIV ID: 2004.0394 XIV HepData ATLA at of the Lund Jet iXIV ID: 2004.035 mail CDS arXIV He tts of the product XXIV ID: 2003.1194 XIV tto f Isolated-phot	soson Inclusive a 59 Report IDs: CEI S_2020_11790436 plane using char 40 Report IDs: CEI ppData ATLAS_200 tion cross-section 50 Report IDs: CEI contact in the section of the section of the section 50 Report IDs: CEI 50 Report IDs: CEI 50 Report IDs: CEI	nd differential fic RN-EP-2020-035 9 ged particles in * RN-EP-2020-030 00_11790256 n for a Z boson i RN-EP-2020-022 production in <i>pp</i>	fucial cross sec 13 TeV proton-p in association w collisions at $$	tions in the 4 ℓ roton collision with b -jets in pro $ar{s}=13$ TeV with	decay channel s with the ATL oton-proton co	Lat \sqrt{s} = 13 TeV AS detector Illisions at $\sqrt{s} = 13$	TeV with the ATLAS
ATLAS: Measurement Inspire ID: 1790439 al Links: Inspire CDS and ATLAS: Measurement Inspire ID: 1790249 a Links: Inspire DOIljout ATLAS: Measurement Inspire ID: 1780444 al Links: Inspire CDS and ATLAS: Measurement Inspire ID: 7272011 al	tts of the Higgs I (Xiv ID: 2004.0394 (Xiv HepData ATLA at of the Lund Jet (Xiv ID: 2004.035- mail CDS arXiv He tts of the product (Xiv ID: 2003.1196 (Xiv at of Isolated-phc (Xiv ID: 1912.0988)	59 Report IDs: CEI 59 Report IDs: CEI 59 Report IDs: CEI 50 Report IDs: CEI 50 Report IDs: CEI 50 Report IDs: CEI 50 Report IDs: CEI 56 Report IDs: CEI	nd differential fic RN-EP-2020-035) ged particles in * RN-EP-2020-030 00_11790256 in for a Z boson i RN-EP-2020-022 production in <i>pp</i> RN-EP-2019-210	fucial cross sec 13 TeV proton-p in association w collisions at $\sqrt{2}$	tions in the 4 ℓ roton collision rith b -jets in pro $ar{s}=13$ TeV with	decay channel s with the ATL oton-proton co th the ATLAS d	at \sqrt{s} = 13 TeV AS detector Illisions at $\sqrt{s}=13$ efector	TeV with the ATLAS

ATLAS: A measurement of soft-drop let observables in pp collisions with the ATLAS detector at $\sqrt{s}=13$ TeV

Multiweights and re-entry

- MC weight vectors allow expression of increasingly complex theory uncertainties. But a burden for analysis chains: have to propagate and correctly combine O(200) weight streams!
- Rivet 3: automatic handling of weights
 ⇒ data objects are secretly multiplexed!
 Not in full use for Contur interpretation yet, but already available
 Also ⇒ "re-entrant" perfect data-object merging

Rivet multiweights in action

ATLAS MC studies have been a significant driver of this feature (thanks to Chris Gutschow)

Weight-naming standardisation underway via MCnet

Detector emulation (an aside from the precision...)

- **Detector smearing built on Rivet's projection system** for reco-level analyses
 - developed based on Gambit ColliderBit experience: no need for "full fast-sim"

LHA

Rivet and BSM-search recasting

- Rivet's main emphasis isn't BSM direct searches, but there's no reason not to.
 - Iots of experiment experience and support
 - efficient scaling-up to hundreds of analyses, with *phase-space specific* detector/efficiency functions
 - possible to do for BSM preservation what we did for measurement analyses?
 - more efficient route than e.g. RECAST for "simple" searches. Similar mechanism now in MA5
 - again, needs experiment buy-in

Les Houches 2019 CMS soft-lepton recasting-tools comparison

BSM from "Standard Model"

Not being focused on *direct* searches doesn't mean no interest in BSM!

