# Dark Matter Direct Searches

COST Advanced School on Physics of Dark Matter and Hidden Sectors

October 19, 2021

Sergey Burdin (University of Liverpool)



### Big Bang!



### Collider Dark Matter Searches



### Standard Matter to Dark Matter annihilation

### s-channel

Disclaimer: signatures @LHC could be much more complex

Direct Dark Matter searches = searches for interactions of DM particles with SM particles

 Simplest model of interactions considers elastic interactions of "Weakly" Interacting Massive Particles (WIMPs) with nuclei



### This Presentation

- Is not a review of recent experimental results on direct Dark Matter searches
  - See "Direct detection of dark matter (experimental review)" by Marc Schumann at TAUP 2021 (<u>https://indico.ific.uv.es/event/6178/timetable/#20210831</u>)
  - Also "Direct Detection of WIMP Dark Matter: Concepts and Status" by Marc Schumann (arXiv:1903.03026)
- Is not a status report on any particular experiment
  - See experimental presentations at TAUP 2021 or LIDINE 2021
- Is a discussion of experimental and analysis techniques supported by illustrations from some recent and current experiments
- Is limited to a WIMP paradigm only and Spin-Independent interactions interpretation

### DM Properties



# **Experimental Techniques**

 Liquid Xenon double-phase experiments (LUX/LZ, XENON, Panda) are leading DM searches in WIMP region

• This technique will be used as an example



# Elastic Scattering Kinematics



- The simplest approximation is an elastic scattering on a nucleus
  - Momentum transfer

 $|\vec{q}|^2 = 2\mu^2 v^2 (1 - \cos \theta)$ , where v is the DM particle velocity,  $\theta$  is the scattering angle and  $\mu = \frac{m_{\chi} m_N}{m_{\chi} + m_N}$  is reduced mass, where  $m_{\chi}$  and  $m_N$  are dark matter and target nucleus masses.

• Target atom (nucleus) recoil energy:

$$E_{NR} = \frac{|\vec{q}|^2}{2m_N}$$
  
Maximum recoil energy  $E_{NR}^{max} = \frac{2\mu^2 v^2}{m_N}$ 

from Marc Schumann, "Direct Detection of WIMP Dark Matter: Concepts and Status", arXiv:1903.0302







- M detector mass
- $m_N$  detector material (mass of a nucleus of detector target material)

 $\frac{dR}{dE_{\rm nr}} = \frac{\rho_0 M}{m_N m_{\chi}} \int_{v_{\rm min}}^{v_{\rm esc}} v f(v) \frac{d\sigma}{dE_{\rm nr}} \, dv$ 

•  $v_{min}$  – minimum detectable velocity of a DM particle (depends on a minimum detectable energy in the detector)



- DM model parameters:
  - $\rho_0$  DM local density (0.3 GeV/c<sup>2</sup>/cm<sup>3</sup> accepted)
  - $m_{\gamma}$  mass of DM particle (scan of a mass range)
  - f(v) DM velocity distribution
  - $v_{esc}$  escape velocity of a DM particle (544 km/s accepted)
    - $\frac{d\sigma}{dE_{nr}} \frac{d\sigma}{dE_{nr}} \frac{d\sigma}{dE_{nr}} \frac{d\sigma}{dE_{nr}} \frac{d\sigma}{dE_{nr}} + \frac{d\sigma$

## Expected Number of DM Events in a detector

$$N = T \int_{E_{\text{low}}}^{E_{\text{high}}} dE_{\text{nr}} \ \epsilon(E_{\text{nr}}) \ \frac{dR}{dE_{\text{nr}}}$$

- *T* exposure time
- $E_{high} = \frac{2\mu^2 v_{max}^2}{m_N}$  maximum recoil energy
- $\epsilon(E_{nr})$  detector efficiency
- $E_{low}$  energy threshold determined by detector efficiency and noise
  - determines minimum detectable velocity of a DM particle (not as useful as it is in the lab-frame)
  - or a minimum detectable mass of a DM particle



