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Ø In the SM (massless neutrinos), the field redefinition of the 

neutrinos can rotate away the lepton mixing matrix

Neutrino mixing matrix
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Ø The lepton mixing matrix, Pontecorvo-Maki-Nakagawa-Sakata 

(PMNS) matrix, in the SM is unphysical if the neutrinos are 

massless or degenerate in mass 

Neutrino mixing matrix
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• PMNS has the three rotation angles and one CP phase. There 

can exist two Majorana phases in the presence of Majorana 

neutrinos: 𝑚𝜈𝜈 (two-component) or 𝑚 𝜈!𝜈 (four-component).

• The Majorana phases might come from high-scale physics that 

generates the baryon asymmetry via L-violation  
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where Uαi are the elements of the neutrino, or lepton mixing matrix, also
referred to as the Maki-Nakagawa-Sakata (MNS) matrix, or the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS, or MNSP) matrix. This means that, say,
during β-decay, an electron and a linear combination of antineutrinos with
well-defined masses are produced such that m2

νe
discussed above is given

byl
∑

i |Uei|2m2
i .

Now, a more canonical description of fermion mixing. The relevant
part of the weak-interaction Lagrangian is, assuming that the neutrinos are
Dirac fermions and starting in the weak-basis where the charged-current
interactions are diagonal,

L ⊃ gēα
LWµγµνα

L + ēα
Lme,αβeβ

R + ν̄α
Lmν,αβνβ

R + H.c.

= gēα
LWµγµνα

L + ēα
L(V †

e )iαmD
e,ij(Ue)jβeβ

R + ν̄αi
L (V †

ν )αimD
ν,ij(Uν)jβνβ

R + H.c.

= gē′jLWµγµ(VeV †
ν )jiν′i

L + me,iē′iLe′iR + mν,iν̄′i
Lν′i

R + H.c. (23)

where V, U diagonalize the mass matrices, and relate the primed (mass)
bases to the unprimed (weak) ones. The lepton analog of the CKM matrix
is U ≡ VeV †

ν , and it is easy to show that it is identical to U defined by
Eq. (22).

Neutrinos are always produced and detected in well-defined flavor eigen-
states. These, however, are not eigenstates of the propagation Hamiltonian.
This mismatch leads to neutrino oscillations. As an example, assume that
there are only two neutrino species, νe and νµ. An electron-type neutrino
can be decomposed in terms of mass eigenstates |ν1⟩ and |ν2⟩ as

|νe⟩ = cos θ|ν1⟩ + sin θ|ν2⟩, (24)

where θ is the mixing angle that parameterizes the mixing matrix U .m It is
clear that the orthogonal muon-type neutrino state is |νµ⟩ = − sin θ|ν1⟩ +
cos θ|ν2⟩.

Assuming that the neutrino propagates as a plane-wave, at time t, the
originally electron-neutrino state evolves into

|ν(t, x⃗)⟩ = cos θe−ip1x|ν1⟩ + sin θe−ip2x|ν2⟩. (25)

The all-important phase factor is given by pix = Eit − p⃗ix⃗ ≃ (Ei − pz,i)L
(i = 1, 2) assuming that the neutrino is ultrarelativistic (always a very

lThe dependency of the β-decay spectrum on the neutrino masses is a function of m2
νe

only in the limit where all neutrino masses are small enough.22
mA 2 × 2 unitary matrix is parameterized by four real parameters. The other three
parameters, however, turn out to be either unphysical or at least unobservable in the
flavor oscillation phenomenon discussed here.
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L + me,iē′iLe′iR + mν,iν̄′i
Lν′i

R + H.c. (23)

where V, U diagonalize the mass matrices, and relate the primed (mass)
bases to the unprimed (weak) ones. The lepton analog of the CKM matrix
is U ≡ VeV †

ν , and it is easy to show that it is identical to U defined by
Eq. (22).

Neutrinos are always produced and detected in well-defined flavor eigen-
states. These, however, are not eigenstates of the propagation Hamiltonian.
This mismatch leads to neutrino oscillations. As an example, assume that
there are only two neutrino species, νe and νµ. An electron-type neutrino
can be decomposed in terms of mass eigenstates |ν1⟩ and |ν2⟩ as

|νe⟩ = cos θ|ν1⟩ + sin θ|ν2⟩, (24)

where θ is the mixing angle that parameterizes the mixing matrix U .m It is
clear that the orthogonal muon-type neutrino state is |νµ⟩ = − sin θ|ν1⟩ +
cos θ|ν2⟩.

Assuming that the neutrino propagates as a plane-wave, at time t, the
originally electron-neutrino state evolves into

|ν(t, x⃗)⟩ = cos θe−ip1x|ν1⟩ + sin θe−ip2x|ν2⟩. (25)

The all-important phase factor is given by pix = Eit − p⃗ix⃗ ≃ (Ei − pz,i)L
(i = 1, 2) assuming that the neutrino is ultrarelativistic (always a very

lThe dependency of the β-decay spectrum on the neutrino masses is a function of m2
νe

only in the limit where all neutrino masses are small enough.22
mA 2 × 2 unitary matrix is parameterized by four real parameters. The other three
parameters, however, turn out to be either unphysical or at least unobservable in the
flavor oscillation phenomenon discussed here.