Particle-level measurements can achieve high model-independence

- > Define fiducial cross-section carefully: avoid SM assumptions (e.g. v) & uncertain subtractions
- Publish and re-use control distributions: often "background only" for the model of immediate interest doesn't mean that other BSM models can't populate
- Be careful to minimise model sensitivity in unfolding (and preserve the unfolding model, cf. fits)

The Contur idea

- Inject signal to "SM" measurements If it'd be statistically distinct, the model is eliminated!
- Rivet gives huge "synoptic" coverage:
 a new result with Rivet code can
 be in BSM fits within *hours*

14

Contur

- ✤ Contur is "just" a wrapper on Rivet <u>arXiv:2102.04377</u>
 - > Ok, not just! *How* you run matters
 - You need to know which analyses are "safe". Another reason for emphasis on final-states and *no cheating*
 - In absence of unambiguous BSM, make zeroth-order assumption that data = SM
 - Can be improved with high-precision SM theory predictions & uncertainties
 - Signal-injection ⇒ care with e.g. ratios & profiles... cf. Rivet3's "perfect merging"

HT Louie Corpe

Contur

- ✤ Contur is "just" a wrapper on Rivet <u>arXiv:2102.04377</u>
 - > Ok, not just! *How* you run matters
 - You need to know which analyses are "safe". Another reason for emphasis on final-states and *no cheating*
 - In absence of unambiguous BSM, make zeroth-order assumption that data = SM
 - Can be improved with high-precision SM theory predictions & uncertainties
 - Signal-injection ⇒ care with e.g. ratios & profiles... cf. Rivet3's "perfect merging"

Contur

- ✤ Contur is "just" a wrapper on Rivet <u>arXiv:2102.04377</u>
 - > Ok, not just! *How* you run matters
 - You need to know which analyses are "safe". Another reason for emphasis on final-states and *no cheating*
 - In absence of unambiguous BSM, make zeroth-order assumption that data = SM
 - Can be improved with high-precision SM theory predictions & uncertainties
 - Signal-injection ⇒ care with e.g. ratios & profiles... cf. Rivet3's "perfect merging"

Contur workflow

- MC gens: historically Herwig+UFO, support now for MG5, Pythia, Powheg... anything that writes HepMC and can be run through Rivet
- Stats: Poisson LLR implemented, but reduces well to a simple (or correlated, even profiled) χ2 for unfolded measurements
- Can run Contur on any set of Rivet histograms for one BSM point.
 Web output cf. Rivet ⇒

Or in a sampling / grid scan organised by contur-batch

Contur Plots: Constraints On New Theories Using Rivet

Run Information Contur is running in /dataset/myscan00/13TeV/0137 on analysis objects in [LHC-S101-runpoint_0137.yoda.gz', runpoint_0137.yoda.gz'] Excluding Higs to WW measurements Excluding secret b-veto measurement Excluding starb XW ZSM measurement No correlations being built, using single bins in tests Building default background model from data, iponing (optional) theory predictions

Sampled at: gYXm: 1.0 gYx: 0.25 mXm: 570.0 Sampled at: gYx: 0.28 mXm: 570.0 mXm: 570.026 mXm: 570.026 mXm: 570.026 mXm: 570.0588234 Combined exclusion for these plots is 85.27 %

In each analysis pool, these plots contributed:

Analysis Pool:ATLAS_13_EEJET

Exclusion from this pool alone: 0.00%

Contur workflow

- MC gens: historically Herwig+UFO, support now for MG5, Pythia, Powheg... anything that writes HepMC and can be run through Rivet
- Stats: Poisson LLR implemented, but reduces well to a simple (or correlated, even profiled) χ² for unfolded measurements
- Can run Contur on any set of Rivet histograms for one BSM point.
 Web output cf. Rivet ⇒

Or in a sampling / grid scan organised by contur-batch

Independent signals

- Much of Contur's power comes from signature *coverage*
 - Whatever your topology, chances are there's a measurement sensitive to it. For some models, one is already enough!
 - > But these observables are not optimised to any BSM model ⇒ typically weaker than a dedicated (model-specific) search Secondary power comes from *combination*
 - Need to know which analyses are independent and can be trivially combined
 ⇒ group analyses in statistically orthogonal "pools". Use (expected) most-constraining pool element for setting limits; correlation data
 → "bigger elements" than single SRs

More ideas possible for assessing orthogonality or estimating correlation matrices [LH19]

Contur BSM example 1

- Vector dark matter [JHEP 03 (2017) 078]
 - Simple model of DM with vector mediator used as the canonical first real test of Contur
 - Mix of BSM axial and SM vector couplings to avoid existing precision constraints

