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Plan of the talk

The multi-messenger approach & particle physics

GW generated by FOPT

Neutrino physics and the mass-generation
See-saw mechanism and GW production

Partial conclusions
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The multi-messenger approach & particle physics
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The multi-messenger approach

4 )
Electro-magnetism

Neutrinos

Comic rays
GW signals

Use gravitational waves to probe high and low-scale physics

Ex. : LISA, U-DECIGO and BBO can test SSB 1in 10 GeV-10 TeV

Ex. : PTA, SKA, FAST (nHz range) can test in MeV-ish scales

Cross-checking strategy.: meson factories, LHC, CEPC, etc...
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Recurrent questions

What is the nature of Dark Matter?
Can we use Gravitational Waves to unveil its nature?
Can we use a cross-checking multi messenger strategy?

How does neutrinos mass generate?
Can we understand the nature of the inflaton?

What can we infer about confinement in QCD?

We deploy at the same time informations from different observational channels!

Lund COST Advanced School on Physics of Dark Matter and Hidden Sectors: from Theory to Experiment, 18-22 September 2021



Gravitational Waves
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Gravitational Waves
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Gravitational Waves
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Strain h
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| Binary Backaround - Stochastic signal from binary systems
Cosmic SMBHB - Super-massive black hole binaries
|\ microwave EMRI - Compact stellar remnents
background BHB - Black hole binaries
109 - NSB - Neutron star binaries
NS - Neutron stars
WDB - White dwarf binaries
RS
1072 \;‘\6\ '
R 2 N2
%, &
‘_Q/_ A\

1077°-
10718~

Detectors:

Cosmic microwave backaround
10214 Pulsar timing

LIGO (Laser Interferometer g-wave obs.)

Pulsar timing array &

LISA (Laser Interferometer Space Antenna) Advansgd LIGO

Advanced LIGO £ NS
10-24'! T T T T T : - T 1

109 m 10%*m 109"m 10" m 10"°m 10'°m 10°m 10°m 10°m

Wavelength A



Gravitational Waves
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Gravitational Waves
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First observations of Gravitational Waves

V \
Inspiral Merger Ringdown
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First observations of Gravitational Waves

GW150914

Distance ~ 440 Mpc

~3 solar masses emitted in GW
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First observations of Gravitational Waves

GW170814

Distance ~ 540 Mpc

~3 solar masses emitted in GW

Hanford ~Livingston Virgo
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Multi-messenger perspective for Dark Matter

GW170817
GRB170817A

Distance ~ 40 Mpc

Neutron stars around 1 and 2 solar masses
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Multi-messenger perspective for Dark Matter
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Equations of State for Neutron Stars

Solve static equilibrium equations (TOV)
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@ D and second order differential equations Hinderer (2010)
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Measuring NS deformability > matter in density regimes inaccessible on Earth
[ Anisotropic models
Pions presence, nontrivial fluidodynamics > | pe(r) = p,. + Er(e — 5pr) (¢ — p,)r?
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Static equilibrium and TOV

3 = Diag(e,p.p,p) ds? = —e?®dt? + e?Adr? + r*df% + r*(sin ) *dg?
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System is closed by an EoS: p = p(¢)
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Role of anisotropies in NS EoS 1

A.Addazi, R. Ciancarella, A. Marciano & F. Pannarale Phys.Dark Univ. 32 (2021) 100796

FPS with Anisctropy ~ MSI1 with Anisolrupy
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Role of anisotropies in NS EoS 11

SLy with Anisotropy
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Maximal mass at fixed central pressure
Increases.
Tidal deformability increases while
compactness decreases.

(<0

Maximal mass at fixed central pressure
decreases.
Tidal deformability decreases while
compactness increases.
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Mirror Dark Matter 1

Following T.D. Lee & C. Yang (1956), parity, as a global symmetry,
might be restored in a dark sector:

* The Dark Sector as copy of the Standard Model, with opposite chirality

* Different nucleosynthesis

* Interacting either gravitationally or weakly coupled to EM

MS | with MDM
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0%<MDM<50%
Maximal mass decreases at fixed central
pressure.
Tidal deformability decreases while
compactness increases.