February 2, 2008 1:28 Proceedings Trim Size: 9in x 6in lectures

26

where Uαi are the elements of the neutrino, or lepton mixing matrix, also
referred to as the Maki-Nakagawa-Sakata (MNS) matrix, or the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS, or MNSP) matrix. This means that, say,
during β-decay, an electron and a linear combination of antineutrinos with
well-defined masses are produced such that m2

νe
discussed above is given

byl
∑

i |Uei|2m2
i .

Now, a more canonical description of fermion mixing. The relevant
part of the weak-interaction Lagrangian is, assuming that the neutrinos are
Dirac fermions and starting in the weak-basis where the charged-current
interactions are diagonal,

L ⊃ gēα
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reasonable assumption) and travelling a distance L along the z-direction.
On the other hand, Ei − pz,i = (E2

i − |p⃗|2)/(Ei + pz,i) ≃ m2
i /2Ei ≃ m2

i /2E
where E1 ≃ E2 ≃ E, and Ei ≃ |p⃗i|. Hence

|ν(L)⟩ = cos θe−im2

1
L/2E|ν1⟩ + sin θe−im2

2
L/2E |ν2⟩. (26)

The probability that this state is an electron neutrino is

Pee = |⟨νe|ν(L)⟩|2 ,

=
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2
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1
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= 1 − 4 cos2 θ sin2 θ
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1 − cos(∆m2L/2E)

2

)

,

= 1 − sin2 2θ sin2

(

∆m2L

4E

)

, (27)

where ∆m2 ≡ m2
2−m2

1 is the neutrino mass-squared difference. The unitary
evolution of the neutrino state guarantees that Pee = Pµµ = 1 − Peµ =
1 − Pµe.

3.1.1. Physics of Two-Flavor Vacuum Oscillations

Eq. (27) dictates that an originally electron-type neutrino has a non-zero
chance of being detected as a muon-type neutrino after it propagates a
finite distance L. Peµ as a function of L for fixed ∆m2 and E is depicted
in Fig. 6. It is, of course, a periodic function of L. Its maximum is given
by sin2 2θ, and occurs every time L = (2n+1)Losc/2, n = 0, 1, 2, . . ., where
Losc is the neutrino oscillation length, defined as

π
L

Losc
≡

∆m2L

4E
= 1.267

(

L

km

)(

∆m2

eV2

)(

GeV

E

)

. (28)

Nontrivial effects are observed under two conditions. First, sin2 2θ should
not be too small. Second, the neutrino oscillation length should not be much
longer than the distance traversed by the neutrino. For particle physics-like
neutrino energies (1 GeV), mass-squared differences of 1 eV2 can be probed
if the baseline is in the kilometer range.

It is useful to illustrate with a few examples. If neutrino oscillations in
vacuum have anything to do with the solar neutrino puzzle (E ∼ 10 MeV,
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if the baseline is in the kilometer range.

It is useful to illustrate with a few examples. If neutrino oscillations in
vacuum have anything to do with the solar neutrino puzzle (E ∼ 10 MeV,
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where ∆m2 ≡ m2
2−m2

1 is the neutrino mass-squared difference. The unitary
evolution of the neutrino state guarantees that Pee = Pµµ = 1 − Peµ =
1 − Pµe.
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Nontrivial effects are observed under two conditions. First, sin2 2θ should
not be too small. Second, the neutrino oscillation length should not be much
longer than the distance traversed by the neutrino. For particle physics-like
neutrino energies (1 GeV), mass-squared differences of 1 eV2 can be probed
if the baseline is in the kilometer range.

It is useful to illustrate with a few examples. If neutrino oscillations in
vacuum have anything to do with the solar neutrino puzzle (E ∼ 10 MeV,
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PACS numbers: PACS numbers: 14.60.Pq, 96.40.Tv

I. INTRODUCTION

Atmospheric neutrinos are produced from the decays of
particles resulting from interactions of cosmic rays with
Earth’s atmosphere. We have previously reported the results
of a number of atmospheric neutrino observations spanning
energies from 100 MeV to 10 TeV [1, 2, 3, 4]. In each case, a
significant zenith-angle dependent deficit of νµ was observed.
These deficits have been interpreted as evidence for neutrinos
oscillations [5]. If neutrinos have a non-zero mass, then the
probability that a neutrino of energy Eν produced in a weak
flavor eigenstate να will be observed in eigenstate νβ after
traveling a distance L through the vacuum is:

P(να → νβ) = sin2 2θsin2
(1.27∆m2(eV2)L(km)