• 
$$\vec{v}_{lab}$$
 – lab-frame DM velocity

Value Parameter •  $\sigma_0 = \frac{|\vec{v}_0|}{\sqrt{2}}$  - velocity dispersion  $0.3 \,\mathrm{GeV/c^2/cm^3}$  $\rho_{\chi}$  $544 \,\mathrm{km/s}$  $v_{\rm esc}$ Earth's velocity relative to the Sun  $29.8 \,\mathrm{km/s}$  $\langle |\vec{v}_{\oplus}| \rangle$ Sun's peculiar velocity (11.1, 12.2, 7.3) km/s  $\vec{v}_{\circledast}$ Milky Way's rotation (0, 238, 0) km/s $\vec{v}_0$ 

### Minimum Detectable DM mass



19/10/2021

Sergey Burdin / School on Dark Matter and Hidden Sectors

### Minimum Detectable DM mass



19/10/2021

Sergey Burdin / School on Dark Matter and Hidden Sectors

### Interaction cross-section

$$\frac{d\sigma}{dE_{\rm nr}} = \frac{m_N}{2v^2\mu^2} \left(\sigma_{SI}F_{SI}^2(E_{\rm nr}) + \sigma_{SD}F_{SD}^2(E_{\rm nr})\right)$$

•  $\sigma_{SI}$  – spin-independent cross-section

19/10/2021

- Coherent interaction with entire nucleus (cf. de Broglie wavelength of 100GeV WIMP λ=h/(mv)~17fm with the size of a nucleus)
- Higher momenta  $\rightarrow$  smaller  $\lambda \rightarrow$  loss of coherence taken into account by  $F_{SI}(E_{nr})$
- $\sigma_{SI} = \sigma_n \frac{\mu}{\mu_n} A^2$  where  $\sigma_n$  spin-independent WIMP-nucleon cross-section,  $\mu_n$  – reduced WIMPnucleon mass, A – atomic number
  - $\sigma_n$  is used to compare results of different experiments Sergey Burdin / School on Dark Matter and Hidden Sectors



### Rate in different target materials

• Xe is enhanced by A<sup>2</sup> dependence

 Rate for Xe starts to be affected by form-factor at high momentum transfers



## Dual-phase Liquid Xenon Time Projection Chamber



- LUX example
- 61 top + 61 bottom ultra-low background PMTs
- 370 kg of liquid xenon
  - 250 kg in the active region
  - 120 kg fiducial.
- Placed in the visitors' center in Lead (SD, USA)

### Interactions in Liquid Xenon TPC

• Particle interaction  $\rightarrow$  ionisation (n<sub>e</sub>) + scintillation (n<sub>ph</sub>) + heat (not detected) Xe<sup>+</sup> + e<sup>-</sup> Xe<sup>\*</sup>  $\hbar \omega$ 



Scintillation:

+Xe  

$$Xe^* \rightarrow Xe_2^* \rightarrow 2Xe + hv$$
  
 $\downarrow$  Singlet (4ns)  
 $\downarrow$  Triplet (22ns)  
 $\downarrow$  Singlet (22ns)

**Ionisation:** Xe<sup>+</sup> and e<sup>-</sup> are pulled apart by electric field E or recombine producing scintillation photons

+2Xe +e<sup>-</sup> +Xe Xe<sup>+</sup>  $\rightarrow$  Xe<sub>2</sub><sup>+</sup> + Xe  $\rightarrow$  2Xe + Xe<sup>\*\*</sup>  $\rightarrow$  2Xe + Xe<sup>\*</sup> + h $\omega$   $\rightarrow$  4Xe + hv

Heat and recombination fractions are higher for nuclear recoils  $\rightarrow$ lower total output of n<sub>e</sub> and n<sub>ph</sub> and lower relative output of n<sub>e</sub>. The later is used for discrimination of nuclear recoils from electron recoils Sergey Burdin / School on Dark Matter and Hidden Sectors

# S1 & S2 signals



 Scintillation photons n<sub>ph</sub> are detected immediately after interaction by top and bottom PMT arrays though more light could be detected by the bottom PMT arrays due to internal reflection in LXe