MDM>50%
Specular to the case above
MS1 with MDM
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Mirror Dark Matter 11

FPS with MDM SLy with MDM
= -~ :x) { B = -
IR S rEme= - 0% | '~
, \ S
_— . ’ ! *
1.3 \ t 10N \ A "N
| \\ v 20% | B \ '\
\ 15| — :
| - i\ o \ m——————— 0% | \\\ ‘.
y | . » ‘
= Hl. \ \ NI ’ .
p .

M M|
[
|
|
R R
~.

- 1 S
\ DR : A - 30% §

. T~ "\ — 4K \ \
———— T ————— — T —— -
| o e— S
0.0 - 0. ittt bbb bl bt
7 8 9 10 11 12 13 7 s 9 10 11 12
r |km) rkm|
FPS with MDM SLy with MDM
10% 20% 30% 40% 50% 10% 20% 30% A40% 50%
R (km) 10,36 0.56 N.T6H N.06 747 R(lkm ) 10.90 995 .06 N.22 7.57
(; (.157 (0.1710) 0.185 0.202 0.217 (! (1.190 (.207 (0.228 (0.251 (0.273
[ D.0724  0.0605  0.0535  0.0505  0.0523 [ 0.0600  0.0485  0.0404  0.0352  (.0333
A1 eem?s?)  (LRGH (1,152 0).276 (.172 (0.121 M9 g em?s?) 0,921 (L1A81 (L2417 .132  (LO8A]

Lund COST Advanced School on Physics of Dark Matter and Hidden Sectors: from Theory to Experiment, 18-22 September 2021



Confronting with GW 170817 and PSR J0349+4032

Inferred Mass from PSR
J0348+4032

M = (1.97 = 2.05)Mq

Tidal deformability from GW 170817

_ +390
Acwi70o817 = 190I73q

Necessary condition

Given either the families EoS-C or EoS-
MDM, there must be a sequence that
satisfies PSR J0348+4032 and a sequence
that satistfies GW 170817

% of MDM 0% 10% 20% 30% 40% H50%

SLy 282 1063 89 = 23 15

MS1 1246 786 495 301 197 148
Z 2 10 -1 -2
- A'\ FPS 349 240 172 121 &4
A=/ SLy 534 381 282 214 165

Within the range assumed:

a) MSI 1s rejected for the anisotropic case
b) FPS 1s rejected in the MDM case
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Confronting with GW 170817 and PSR J0349+4032

Inferred Mass from PSR % of MDM 0% 10% 20% ‘«m %% 400’ R
J0348+4032 SLy @ 163 55 15
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Sufficient condition

Given either the families EoS-C or EoOS-MDM, there must be at least a
sequence satisfying at the same time PSR J0348+4032 ¢ GW170817
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Future perspective on NS EoS and (M)DM

Anisotropies

Several configurations EoS-( satisfy constraints separately. Other satisfy both the constraints
MSI i1s rejected in the anisotropic case

FPS must be reconsidered, since it turns out that it can still be valid

Mirror Dark Matter

Several configurations EoS-( satisfy constraints separately. Other satisfy both the constraints
FPS 1s rejected in presence of MDM.

MS1 must be reconsidered, since it turns out that can be still valid.

[ Recover tidal deformability for different EoS )
Implement different model of dark matter
Develop template for wave-forms

Confrontation with the EM channel!
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GW generated by FOPT
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Gravitational Waves Stochastic Background

Signal from unresolved astrophysical sources

Signal from cosmological events

1) Early cosmology (inflation, bouncing cosmologies, string gas cosmology etc...)
11) Cosmic strings

111) Strong Cosmological Phase Transitions
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Tunnelling and bubbles enucleation
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Latent energy parameter

Normalized difference between minima
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Bubble nucleation parameter

How fast the minimum goes down
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B/H provides an inverse time scale



Effective action

Relation between size of the bubble wall and bubble velocity

d~ —
B

Effective potential
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Bubbles collision
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Shock waves and turbulence
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Velocity enhancement
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Kamionkowski, Kosowsky, Turner 1994

Credit: A. Kosowsky, Fudan Spring School of Cosmology 2017
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Comparison with MHD turbulence