Eν(GeV)

)

, (1)

where θ is the mixing angle between the mass eigenstates
and the weak eigenstates and ∆m2 is the difference of the
squared mass eigenvalues. This equation is valid in the 2-
flavor approximation. The analysis reported in this paper is
under the assumption of effective 2-flavor neutrino oscilla-
tions, νµ ↔ ντ, which is considered to be dominant in atmo-
spheric neutrino oscillations. Equation 1 is also true in matter
for νµ↔ ντ, but may be modified for oscillation involving νe
which travel through matter. The zenith angle dependence of
the observed deficits results from the variation of L with the
direction of the neutrino. Neutrinos produced directly over-
head travel roughly 15 km to the detector while those pro-
duced directly below traverse the full diameter of the Earth
(13,000 km) before reaching the detector. By measuring the
neutrino event rate over these wide ranges of Eν and L, we
have measured the neutrino oscillation parameters ∆m2 and
sin2 2θ.
Super-Kamiokande (also Super-K or SK) is a 50-kiloton

water Cherenkov detector located deep underground in Gifu
Prefecture, Japan. Atmospheric neutrinos are observed in
Super–K in two ways. At the lowest energies, 100 MeV –
10 GeV, atmospheric neutrinos are observed via their charged-
current interactions with nuclei in the 22.5 kiloton water fidu-
cial mass: ν+N → l+ X . These interactions are classified
as fully-contained (FC) if all of the energy is deposited inside
the inner Super–K detector, or as partially-contained (PC) if a
high energy muon exits the inner detector, depositing energy
in the outer veto region. The neutrino energies that produce
partially-contained events are typically 10 times higher than
those that produce fully-contained events. The Super-K detec-
tor started observation on April, 1996 achieving a 92 kiloton-
yr (1489 live-day) exposure to atmospheric neutrinos through
July, 2001 during the Super-Kamiokande I running period.

∗Present address: Department of Physics, Univ. of Tsukuba, Tsukuba, Ibaraki
305 8577, Japan
†Present address: Department of Physics, Okayama University, Okayama
700-8530, Japan
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FIG. 1: The parent neutrino energy distributions for the fully-
contained, partially-contained, upward stopping-muon and upward
through-going muons samples. Rates for the fully-contained and
partially-contained samples are for interactions in the 22.5 kiloton
fiducial volume. Taken together, the samples span five decades in
neutrino energy.

Neutrinos can also be detected by their interactions with
the rock surrounding the detector. Charged-current νµ in-
teractions with the rock produce high energy muons which
intersect the detector. While these interactions can not be
distinguished from the constant rain of cosmic ray muons
traveling in the downward direction, muons traveling in an
upward direction through the detector must be neutrino in-
duced. Upward-goingmuon events are separated into two cat-
egories: those that come to rest in the detector (upward stop-
ping muons) and those that traverse the entire detector volume
(upward through-goingmuons). The energies of the neutrinos
which produce stopping muons are roughly the same as for
partially-contained events, ∼ 10 GeV. Upward through-going
events, however, are significantly more energetic; the parent
neutrino energy for these events is about 100 GeV on average.
Figure 1 shows the expected number of neutrino events in

each event category as a function of neutrino energy. The
samples taken together span nearly five decades in energy.
This broad range of available energies, in combination with
the variation in neutrino travel distance, makes the combined
data sample well suited for a precise measurement of neutrino
oscillation parameters.
There have been numerous other measurements of atmo-

spheric neutrinos. Kamiokande [6, 7], IMB [8, 9] and
Soudan 2 [10, 11] observed significantly smaller νµ to νe flux
ratios of ∼ 1 GeV atmospheric neutrinos, which were inter-
preted as a signature for neutrino oscillation. The ratio was
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Table 14.7: 3‹ oscillation parameters obtained from di�erent global anal-
ysis of neutrino data. In all cases the numbers labeled as NO (IO) are
obtained assuming NO (IO), i.e., relative to the respective local mini-
mum. SK-ATM makes reference to the tabulated ‰

2 map from the Super-
Kamiokande analysis of their data in Ref. [94].

Ref. [188] w/o SK-ATM Ref. [188] w SK-ATM Ref. [189] w SK-ATM Ref. [190] w SK-ATM