 $\mathcal{L} \supset g_{\rm DM} \,\overline{\psi} \gamma_{\mu} \gamma_5 \psi \, Z'^{\mu} + g_q \sum_q \bar{q} \gamma_{\mu} q \, Z'^{\mu}$

- Characterise model viability vs DM and mediator masses, and SM/BSM couplings
- > MET+jet unsurprisingly dominates below $M_{DM}-M_{Z'}$ diagonal. Above is more interesting phenomenologically and benefits from Contur: V+jets fades into just-jets at high $M_{Z'}$
- > Care needed with MET \neq neutrinos, and *b*-veto

Contur BSM example 2

- Vector-like quarks [SciPost Phys. 9, 069 (2020)]
 - > Popular generic class of SM extensions, with new quark partners: $B^{-1/3}$, $T^{2/3}$, $X^{5/3}$, $Y^{-4/3}$
 - Couple to SM via usual quark EM & strong couplings, but

B,*T*: interact with *W*, *Z* or *H* via modified weak coupling

X, *Y*: interact only with *W* via modified weak coupling: $X \rightarrow Wt$, $Y \rightarrow Wb$ always

- LHC searches mostly for 3rd gen, strong pair-production only!
- > 4 masses, 1 overall coupling κ,
 3 generational couplings ζ, 3 branching ratios ξ
 ⇒ rich collider phenomenology!

HT Louie Corpe

$$\begin{split} \mathcal{L} = & \kappa_B \left[\sqrt{\frac{\zeta_i \xi_W^B}{\Gamma_W^0}} \frac{g}{\sqrt{2}} [\bar{B}_{L/R} W_{\mu}^- \gamma^{\mu} u_{L/R}^i] + \sqrt{\frac{\zeta_i \xi_Z^B}{\Gamma_Z^0}} \frac{g}{2c_W} [\bar{B}_{L/R} Z_{\mu} \gamma^{\mu} d_{L/R}^i] - \sqrt{\frac{\zeta_i \xi_H^B}{\Gamma_W^0}} \frac{M_B}{v} [\bar{B}_{R/L} H d_{L/R}^i] \right] \\ + & \kappa_T \left[\sqrt{\frac{\zeta_i \xi_W^W}{\Gamma_W^0}} \frac{g}{\sqrt{2}} [\bar{T}_{L/R} W_{\mu}^+ \gamma^{\mu} d_{L/R}^i] + \sqrt{\frac{\zeta_i \xi_Z^T}{\Gamma_Z^0}} \frac{g}{2c_W} [\bar{T}_{L/R} Z_{\mu} \gamma^{\mu} u_{L/R}^i] - \sqrt{\frac{\zeta_i \xi_H^T}{\Gamma_W^0}} \frac{M_B}{v} [\bar{T}_{R/L} H u_{L/R}^i] \right] \\ + & \kappa_X \left[\sqrt{\frac{\zeta_i}{\Gamma_W^0}} \frac{g}{\sqrt{2}} [\bar{X}_{L/R} W_{\mu}^+ \gamma^{\mu} u_{L/R}^i] \right] + \kappa_Y \left[\sqrt{\frac{\zeta_i}{\Gamma_W^0}} \frac{g}{\sqrt{2}} [\bar{Y}_{L/R} W_{\mu}^- \gamma^{\mu} d_{L/R}^i] \right] + \text{h.c.} \,, \end{split}$$

VLQ pheno with Contur: 1st gen

- Even pair-production has
 κ-dependence via weak production
 initiated by valence quarks
- Weak Qq single-VLQ production can dominate over pair-prod!
- Different W:Z:H BFs for T, B activate different analysis pools "automatically" due to Rivet coverage
- WW diboson mostly dominates, thanks to W and H decay channels
- "Injection" of *l*+MET+jet sensitivity...
 why?

Exclusions complementary to non-collider limits

VLQ *l*+MET+jet "injection"

Check the single-point observable plots: the *l*+MET+jet entry is from an unfolded VBF *Wjj* control region! Unfold your control regions, kids!