Kosowsky et al This work
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Criteria for phase transitions I

Vacuum bubbles nucleated from first order phase transitions (FOPT)

Three sources of GW production: 1) collision, 2) sound waves and 3) plasma turbulence

h2Qcol dominates for large wall velocities vy — 1

h*Q (f; X, B/vapeak) Joeax (o, B/H, T,)

1 oV, dV; B .. 9 (S
* T [V’ Vs T(aT ar)] H_T"BT(T)
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Criteria for phase transitions II

4 )

Bubble nucleation arises when the probability to realize 1 transition per cosmological

horizon 1s equal to one: % L1 = 93 ~ 140

Iy

UV, (Tn)

n

Strong transition criterion: > 1 => enhances GW production

Classical motion 1n Euclidean space described by action §3

\

Ay 2
S —4711 dr r? {l (@) + Verr($, T) 3
0 2 dr

J

VE($,T) = Vo + Vew + AVI(T)

3 solution of the e.0.m. found by the path that minimizes the energy )

Implementation via CosmoTransitions [Wainwright "12]
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Dynamics of phase transitions

5\ (s
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Loop and thermal corrections in then effective potential
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Conclusions

The multi-messenger perspective applied to distinguish DM models

GW spectra to characterize and study different EoS for different DM candidates

Different seesaw variants lead to distinct GW spectra!

Gravitational wave to shed light on the mystery of DM & neutrino mass generation!
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Neutrino physics and the mass-generation
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Standard Type-I models (high scale)

L\T{il}’(e_l = Yy LHV® + MVV* + h.c.

L = (v,)" and v° three RH-neutrinos colored as SM-singlet

Y, and M 3 x 3 matrices

3 M explicitly break lepton number symmetry U(1); — Z )

Mass for light neutrinos generated by EWSB m, ~ O(0.1eV)

2
mIype=T — %YVTM_lY,, (H) = Y, ~O(1) M~ O(10"CeV)

|74

%‘@
[\3?‘

- J

Lund COST Advanced School on Physics of Dark Matter and Hidden Sectors: from Theory to Experiment, 18-22 September 2021



Inverse see-saw (low scale)

4 N
Two additional gauge singlet fermions, with opposite lepton number charge v°, S

L™ — Y LHV + Mv°S + uSS + h.c.

4 N

The smallness of the neutrino mass is linked to the breaking U(1); — Z,

—1

Inverse _ %YVTMT_llLLM Yz/

This 1s triggered by the u-term m;,

Small neutrino masses are protected by U(1),, (restored for u — 0)
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Introducing the Majoron

Global B-L spontaneously broken by a SM complex scalar singlet
and generation of LH neutrino mass

The NGB associated to the symmetry is the Majoron

Possible detection in neutrinoless double-beta decays (GERDA, EXO)
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The effective action for the Majoron

L= fHLvg + hovgvy + h.c. + V(o, H)

A complex singlet scalar ¢, the majoron, with L (o) =—2
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The effective action for the Majoron
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Missing energy channel and LHC data

N
G m2
P(H = XX) a 6411’77’11{ i m%,
CH.X‘X = /\Hxx + ‘?\22}0.
S T F )
Br(H — invisible) = ————~— < 0.51 (95%C.L.)
va /% FSM - N
channel ATLAS CMS ATLAS+CMS
iy 115793 112793 1167922
pww  1.2370537 0.9175:3] 1.11%3:37
prz  LSI9GE 105308 13190%]
prr 1417035 0.897G3%  1.127G733
pw 06203 081°98 069192
oNP(pp— H) BRNP(H = F)
F=—g
H oSM(pp — H) BRSM(H — F)
\_ J
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Majoron phenomenology

Cosmological limits very stringent on SSB scales beyond EW
phase-transition

Very open limits on smaller scales!