NO Best Fit Ordering Best Fit Ordering Best Fit Ordering Best Fit Ordering

Param bfp ±1‡ 3‡ range bfp ±1‡ 3‡ range bfp ±1‡ 3‡ range bfp ±1‡ 3‡ range

sin
2 ◊12

10≠1 3.10
+0.13
≠0.12 2.75 æ 3.50 3.10

+0.13
≠0.12 2.75 æ 3.50 3.04

+0.14
≠0.13 2.65 æ 3.46 3.20

+0.20
≠0.16 2.73 æ 3.79

◊12/¶
33.82

+0.78
≠0.76 31.61 æ 36.27 33.82

+0.78
≠0.76 31.61 æ 36.27 33.46

+0.87
≠0.88 30.98 æ 36.03 34.5+1.2

≠1.0 31.5 æ 38.0

sin
2 ◊23

10≠1 5.58
+0.20
≠0.33 4.27 æ 6.09 5.63

+0.18
≠0.24 4.33 æ 6.09 5.51

+0.19
≠0.80 4.30 æ 6.02 5.47

+0.20
≠0.30 4.45 æ 5.99

◊23/¶
48.3+1.2

≠1.9 40.8 æ 51.3 48.6+1.0
≠1.4 41.1 æ 51.3 47.9+1.1

≠4.0 41.0 æ 50.9 47.7+1.2
≠1.7 41.8 æ 50.7

sin
2 ◊13

10≠2 2.241
+0.066
≠0.065 2.046 æ 2.440 2.237

+0.066
≠0.065 2.044 æ 2.435 2.14

+0.09
≠0.07 1.90 æ 2.39 2.160

+0.083
≠0.069 1.96 æ 2.41

◊13/¶
8.61

+0.13
≠0.13 8.22 æ 8.99 8.60

+0.13
≠0.13 8.22 æ 8.98 8.41

+0.18
≠0.14 7.9 æ 8.9 8.45

+0.16
≠0.14 8.0 æ 8.9

”CP/¶
222

+38
≠28 141 æ 370 221

+39
≠28 144 æ 357 238

+41
≠33 149 æ 358 218

+38
≠27 157 æ 349

∆m2
21

10≠5 eV2 7.39
+0.21
≠0.20 6.79 æ 8.01 7.39

+0.21
≠0.20 6.79 æ 8.01 7.34

+0.17
≠0.14 6.92 æ 7.91 7.55

+0.20
≠0.16 7.05 æ 8.24

∆m2
32

10≠3 eV2 2.449
+0.032
≠0.030 2.358 æ 2.544 2.454

+0.029
≠0.031 2.362 æ 2.544 2.419

+0.035
≠0.032 2.319 æ 2.521 2.424 ± 0.03 2.334 æ 2.524

IO ∆‰2
= 6.2 ∆‰2

= 10.4 ∆‰2
= 9.5 ∆‰2

= 11.7
sin

2 ◊12

10≠1 3.10
+0.13
≠0.12 2.75 æ 3.50 3.10

+0.13
≠0.12 2.75 æ 3.50 3.03

+0.14
≠0.13 2.64 æ 3.45 3.20

+0.20
≠0.16 2.73 æ 3.79

◊12/¶
33.82

+0.78
≠0.76 31.61 æ 36.27 33.82

+0.78
≠0.75 31.62 æ 36.27 33.40

+0.87
≠0.81 30.92 æ 35.97 34.5+1.2

≠1.0 31.5 æ 38.0

sin
2 ◊23

10≠1 5.63
+0.19
≠0.26 4.30 æ 6.12 5.65

+0.17
≠0.22 4.36 æ 6.10 5.57

+0.17
≠0.24 4.44 æ 6.03 5.51

+0.18
≠0.30 4.53 æ 5.98

◊23/¶
48.6+1.1

≠1.5 41.0 æ 51.5 48.8+1.0
≠1.2 41.4 æ 51.3 48.2+1.0

≠1.4 41.8 æ 50.9 47.9+1.0
≠1.7 42.3 æ 50.7

sin
2 ◊13

10≠2 2.261
+0.067
≠0.064 2.066 æ 2.461 2.259

+0.065
≠0.065 2.064 æ 2.457 2.18

+0.08
≠0.07 1.95 æ 2.43 2.220

+0.074
≠0.076 1.99 æ 2.44

◊13/¶
8.65

+0.13
≠0.12 8.26 æ 9.02 8.64

+0.12
≠0.13 8.26 æ 9.02 8.49

+0.15
≠0.14 8.0 æ 9.0 8.53

+0.14
≠0.15 8.1 æ 9.0

”CP/¶
285

+24
≠26 205 æ 354 282

+23
≠25 205 æ 348 247

+26
≠27 193 æ 346 281

+23
≠27 202 æ 349

∆m2
21

10≠5 eV2 7.39
+0.21
≠0.20 6.79 æ 8.01 7.39

+0.21
≠0.20 6.79 æ 8.01 7.34

+0.17
≠0.14 6.92 æ 7.91 7.55

+0.20
≠0.16 7.05 æ 8.24

∆m2
32

10≠3 eV2 ≠2.509
+0.032
≠0.032≠2.603 æ ≠2.416≠2.510

+0.030
≠0.031≠2.601 æ ≠2.419≠2.478

+0.035
≠0.033≠2.577 æ ≠2.375≠2.50±+0.04

≠0.03≠2.59 æ ≠2.39

14.7.3 Convention-independent Measures of Leptonic CP Violation in 3‹ Mixing

In the framework of 3‹ mixing leptonic CP violation can also be quantified in terms of the
leptonic Jarlskog invariant [192], defined by:

⁄
#
U–iU

ú
–jU

ú
—iU—j

$
©

ÿ

“=e,µ,·

ÿ

k=1,2,3

JCP ‘–—“ ‘ijk © J
max

CP sin ”CP . (14.84)

With the convention in Eq. (14.33) J
max

CP
is the combination of mixing angles in Eq. (14.78). For

example from the analysis in Ref. [187,188]

J
max

CP = 0.03359 ± 0.0006 (±0.0019) , (14.85)

at 1‡ (3‡) for both orderings, and the preference of the present data for non-zero ”CP implies a
non-zero best fit value J

best

CP
= ≠0.019.