 $\rightarrow$ S1 ~ n<sub>ph</sub>

S2

- PHD number of detected photons ≠ PHE as 178nm photons can produce double photoelectrons
- Ionisation electrons n<sub>e</sub> drift up (drift velocity 0.15 cm/µs @ LUX) and produce scintillation light after extraction from liquid xenon and acceleration/amplification in the gaseous region
- →S2 ~ n\_
  - Pattern in the top PMT array  $\rightarrow$  x, y coordinates
  - Drift time  $\rightarrow$  z coordinate
  - Resolution ~ mm

### An example of LUX event



### **Energy Reconstruction**



$$E_{ee} = W(n_{ph} + n_e) = W\left(\frac{S1c}{g_1} + \frac{S2c}{g_2}\right)$$

- $E_{ee}$  electronic equivalent energy
- W=13.7 eV the average energy required to generate a quantum (either a photon or electron)
- S1c & S2c position corrected S1 and S2
- $g_1$  number of photons detected for each photon leaving the recoil site  $\rightarrow S1c = n_{ph} \cdot g_1$
- $g_2$  number of photons detected for each electron leaving the recoil site  $\rightarrow S2c = n_e \cdot g_2$
- $E_{ee} = 0.173 \cdot E_{nr}^{1.05}$  (from LUX calibration)

• Detection of nuclear recoil energy is suppressed Sergey Burdin / School on Dark Matter and Hidden Sectors

## Energy Calibration





### LUX Calibration: PRD 97, 102008 (2018)

#### Sergey Burdin / School on Dark Matter and Hidden Sectors

# Nuclear Recoil Calibration



**LUX Calibration: PRD 97, 102008 (2018)** 19/10/2021 D-D generator:  ${}_{1}^{2}\mathbf{H} + {}_{1}^{2}\mathbf{H} \rightarrow {}_{2}^{3}\mathbf{He} + {}_{0}^{1}\mathbf{n} + 3.27 \text{ MeV}$ 

 D-D generator provides a mono-energetic beam of 2.45 MeV neutrons

 Double-scattering allows reconstruction of energy  $E_{nr}$  in the 1<sup>st</sup> interaction  $E_{nr} = E_n \frac{4m_n m_{Xe}}{(m_n + m_{Xe})^2} \frac{1 - \cos(\theta_{CM})}{2}$ (b) NR Calibration og<sub>10</sub>(S2/S1) 2.5 2 1.5 10 50 20 30 40 0 S1 detected photons

Sergey Burdin / School on Dark Matter and Hidden Sectors

# Ionisation & Light yield for Nuclear Recoils



- Input to NEST simulation describing interactions in LXe TPC
  - See M. Szydagis et al. (NEST), <u>https://zenodo.org/record/1314669</u>
  - Instruments 2021, 5(1), 13 (arXiv:2102.10209)

#### Sergey Burdin / School on Dark Matter and Hidden Sectors

 $10^{0}$ 

 $10^{1}$ 

arXiv:1608.05381

Nuclear Recoil Energy [ keV<sub>nr</sub> ]

 $10^{2}$ 



- Neutron interactions with Xe nucleus are similar to WIMP's interactions
  - The cross-section of neutron interactions is much higher therefore probability of multiple interactions in the detector is high (only single-scatter interactions for WIMPs)
- Coherent neutrino-nucleus scattering (CNNS) has very low probability but when the DM search sensitivity reaches "neutrino floor" it will represent irreducible background
- Electron recoil background is suppressed in LXe detectors by S2/S1 discrimination by factor ~10<sup>3</sup> and Fiducial Volume selection