Possibility to say something about the nature of the phase transition:
violent Majoron, with FOPT

A. Addaz1 & A. Marciano, CPC (2018), arXiv:1705.08346
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FOPT at 10 GeV

A. Addaz1 & A. Marciano, CPC (2018), arXiv:1705.08346
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FIG. 1. The gravitational waves energy density as a func-
tion of the frequency is displayed. We use the same model
independent parametrization of Ref.[18]. We show three non-
runnaway bubbles cases which are compatible with the B-L
first order phase transition: In blue, we consider the case of
T = 50GeV, f/H = 100, a = 0.5, as = 0.1, Vg = 0.95;
in green T = 20GeV, B/H = 10, a = 0.5, ayx = 0.1,
Ve = 0.95. Orange: T = 10GeV, f/H = 10, a = 0.5,
oo = 0.1, VB = 0.3. The three cases lies in the sensitivity
range of LISA [18].
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Constrained from GW, colliders and cosmology

A.Addazi & A. Marciano, CPC (2018), arXiv:1705.08346
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FIG. 2. We report the limits from LHC and future CEPC (in
brown and blu respectively), cosmological sphaleron bounds
(green) and the region which will be probed by eLISA (red).
The case of 8, = 1 is displayed.
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Constrained from radio telescopes at KeV scales

----- T=1keV, V5=0.95, g/H=10
----- T=1keV, Vz=0.95, B/H=1
10-2'} —— T=0.1keV, V5=0.95, g/H=10

A = B
fiHz]
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Type-I and Inverse See-saw with Majoron

For the majoron, L (¢) = —2 and mass terms read now:

Mvv¢ — Y,oveve (type-l variant) uSS — Y, 0SS (low-scale inverse variant)

\_ J
4 y )
(o) = 7‘5 breaks spontaneously U(1); — Z,
M — Ygv/V2 (type-l variant) u— Ysvs/V2 (low-scale inverse variant)
N y
Extended scalar sector:

Vo= Vem + B20°0 4+ Ay (0°0)° + AyoH Ho* 0 + (3up0° +c.c.)

Tiny U(1)y, soft breaking term pp ~ O(1KeV)
Resulting pseudo-Goldstone boson as testable DM candidate (Valle et *93, ‘07)
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See-saw mechanism and GW production
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See-saw gravitational footprint

High scale type-I seesaw with explicit U(1). violation

E$ﬁ£e_1 =Y, LHV® + Mv°v° + h.c.

Heavy 1sosinglet neutrinos decouple from EW-scale: no FOPT and thus no GW signal from EWPT!

N J
- )
: . .o : : Yy M/GeV | generations
Low-scale inverse seesaw with explicit U(1). violation 02 3.0 ;5({ 500 J [3'30']
_ 10~
Lverse — Y, LHv® + Mv°S + puSS + he. . y
10-28
o . . o e 2.0
Singlets closer to EW scale and sizable Higgs coupling 310 \ B
l« - N
Thermal corrections from heavy neutrinos induce FOPT 1= | Bfio
1032 \ 05
Fermions affect PT at loop level, enabling weak FOPT only 1034 T T T
Srecsc [H2

. Signal below current and forthcoming instrumental sensitivity! )
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Gravitational footprint of Lepton number SSB

4 )
Spontaneous breaking of U(1), — Z.and inverse see-saw mechanism
Type-I variant Low-scale inverse variant
[ Mvv©® — Y, ovv°© J [ uSS — Y, o088 ]
- J

Majoron scalar ¢ responsible for a new richer pattern of FOPTs
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Inverse See-Saw with Majoron

Strength of PT enhanced by tree-level contributions
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Characteristic signal with multi-peak scenario!
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Richer patterns of FOPTs

-

Not only heavy isosinglet fermions couple to the Higgs — the Majoron complex scalar

that breaks spontaneously U(1). can couple substantially to the Higgs

l

Generation of two or three GW peaks

~

At the end of any FOPT scalar potential minimization requires non vanishing VEVs to

be associated with the generation of EW and neutrino mass scales

(- )
Class I) (0,0) — (vg,v,)
Class II) (0,0) = (vg,0) = (vy,vs) for v, <wvgy
(0,0) = (0,v,) = (vg,vs) for wv, >wvy
(0,0) = (vg,0) = (0,v,) = (vE,v,) for v, <wvg
([rass 11D (0.0) =+ (0.9,) > (v41.0) = (vir,va) for v, > v
/

)
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Three possible scenarios

Three possible scenarios, with nearly preserved U(1)L, namely vo (7'=0) ~ O (1 keV)