The status of the determination of leptonic CP violation can also be graphically displayed by
projecting the results of the global analysis in terms of leptonic unitarity triangles [193–195]. Since
in the analysis U is unitary by construction, any given pair of rows or columns can be used to
define a triangle in the complex plane. There a total of six possible triangles corresponding to the
unitary conditions

ÿ

i=1,2,3

U–iU
ú
—i = 0 with – ”= — ,

ÿ

–=e,µ,·

U–iU
ú
–j = 0 with i ”= j . (14.86)
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Table 14.7: 3‹ oscillation parameters obtained from di�erent global anal-
ysis of neutrino data. In all cases the numbers labeled as NO (IO) are
obtained assuming NO (IO), i.e., relative to the respective local mini-
mum. SK-ATM makes reference to the tabulated ‰

2 map from the Super-
Kamiokande analysis of their data in Ref. [94].

Ref. [188] w/o SK-ATM Ref. [188] w SK-ATM Ref. [189] w SK-ATM Ref. [190] w SK-ATM

NO Best Fit Ordering Best Fit Ordering Best Fit Ordering Best Fit Ordering

Param bfp ±1‡ 3‡ range bfp ±1‡ 3‡ range bfp ±1‡ 3‡ range bfp ±1‡ 3‡ range

sin
2 ◊12

10≠1 3.10
+0.13
≠0.12 2.75 æ 3.50 3.10

+0.13
≠0.12 2.75 æ 3.50 3.04

+0.14
≠0.13 2.65 æ 3.46 3.20

+0.20
≠0.16 2.73 æ 3.79

◊12/¶
33.82

+0.78
≠0.76 31.61 æ 36.27 33.82

+0.78
≠0.76 31.61 æ 36.27 33.46

+0.87
≠0.88 30.98 æ 36.03 34.5+1.2

≠1.0 31.5 æ 38.0

sin
2 ◊23

10≠1 5.58
+0.20
≠0.33 4.27 æ 6.09 5.63

+0.18
≠0.24 4.33 æ 6.09 5.51

+0.19
≠0.80 4.30 æ 6.02 5.47

+0.20
≠0.30 4.45 æ 5.99

◊23/¶
48.3+1.2

≠1.9 40.8 æ 51.3 48.6+1.0
≠1.4 41.1 æ 51.3 47.9+1.1

≠4.0 41.0 æ 50.9 47.7+1.2
≠1.7 41.8 æ 50.7

sin
2 ◊13

10≠2 2.241
+0.066
≠0.065 2.046 æ 2.440 2.237

+0.066
≠0.065 2.044 æ 2.435 2.14

+0.09
≠0.07 1.90 æ 2.39 2.160

+0.083
≠0.069 1.96 æ 2.41

◊13/¶
8.61

+0.13
≠0.13 8.22 æ 8.99 8.60

+0.13
≠0.13 8.22 æ 8.98 8.41

+0.18
≠0.14 7.9 æ 8.9 8.45

+0.16
≠0.14 8.0 æ 8.9

”CP/¶
222

+38
≠28 141 æ 370 221

+39
≠28 144 æ 357 238

+41
≠33 149 æ 358 218

+38
≠27 157 æ 349

∆m2
21

10≠5 eV2 7.39
+0.21
≠0.20 6.79 æ 8.01 7.39

+0.21
≠0.20 6.79 æ 8.01 7.34

+0.17
≠0.14 6.92 æ 7.91 7.55

+0.20
≠0.16 7.05 æ 8.24

∆m2
32

10≠3 eV2 2.449
+0.032
≠0.030 2.358 æ 2.544 2.454

+0.029
≠0.031 2.362 æ 2.544 2.419

+0.035
≠0.032 2.319 æ 2.521 2.424 ± 0.03 2.334 æ 2.524

IO ∆‰2
= 6.2 ∆‰2

= 10.4 ∆‰2
= 9.5 ∆‰2

= 11.7
sin

2 ◊12

10≠1 3.10
+0.13
≠0.12 2.75 æ 3.50 3.10

+0.13
≠0.12 2.75 æ 3.50 3.03

+0.14
≠0.13 2.64 æ 3.45 3.20

+0.20
≠0.16 2.73 æ 3.79

◊12/¶
33.82

+0.78
≠0.76 31.61 æ 36.27 33.82

+0.78
≠0.75 31.62 æ 36.27 33.40

+0.87
≠0.81 30.92 æ 35.97 34.5+1.2

≠1.0 31.5 æ 38.0

sin
2 ◊23

10≠1 5.63
+0.19
≠0.26 4.30 æ 6.12 5.65

+0.17
≠0.22 4.36 æ 6.10 5.57

+0.17
≠0.24 4.44 æ 6.03 5.51

+0.18
≠0.30 4.53 æ 5.98

◊23/¶
48.6+1.1

≠1.5 41.0 æ 51.5 48.8+1.0
≠1.2 41.4 æ 51.3 48.2+1.0