Figure 8: ATLAS 8 TeV Wjj forward-lepton control region leading-jet $p_{\rm T}$ distributions at three points on the 95% exclusion contour for W:Z:H = 1:0:0, respectively at M_Q values of (a) 1000 GeV, (b) 1750 GeV, and (c) 2250 GeV. The rise and subsidence of a 90% CL_s exclusion from a single Wjj bin is seen as the contour passes from below 1 TeV to above

VLQ pheno with Contur: 3rd gen

- In pure T, B pair-production mode, diboson and {+MET+jet "SM" analyses ~cover or complement direct searches wonderfully
- In general, for *W*:*Z*:*H* = 0:1:0, *Tq* and *Xq* production killed by tiny top-quark PDF: pairs at low-*m_Q*, *Yq* at high-mass. Decays always have a *W* (directly or via *T* → *tZ*) ⇒ {+MET pool always dominates
- Rivet+Contur "SM" routines give powerful sensitivity to VLQs, even far from the benchmark search modes

Generalising to 4 VLQs, still strong exclusions

More realistic models...

[singlets]

- Review requested a scan of realistic multiplets: 7 multiplets, each with 3 generational couplings, each with 4 W/H/Z-couplings, 300 points per scan, x 30,000 events!
- No problem! 1 month later...

More realistic models...

[doublets]

Review requested a scan of realistic multiplets: 7 multiplets, each with 3 generational couplings, each with 4 W/H/Z-couplings, 300 points per scan, x 30,000 events!

1500 200 M_Q (GeV)

More realistic models...

[triplets]

Review requested a scan of realistic multiplets: 7 multiplets, each with 3 generational couplings, each with 4 W/H/Z-couplings, 300 points per scan, x 30,000 events!

Speed is good!

Contur BSM example 3

- Stealth" dark matter [arXiv:2105.08494]
 - Complex family of DM models with strongly interacting dark sector
 - Dark confinement (assuming QCD-like SU(N) dynamics) produces dark hadron mass spectrum, with decays back to SM from selected states:

 \Rightarrow resonances, emerging jets, semi-visible jets

- > A priori constraints on models really weak!
- > Stealth DM in even-*N* models: scalar dark baryon is stable \rightarrow DM candidate. Dark ρ and π mesons decay to SM particles. Characterise dark sector with $m_{\pi D}$ and $\eta = m_{\pi D}/m_{\rho D}$

Contur stealth DM signatures

- If $\eta > 0.5$, dark decay $\rho \rightarrow \pi \pi$ is
 forbidden: rho decays instead to SM
 lepton or quark pairs
 - Dilepton signature peaking at rho mass, plus less distinct dijet and tt
 - Use Rivet-smeared ATLAS R2 dilepton resonance search!
- If $\eta > 0.5$, dark $\rho \rightarrow \pi \pi$ dominates, and pheno gets complex
 - > Gaugephobic π : decay to 3rd gen quarks & multijet, V+jets signatures
 - Gaugephilic π: decays via V+H, V+jets
 3rd gen quarks

Stealth DM sensitivity

5

- Switch of sensitive mode when $\eta \rightarrow < 0.5$: dilepton-resonance sensitivity disappears
- Contur exclusions switch with little disruption (except for the gaugephobic SU(2)_R) to multijet event-shape observables
- Phenomenology of subleading pools for $\eta < 0.5$ is fascinating:
 - Non-resonant dileptons
 - \succ $\pi_{\rm D} \rightarrow \gamma \gamma$ in Higgs-mass window
 - tt and boosted hadronic top
 - > 4 ℓ via e.g. *ZHtb* and *hhVV*, ...

Getting started with Rivet and Contur

- Being able to easily access Contur exclusions is key to it becoming a standard part of BSM operations
- Several dependencies: Rivet, generators, HepMC, Python packages...
- Easiest way is a pre-built Docker image:
- Tutorials available from the <u>Rivet</u> and <u>Contur</u> websites, and a <u>video tutorial</u>

andy@unity:~/.../contur-herwig\$ docker pull hepstore/contur Using default tag: latest latest: Pulling from hepstore/contur Digest: sha256:6345a0bd31e7c2eb772ae0751bce86b4612136eeef70ded3c1ddff0d1d9d05ed Status: Image is up to date for hepstore/contur:latest docker.io/hepstore/contur:latest andy@unity:~/.../contur-herwig\$ docker run -it --rm hepstore/contur Contur environment successfully enabled

root@3522a2fc4127:/contur# exit
andy@unity:~/.../contur-herwig\$ docker pull hepstore/contur-herwig
Using default tag: latest