# Example of Expected Background Table

| Background Source                                                          | Mass     | $^{238}U_e$ | ${}^{238}U_l$ | $^{232}$ Th | $e^{232} \mathrm{Th}_l$ | $^{60}$ Co | $^{40}\mathrm{K}$ | n/yr    | $\mathbf{ER}$ | NR    |
|----------------------------------------------------------------------------|----------|-------------|---------------|-------------|-------------------------|------------|-------------------|---------|---------------|-------|
|                                                                            | (kg)     |             | mBq/kg        |             |                         |            |                   | (cts)   | (cts)         |       |
| <b>Detector Components</b>                                                 |          |             |               |             |                         |            |                   |         |               |       |
| PMT systems                                                                | 308      | 31.2        | 5.20          | 2.32        | 2.29                    | 1.46       | 18.6              | 248     | 2.82          | 0.027 |
| TPC systems                                                                | 373      | 3.28        | 1.01          | 0.84        | 0.76                    | 2.58       | 7.80              | 79.9    | 4.33          | 0.022 |
| Cryostat                                                                   | 2778     | 2.88        | 0.63          | 0.48        | 0.51                    | 0.31       | 2.62              | 323     | 1.27          | 0.018 |
| Outer detector (OD)                                                        | 22950    | 6.13        | 4.74          | 3.78        | 3.71                    | 0.33       | 13.8              | 8061    | 0.62          | 0.001 |
| All else                                                                   | 358      | 3.61        | 1.25          | 0.55        | 0.65                    | 1.31       | 2.64              | 39.1    | 0.11          | 0.003 |
|                                                                            |          |             |               |             |                         |            | SI                | ıbtotal | 9             | 0.07  |
| Surface Contamination                                                      |          |             |               |             |                         |            |                   |         |               |       |
| Dust (intrinsic activity, $500 \text{ ng/cm}^2$ )                          |          |             |               |             |                         |            |                   | 0.2     | 0.05          |       |
| Plate-out (PTFE panels, $50 \text{ nBq/cm}^2$ )                            |          |             |               |             |                         |            |                   |         | -             | 0.05  |
| <sup>210</sup> Bi mobility $(0.1 \mu Bq/kg LXe)$                           |          |             |               |             |                         |            |                   | 40.0    | -             |       |
| Ion misreconstruction $(50 \text{ nBq/cm}^2)$                              |          |             |               |             |                         |            |                   | -       | 0.16          |       |
| <sup>210</sup> Pb (in bulk PTFE, 10                                        | mBq/kg   | (PTFE)      |               |             |                         |            |                   |         | -             | 0.12  |
|                                                                            | 1/ 0     | , /         |               |             |                         |            | SI                | ıbtotal | 40            | 0.39  |
| Xenon contaminants                                                         |          |             |               |             |                         |            |                   |         |               |       |
| $^{222}$ Rn (1.8 uBa/kg)                                                   |          |             |               |             |                         |            |                   |         | 681           | _     |
| $^{220}$ Rn (0.09 µBq/kg)                                                  |          |             |               |             |                         |            |                   | 111     | _             |       |
| $^{nat}$ Kr (0.015 ppt g/g)                                                |          |             |               |             |                         |            |                   |         | 24.5          | _     |
| $^{nat}Ar (0.45 \text{ ppb } g/g)$                                         |          |             |               |             |                         |            |                   |         | 2.5           | _     |
| subtotal                                                                   |          |             |               |             |                         |            |                   |         | 819           | 0     |
| Laboratory and Cosmogenics                                                 |          |             |               |             |                         |            |                   |         |               |       |
| Laboratory rock walls                                                      |          |             |               |             |                         |            |                   | 4.6     | 0.00          |       |
| Muon induced neutrons                                                      |          |             |               |             |                         |            |                   | -       | 0.06          |       |
| Cosmogenic activation                                                      |          |             |               |             |                         |            |                   | 0.2     | -             |       |
|                                                                            |          |             |               |             |                         |            | SI                | ıbtotal | 5             | 0.06  |
| Physics                                                                    |          |             |               |             |                         |            |                   |         |               |       |
| $^{136}$ Xe $2\nu\beta\beta$                                               |          |             |               |             |                         |            |                   |         | 67            | -     |
| Solar neutrinos: $pp+{}^{7}Be+{}^{13}N$ , ${}^{8}B+hep$                    |          |             |               |             |                         |            |                   | 191     | $0^*$         |       |
| Diffuse supernova neutrinos (DSN)                                          |          |             |               |             |                         |            |                   | -       | 0.05          |       |
| Atmospheric neutrinos (A                                                   | .tm)     | /           |               |             |                         |            |                   |         | -             | 0.46  |
|                                                                            | ,        |             |               |             |                         |            | SI                | ıbtotal | <b>258</b>    | 0.51  |
| Total                                                                      |          |             |               |             |                         |            |                   |         | 1131          | 1.03  |
| Total (with 99.5% ER dis                                                   | criminat | 50%         | 6 NR ef       | ficiency)   |                         |            |                   |         | 5.66          | 0.52  |
| Sum of ER and NR in LZ for 1000 days, 5.6 tonne FV, with all analysis cuts |          |             |               |             |                         |            |                   | 6.18    |               |       |