≠1.4 41.8 æ 50.9 47.9+1.0
≠1.7 42.3 æ 50.7

sin
2 ◊13

10≠2 2.261
+0.067
≠0.064 2.066 æ 2.461 2.259

+0.065
≠0.065 2.064 æ 2.457 2.18

+0.08
≠0.07 1.95 æ 2.43 2.220

+0.074
≠0.076 1.99 æ 2.44

◊13/¶
8.65

+0.13
≠0.12 8.26 æ 9.02 8.64

+0.12
≠0.13 8.26 æ 9.02 8.49

+0.15
≠0.14 8.0 æ 9.0 8.53

+0.14
≠0.15 8.1 æ 9.0

”CP/¶
285

+24
≠26 205 æ 354 282

+23
≠25 205 æ 348 247

+26
≠27 193 æ 346 281

+23
≠27 202 æ 349

∆m2
21

10≠5 eV2 7.39
+0.21
≠0.20 6.79 æ 8.01 7.39

+0.21
≠0.20 6.79 æ 8.01 7.34

+0.17
≠0.14 6.92 æ 7.91 7.55

+0.20
≠0.16 7.05 æ 8.24

∆m2
32

10≠3 eV2 ≠2.509
+0.032
≠0.032≠2.603 æ ≠2.416≠2.510

+0.030
≠0.031≠2.601 æ ≠2.419≠2.478

+0.035
≠0.033≠2.577 æ ≠2.375≠2.50±+0.04

≠0.03≠2.59 æ ≠2.39

14.7.3 Convention-independent Measures of Leptonic CP Violation in 3‹ Mixing

In the framework of 3‹ mixing leptonic CP violation can also be quantified in terms of the
leptonic Jarlskog invariant [192], defined by:

⁄
#
U–iU

ú
–jU

ú
—iU—j

$
©

ÿ

“=e,µ,·

ÿ

k=1,2,3

JCP ‘–—“ ‘ijk © J
max

CP sin ”CP . (14.84)

With the convention in Eq. (14.33) J
max

CP
is the combination of mixing angles in Eq. (14.78). For

example from the analysis in Ref. [187,188]

J
max

CP = 0.03359 ± 0.0006 (±0.0019) , (14.85)

at 1‡ (3‡) for both orderings, and the preference of the present data for non-zero ”CP implies a
non-zero best fit value J

best

CP
= ≠0.019.

The status of the determination of leptonic CP violation can also be graphically displayed by
projecting the results of the global analysis in terms of leptonic unitarity triangles [193–195]. Since
in the analysis U is unitary by construction, any given pair of rows or columns can be used to
define a triangle in the complex plane. There a total of six possible triangles corresponding to the
unitary conditions

ÿ

i=1,2,3

U–iU
ú
—i = 0 with – ”= — ,

ÿ

–=e,µ,·

U–iU
ú
–j = 0 with i ”= j . (14.86)

1st June, 2020 8:28am



Majorana Neutrino mass

• There are three UV-completions at tree-level for dim-5 (𝛥L = 2) 

Weinberg operator (LH)(LH)/𝛬, dubbed as Type-I, Type-II and 

Type-III seesaw mechanism:



L.M. Krauss et al ’03

Ø The neutrino mass can also be radiatively generated by DM

Ø The DM loops, however, contain many parameters, making the 
DM-neutrino mass correlation obscure 

DM-neutrino interplay: dark neutrino mass



Scotogenic model

Ø Φ and N are Z2-odd
Ø The lightest of them is DM
Ø Type-I Yukawa is forbidden

Ma, hep-ph/0601225



Scotogenic model



• A very simple idea is proposed to connect the DM and neutrino 

mass.

• We start with an effective operator (Weyl-spinor notation) 

connecting the Majorana DM particle (𝜒) and the standard 

model (SM) neutrino (𝜈):

• As shown below, the scale 𝛬 is in fact lower than the 

electroweak (EW) scale, which justifies explicit SU(2)L
symmetry breaking in the effective operator.    