Next steps for Contur

- ♦ Present studies have focused on discrete sets of 2D grid scans. Trivial parallelism → 3D, maybe 4D, but higher dimensionalities need better sampling
- Integrate into adaptive scans: ongoing work with Gambit global fit. Has required re-engineering to avoid filesystem access. Extra LLR contribution worth the effort in marginal and best-fit points
- 2) Built-in optimal sampling with machine-learning: Contur Oracle (see talk at upcoming Tools2021)

Summary

- Contur, based on Rivet, is a powerful new complement to dedicated searches, using the ever-growing collection of model-independent measurements. Synoptic pheno!
- Can help to avoid making difficult dedicated searches based on models already ruled out by (pretty) quick truth-level checks. Like all reinterpretation, more triage/signposting than definitive
- Need lots of experiment-implemented analyses in Rivet.
 Particularly CMS! An accelerator for analysis impact
 ⇒ lots of fun collaborations! (cf. new LPCC RAMP initiative: exposure for good practice)
- As we head into another LHC era, with more data (and metadata) the coverage will keep improving. Join in!

Backup

MC generation

- MC generation is where theory meets experiment
 - The fundamental pp (etc.) collision, sans detector
- **Components of an "exclusive" event-generator chain:**
 - QFT matrix element sampling at fixed order in QCD etc.
 - Dressed with approximate collinear splitting functions, iterated in factorised Markov-chain "parton showers"
 - FS parton evolution terminated at Q ~ 1 GeV: phenomenological hadronisation modelling
 - Mixed with multiple partonic interaction modelling
 - Finally particle decays, and other niceties

Modern HEP is hostage to shower MCs!

- The main mechanism for translating theory to experimental signatures, from QCD to BSM
- Generally very complex modelling and output

Future Physics at HERA Workshop, DESY Hamburg, Sept. 95 to Sept. 96

From HZTool to Rivet

- The idea of preserving experimental analyses for MC validation was born out of HZTOOL
 - ▶ HERA (H1 and ZEUS) DIS and Photoproduction
 - Probing low-x, semi-perturbative physics:
 DIS with Q² ~ 4 GeV²; jet p_T ~ 5 GeV; diffraction
 - Many "state of the art" models only in MCs
 - Much confusion about comparing like-with-like between generators, experiments, and analyses
 - HZTool (Fortran) for cross-experiment comparisons of similar measurements modulo cut differences
- Direct line to Rivet, 10 years later: "HZ mark two"
 - UK e-science funding; adopted by EU MCnet network

Proceedings of	f the Workshop
Old home page and	workshop meetings
Working Groups:	
Structure Functions	
Electroweak Physics Bayond the Standard Model	
Heavy Quark Production and Decay	
 Jets and High E_T Phenomena 	
EUS Diffractive Hard Scattering	
Light and Heavy Nuclei in HERA	
 HERA Upgrades and Impacts on Experiments 	
A Organizing Committee:	Secretary:
Gunnar Ingelman, Uppsala/DESY (Chairman)	Ms. H. Haertel
Albert De Roeck, DESY	DESY-FH1K Notkostrassa 85
	D-22603 Hamburg
	Phone: +49-40-8998-3105
	Fax: +49-40-8998-3093
Email: heraws	96@mail.desy.de
Advisory (Committee:
W.Buchmüller, J	.Feltesse, A.Levy,

Figure 1: The transverse momenta dN/dp_T (a) and the 'seaguil' plot $(P_T^2) \times x_F$ (b) of single particles in the positive hemisphere of the hadronic center of mass. The transverse energy flow dE_T/dn in a low (c) and high (d) x and Q^2 bin. The transverse energy-energy correlations for $x > 10^{-3}$ (e) and $x < 10^{-3}$ (f).

Designing the Rivet

- Ease of use
 - Big emphasis on "more physics, less noise"!
 - Minimal boilerplate analysis code, HepData sync
 - Event loop and histogramming basically familiar
 - Tools to avoid having to touch the raw event graph

Embeddable

- OO C++ library, Python wrapper, sane user scripts
- Generator independence: communication via HepMC
- Analysis routines factorised, and loaded as "plugins"
- Efficient
 - Avoid recomputations via "projection" caching system
- Physical
 - Measurements primarily from final-state particles only

The result

- As of Rivet v3.1.0 <u>arXiv:1912.05451</u>
- Streamlined set of tools from analysis coding to event processing to plotting (and other applications)
- And a key gateway to connect your analysis to theory (and back again)
- Let's review some of the early impacts...