- All components of multi-tonne detector are tested for intrinsic radioactivity
- Strict cleaning protocols to remove surface contaminations
- Expected background in 1000 days ~6 events in the NR band
  - Most of the background are expected leakage of electron recoil background
  - Radon background is expected to dominate the background rate
- Introduction of any "hot" material would be disastrous
  - Very difficult to check until detector is fully filled, closed and operational

19/10/2021 Phys. Rev. D 101, 052002 (2020) Sergey Burdin / School on Dark Matter and Hidden Sectors



 Limiting the energy window to low region only suppresses most of the ER background



• Using Pulse Shape Discrimination can suppress the ER leakage to the NR band especially at lower drift fields

### Compare to Argon

Scintillation:



19/10/19/2020



- <sup>39</sup>Ar β-decays produce a lot of background in ER band
  - Could be suppressed by ~1500 using Underground Ar
  - Still major background at low E<sub>nr</sub>



Sergey Burdin / School on Dark Matter and Hidden Sectors





# Laboratory and Cosmogenics Background

- Deep Underground Laboratories
  - Suppression of cosmic muons by factor ~10<sup>7</sup>
  - Think about what would be the background on surface



- Passive (e.g. water shielding) and active (veto systems) background suppression are being used as well
  - Self-shielding properties of target material (skin layer is not used for DM searches)
  - Veto system can have additives with high neutron capture cross-section  $\rightarrow$  can veto single-scatter neutron interactions in TPC



## Expected signal



- A signal produced by 40 GeV WIMP occupies the NR band as expected
  - Rate depends on cross-section  $\sigma_n$  which is a parameter of interest in the limit setting procedure
  - No (signal) events observed  $\rightarrow$  set an upper limit on the WIMP-nucleon spin-independent interaction cross-section  $\sigma_n$
- CNNS signals from solar neutrinos
   <sup>8</sup>B (36 events in 1000 days) and hep (0.9 events in 1000 days) are expected in future experiments

• 
$${}^{8}B \rightarrow {}^{7}Be^* + e^+ + v_e$$

• 
$${}^{3}\text{He} + p \rightarrow {}^{4}\text{He} + e^{+} + v_{e}$$

19/10/2021

### LUX Result

- WIMP search region is defined as a region below NR band median (red curve)
  - 50% efficiency
- Background

| 0.4 - 4 + 0.00 4  |                                                                                      |
|-------------------|--------------------------------------------------------------------------------------|
| $0.174 \pm 0.006$ |                                                                                      |
| $94\pm19$         | $99 \pm 14$                                                                          |
| $511\pm77$        | $590\pm34$                                                                           |
| $468 \pm 140$     | $499\pm39$                                                                           |
| $0.16\pm0.03$     | $0.16\pm0.03$                                                                        |
| $14 \pm 5$        | $12 \pm 3$                                                                           |
| $1.3 \pm 0.4$     | $1.6\pm0.3$                                                                          |
| -                 | $94 \pm 19 \\ 511 \pm 77 \\ 468 \pm 140 \\ 0.16 \pm 0.03 \\ 14 \pm 5 \\ 1.3 \pm 0.4$ |

~1200 mainly in ER band



### PandaX-4T Results

- Sometimes log<sub>10</sub>(S2/S1) VS. S1 are plotted
- Events 1 6 are identified as leaked ER events.
- Spatially they seem to be distributed randomly but see where most of the background is.