F. Deppisch and WCH, 1412.2027 

DM-neutrino interplay: dark neutrino mass



• By contracting two 𝜒s, the neutrino receives a radiative mass

• We use the dimensional regularization scheme with the 

modified minimum subtraction that can be justified if the 

underlying UV-complete theory has the same DM-loop diagram. 

F. Deppisch and WCH, 1412.2027 

DM-neutrino interplay: dark neutrino mass



• The DM-neutrino effective operator also determines the DM 

annihilation cross section:

• There are two contributions from opposite chiralities

• The interference between opposite chiralities is nearly zero due 

to the very small neutrino mass.  

F. Deppisch and WCH, 1412.2027 

DM-neutrino interplay: dark neutrino mass



Ø There are two unknown parameters 
in the operator, m𝜒 and 𝛬.

Ø They are completely determined, 
given the DM relic abundance and 
neutrino mass.

Ø For demonstration, we only study 
one neutrino flavor, the heaviest 
active neutrino, with the mass of 0.05 
eV to 0.2 eV (PDG and Planck data).

F. Deppisch and WCH, 1412.2027 

DM-neutrino interplay: dark neutrino mass



Ø MeV DM will reheat the neutrino 
sector when it decouples from the 
thermal bath, i.e., N𝜈=4.4 
(1207.0497) in conflict with the CMB 
measurement N𝜈=3.15±0.23 
(1502.01589).

Ø The tension might be alleviated by 
including three neutrino flavors to 
increase the DM mass above 8 MeV. 

F. Deppisch and WCH, 1412.2027 

DM-neutrino interplay: dark neutrino mass



A UV-complete toy model

F. Deppisch and WCH, 1412.2027 



• The neutrino mass matrix in the basis of 𝜈, N and 𝜉 reads

• Comparing the neutrino mass derived from the mass matrix to 

the one directly from the effective DM-neutrino operator  

𝜒𝜒𝜈𝜈/𝛬2, the scale 𝛬 can be inferred.

• In fact, it is a realization of the inverse seesaw proposed by 

Mohapatra and Valle in 1986. 

A UV-complete toy model

F. Deppisch and WCH, 1412.2027 



How to generate B asymmetry 

• In the following, we describe the criteria of B asymmetry 
generation

• Two representative examples will be discussed  



Sakharov Conditions

• B violation

è Total baryon number is still conserved if C or CP is 
conserved. 

BX

BX

®

®



• C and CP violation:

Sakharov Conditions

Ø Complex couplings 
Ø Particles in loops being on-shell, leading to 

non-vanishing 𝜃

But one can redefine ⌫ ! Ue ⌫ to remove unphysical Ue

L � gp
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e
0
Li
�
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�
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†
eU⌫

�
ij| {z }
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Lj
W

�
µ
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• Out of equilibrium dynamics since in thermal equilibrium, 
we have <B>=0

Introduction B and L Leptogenesis ! params. Alternatives Conclusions

Sakharov’s third condition

Baryon number B is odd under C, even under P and T

⇒ B is odd under CPT ≡ %

Thermal average of baryon number:

⟨B⟩T = Tr
(
e−H/TB

)

= Tr
(
%−1% e−H/TB

)

= Tr
(
e−H/T%B%−1

)

= −⟨B⟩T

No baryon asymmetry can be generated in thermal equilibrium!
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= Tr
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= Tr
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No baryon asymmetry can be generated in thermal equilibrium!

M. Plümacher ’09

Sakharov Conditions



Sphalerons (B violation)

•Sphaleron processes (Klinkhammer & Manton ’84; Kuzmin et al. ’85) convert 

lepton asymmetry into baryon asymmetry

3 Anomalous B + L Violation

The aim of this section is to give a qualitative introduction10 to the non-perturbative baryon number
violating interactions that play a crucial role in leptogenesis. A similar discussion can be found in
Ref. [67], while more details and references can be found, for instance, in Section 2 of Ref. [17], and in
Refs. [138–141].

From a theoretical perspective, the baryon number B and the three lepton flavour numbers Lα are
conserved in the renormalisable Lagrangian of the Standard Model. Furthermore, experimentally, the
proton has not been observed to decay: τp >∼ 1033 years [142,143]. (For a review of proton decay, see [144].)
However, due to the chiral anomaly, there are non-perturbative gauge field configurations [11, 145, 146]
which can act as sources for B + Le + Lµ + Lτ . (Note that B −Le −Lµ −Lτ is conserved.) In the early
Universe, at temperatures above the electroweak phase transition (EWPT), such configurations occur
frequently [10,22,147], and lead to rapid B + L violation. These configuations are commonly referred to
as “sphalerons” [148–150].