Peak Id | (v}, vy) — (v}, V) x B/H | b
Green1 | (249,0) — (238,0) | 16.0 M5 | el S N
Red1 | (0,70.7) — (212,0) | 8.83 x 102 109 |goe AN A
Red2 | (228,0) — (245,0) | 6.85x 1073 | 2.31 x 10* | v - /\V\\\
Blue 1 | (0,98.9) — (205,0) [ 5.72x 1072 | 5.08 x 10° | “"}" 7 . wwe ,,jf\
Blue2 | (239,0) — (248,0) | 3.73 x 1073 86.7 — BEREER N
f [Hz]
Curve | my,/GeV | Agy Ao M, /GeV Yo
Green 68.9 3.56 | 7.86 x 10—~ 147 4.83
Red 439 [ 7.42 8.48 324 271
Blue 378 | 5.08 1.67 303 | 0.126

Detectable by LISA: very strong FOPT with vin/Tn = 119
(Consistent with invisible Higgs decays LHC bounds [Bonilla, Romao, Valle (2016)])

Two-peak scenarios detectable by DECIGO

Large quartic couplings enhance m/T and facilitate these scenarios: Bosonic (m/T)3 contributions in
AV(1) (T) produce potential barriers
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Multi-peak scenarios and generic features
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At least one quartic coupling involving ¢ is sizable
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Multi-peak feature as a prediction of the Inverse
seesaw with Majoron

10~

1016, - |
¢ 102
N -

10 A — \-’:~ '

R T - — A : ) = 2 - — )
10 10 107 10! ' 10° 10° W 109 10 IQ : 10" 10
f peak {HL] fp:?ak “Hl]

Very hard to resolve the third peak

Multi-peaks only due to distinct phase transitions (no competition effect from the three
mechanism, 1.e. collision, sound waves, turbulence)

Possibility to distinguish/falsify neutrino mass generation mechanism
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Type-I seesaw with Majoron

- ~
High scale variant: Y, ~O(1) = M =Y, v, /V2 ~ 010" GeV)

for Y, ~ O(1) then v, ~ O(10'*GeV) — NO FOPT

Low scale variant: Y, ~0(107°%) = M = Y,v,/v2 ~ O(100GeV)
8 new states do not decouple: FOPT and GW are found/
10‘9k
lo—lL
10—13. 7
;_Elo—l.";.
o
< 10-174
10194 <
/  (Tu) =(1, 246), (127, 33) GeV
1024 —— (T, va) = (29, 246), (200, 479)GeV = 10-24
— (T, v,) = (40, 536), (53, 63) GeV o= T
1051 it Y S | 10~ 102 10° 102
107 101 103 102 10~ 10° 10¢ H
J [Hz] fpcak[ 7)

Less double peaks than in the Inverse See-Saw case, and mainly out of reach
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Double-peak within experimental reach much rarer

In contrast to inverse seesaw + majoron one, PT is typically much stronger hiding
the smaller peak

Curve | my,/GeV An Aok Ay cosO | vo(T=0) | M,/GeV | Y,
Green 83.1 0.0624 | 0.310 | 8.16 | 0.962 30.3 456 2.08
Red 793 0.389 | 0.594 | 0.350 | 0.974 924 90.5 2.59
Blue 334 0.265 | 0.332 | 0.243 | 0.913 449 57.8 2.97
Peak Id (Vi V) = (V5. %) o B/H frea/Hz
Green1 | (0,45.4) — (33.4,45.1) | 6.39 x 10~* | 2.36 x 10* 0.955
Green 2 | (246,30.8) — (246,29.7) 6.70 3.50 x 10° | 5.37 x 10~
Red 1 (0,967) — (64.8,964) | 1.20 x 102 | 8.16 x 10° 1.26
Red2 | (213,935) — (536,750) 0.249 2.68 x 10° 0.0240
Blue 1 (293, 305) — (0,479) 1.30 x 1072 | 2.04 x 10° 1.17
Blue 2 (0, 554) — (246, 450) 0.632 574 3.48 x 1073
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Second CP-even Higgs, h = cosf hq + sinf ho

Consistency with Higgs invisible decays bounds assured