19/10/2021



## Extending Sensitivity to Low Masses

- S2-only searches
- Using Migdal effect and Bremsstrahlung
- Using high double photoelectron production efficiency for VUV light



### Sensitivity @ Single Scintillation Photon level

Phys. Rev. D 101, 042001 (2020)



- Single VUV photon produces two photoelectrons (DPE) in LUX PMTs (~17% probability)
  - Requiring DPE in 1 PMT recovers some events cut but 2-fold coincidence requirement
  - Effective suppression of Dark Counts and visible light
- Improve S1 efficiency at low  $\mathrm{E}_{\mathrm{NR}}$   $\rightarrow$  keep ER/NR separation



- NR threshold could be lowered to 0.3 keV
- Tested with LUX 2013 data
- 6 detected events agree with background expectations (dark counts leakage coinciding with S2)

### Sensitivity to Sub-GeV DM

- NR is too low in LXe detectors for Sub-GeV DM particles
- Still the Migdal effect and Bremsstrahlung could provide some sensitivity through detection of electron or photon
- Suggested by Chris Kouvaris and Josef Pradler (PRL 118, 031803 (2017))

Migdal effect: Emission of electron due to recoiling nucleus Theory in JHEP 03, 194 (2018)

Bremsstrahlung: photon emission from Xe atom due to DM-nucleus scattering





## XENON1T Migdal+Brem+S2-only result



36

Phys. Rev. Lett. 121, 081307 (2018)

### S2-only DarkSide-50 result





- If ER/NR separation is not required then S2-only data could be used by Ar experiments as well
- Lower mass of target nucleus → better momentum transfer for lower mass WIMPs → better sensitivity even without Migdal or Bremsstrahlung effects
- Ionisation calibration at low E<sub>nr</sub> is needed

### Current Status in MeV – TeV mass range



19/10/2021

Sergey Burdin / School on Dark Matter and Hidden Sectors

### Projections

- We could be reaching the neutrino floor in the >10GeV/c<sup>2</sup> region by 2030-2035 (by ~2025 @8-9 GeV/c<sup>2</sup>) •
  - Fuzzy signal in the NR band

 $4 \times 10^{-45} \text{ cm}^2$ 

Sum CNNS

2

 $m_{\gamma}=6 \text{ GeV/c}^2$ 

 $10^{2}$ 

10

 $10^{-}$ 

 $10^{-2}$ 

 $10^{-1}$ 

 $10^{-1}$ 

 $\overline{dE_n}$ 

19/10/2021

5×10<sup>-</sup>

Rate  $[t^{-1} \times y^{-1} \times \text{keV}^{-1}]$ 



# Prospects of Directional DM Detection



• Nuclear recoils are aligned with the Sun direction

$$\frac{d^2 R}{dE_{\rm nr} \ d\phi} \propto \exp\left[\frac{2(v_{\odot}\cos\phi - v_{\rm min})^2}{3v_{\odot}^2}\right]$$
  
arXiv:1903.03026





~50x50x50 m<sup>3</sup> detector would allow reaching neutrino floor and use directional information

CYGNUS (arXiv:2008.12587)

Sergey Burdin / School on Dark Matter and Hidden Sectors

### Conclusion

- Understanding the nature of Dark Matter is one of the most interesting and important scientific tasks
- Direct Dark Matter searches improved the sensitivity by 6 orders of magnitude in 20 years
- Still the sensitivity even in the WIMP region differs by 14 orders of magnitude → a lot of room for improvement
- Extending mass range and tackling below neutrino floor cross-sections represent tremendous task
- New techniques (better purity, higher sensitivity, directional measurements, quantum sensors?) will play an important role in solving this task
- A lot of room for creativity and unconventional approaches