More tuning...

It's getting hard to remember now, but pre-LHC the soft QCD uncertainties were *huge*

- Factor x2 uncertainty on 7 TeV $\sigma_{tot}!$
- Feed in to underlying event, pile-up, etc.
 - ➤ Tuning an essential task: better tunes ⇒ better analysis designs, better limits, …
 - Impact: LEP and Tevatron analyses published for ~10 years suddenly got used! And cited...
 - > ATLAS AMBT, AUET, AZ, A14 etc. tunes + CMS
 - Rapid responses to preliminary data, changes of model (e.g. Py8 for ATLAS pile-up)
 - Model development: matching & merging, addition of energy evolution & colour-reconnection to Herwig, ...

Rivet multiweights in action

ATLAS MC studies have been a significant driver of this feature (thanks to Chris Gutschow)

Weight-naming standardisation underway via MCnet

Heavy-ion physics preservation

- "Adding heavy-ion support" sounds trivial!
- Actually a stern test, with far-reaching impacts.
 - HI observables often require centrality calibration curves: we need a 2-pass run. That wasn't planned
 - And event/event correlations... centrality-binned!
 - Need swappable definitions: few HI generators are general-purpose enough to do e.g. both forward E_{τ} and jet quenching
- Paper: <u>https://arxiv.org/abs/2001.10737</u>
- HI MC standards are also in flux: having a common tool enables discussion on common standards

Heavy-ion physics preservation

✤ A genuinely exciting thing: HI culture is changing...

- HepData, Rivet
- Better ex/ph communication
- Faster model/data comparisons
- Addressing issues with formats and incomplete models
- Undergrad army!
- https://indico.cern.c h/event/1022351/

Harder, faster, stronger... moar BSM

- Now extending beyond 1D and 2D grids:
 - Rivet (and Herwig) as a function
 - Embed into adaptive scans
 - Higher param dimensionalities
 - Including beyond colliders, e.g. Gambit
- Rivet as a tool to probe new-observable sensitivity, e.g. in EFT models (TopFitter)
- Bootstrapping for victory: estimating statistical and systematic correlations (with SModelS, MadAnalysis5)

The future of Rivet

- **Vision:** Rivet as a standard for "truth-level" observables, across collider physics
- Not just standalone, but as a library in pheno & experiment frameworks, too: standard MC definitions (cf. CMS), seamless systematics handling, etc.
- At its core: a physics-oriented system for physicists to compare MC predictions to one another and to data, on many simultaneous observables, in myriad ways We don't know all the use-cases yet!
- Challenges:
 - Extension of HepData and other community infrastructure for ever more precise data.
 Even our compressed data format is struggling with the volume of analyses and data.
 Work needed on multiweight-oriented data format and tools
 - Improved, modernised visualisation and exploration
 - Connections to global (BSM) fitting tools
 - Preserving MVAs: BDT and NN in vanilla C++

Getting started with Rivet

I hope I've convinced you that lightweight analysis preservation isn't just some tech nerdery or admin overreach!

An analysis that's immediately available to the pheno community is 10x more useful ⇒ payback! In the past, key analyses were ignored due to the barrier to entry

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started:

Tutorials available from the <u>Rivet website</u>, a walkthrough in the <u>R3 paper</u>

Imitation is the highest form of flattery: copy an existing analysis!

```
$ docker pull hepstore/rivet-tutorial
Using default tag: latest
latest: Pulling from hepstore/rivet-tutorial
Digest: sha256:d077730d7b616722afe0ef2734a9a6799e4dabd0611798fc5ebf5ab52b8e25a8
Status: Image is up to date for hepstore/rivet-tutorial:latest
docker.io/hepstore/rivet-tutorial:latest
$ docker run -it hepstore/rivet-tutorial
root@31de38022200:/work#
root@31de38022200:/work# cat gg g1500 chi100 g-ttchi.cmnd
SUSY:all = on
SLHA:file = gg g1500 chi100 g-ttchi.slha
Main:writeHepMC = on
Main:runRivet = on
Main:analyses = MC JETS
root@31de38022200:/work#
root@31de38022200:/work# pythia8-main93 -c gg g1500 chi100 g-ttchi.cmnd -n 2000
```