3.1 The chiral anomaly

For a pedagogical introduction to the chiral anomaly, see for instance Ref. [138].
Consider the Lagrangian for a massless Dirac fermion ψ with U(1) gauge interactions:

L = ψγµ(∂µ − iAµ)ψ − 1

4e2
FµνF

µν . (3.1)

It is invariant under the local symmetry:

ψ(x) → eiθ(x)ψ(x) , Aµ(x) → Aµ(x) + ∂µθ(x). (3.2)

It is also invariant under a global “chiral” symmetry:

ψ(x) → eiγ5φψ(x). (3.3)

The associated current,
jµ
5 = ψγ5γ

µψ, (3.4)

is conserved at tree level, but not in the quantum theory. This can be related to the regularization of
loops—renormalization introduces a scale, and the scale breaks the chiral symmetry, as would a fermion
mass (see, for instance, chapter 13 of Ref. [138]). Indeed, at one loop, one finds

∂µjµ
5 =

1

16π2
F̃µνF

µν =
ϵρσµν

16π2
F ρσFµν . (3.5)

The right-hand side can be written as a total divergence involving gauge fields, and is related to their
topology: it counts the “winding number”, or Chern-Simons number, of the field configuration. (An
instructive 1+1 dimensional model, where the topology is easy to visualize, can be found in Ref. [141].)
In four dimensions, the space-time integral of the right-hand side of eqn (3.5) vanishes for an Abelian
gauge field, but can be non-zero for non-Abelian fields.

In the context of leptogenesis, we are looking for an anomaly in the B + L current. Within the
four-dimensional SM, it arises due to the SU(2) gauge interactions, which are chiral and non-Abelian.
We neglect other interactions in the following (see Ref. [17] for a discussion of the effects of Yukawa and
SU(3)C ×U(1)Y interactions). The fermions that are relevant to our discussion are the three generations
of quark and lepton doublets: {ψi

L} = {qa,β
L , ℓαL}, where α,β are generation indices, a, b are colour indices,

and A, B are SU(2) indices. The Lagrangian terms for the SU(2) gauge interactions read

L =
∑

i

ψL
i
γµ(∂µ − i

g

2
σAWA

µ )ψi
L. (3.6)

10This Section is based on a lecture given by V. Rubakov at the Lake Louise Winter Institute, 2008.
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It has twelve global U(1) symmetries (one for each field):

ψi
L(x) → eiβψ(x)i

L . (3.7)

The chiral currents associated to these transformations,

ji
µ = ψL

i
γµψ

i
L, (3.8)

are conserved at tree level, but are “anomalous” in the quantum theory:

∂µj i
µ =

1

64π2
FA

µν F̃
µνA. (3.9)

Let us define Qi(t) =
∫

j i
0 d3x, ∆Q i = Q i(+∞)−Q i(−∞), and let us suppose for the moment that

there exist field configurations such that

∆Q i =
1

64π2

∫
d4xFA

µν F̃
µνA (3.10)

is a non-zero integer. This implies that fermions will be created, even though there is no perturbative
interaction in the Lagrangian that generates them. One way [151] to understand “where they come from”
is to think in the Dirac sea picture, and place the chiral fermions {ψi

L} in an external gauge field for
which the right hand side of eqn (3.10) is non-zero. In the ground state at t → −∞, all the negative
energy states are filled, and all the positive energy states are empty. As the fermions are massless, there
is no mass gap at E = 0. At any given t, one can solve for the eigenvalues of the fermion Hamiltonian.
See, for instance, Ref. [139] for a discussion. One finds that the levels move as a function of t: negative
energy states from the sea acquire positive energy, and empty positive energy states could become empty
sea states. In the case of the chiral SU(2) of the SM, one finds that, for each species of doublet, what
was a filled left-handed state in the sea at t → −∞, becomes a particle at t → +∞. See figure 3.1.
This “level-crossing” occurs for each type of fermion, so the gauge field configuration centered at t = 0
in figure 3.1, is a source for nine quarks and three leptons.

E

t

Left!handed fermions

Figure 3.1: Evolution with time of the energy eigenstates of chiral fermions in a gauge field background
with F̃F ≠ 0.

3.2 B + L violating rates

At zero temperature, gauge field configurations that give non-zero
∫

d4xF̃F correspond to tunneling
configurations, and are called instantons [152] (for reviews, see e.g Refs. [140,141]). They change fermion
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number by an integer N , so the instanton action is large:

∣∣∣∣
1

4g2

∫
d4xFA

µνF
µνA

∣∣∣∣ ≥
∣∣∣∣

1

4g2

∫
d4xFA

µν F̃
µνA

∣∣∣∣ ≥
64π2N

4g2
.

The first inequality follows from the Schwartz inequality (see [141]). Consequently, the associated rate is
highly suppressed,

Γ ∝ e−(instanton Action) ∼ e−4π/αW ,

and the mediated B + L violation is unobservably small. Moreover, the instantons do not threaten
the stability of the proton [11], because an instanton acts as a source for three leptons (one from each
generation), and nine quarks (all colours and generations), so it induces ∆B = ∆L = 3 processes. Notice
that the three quantum numbers B/3 − Lα are not anomalous, so they are conserved in the SM.

If the ground state of the gauge fields is pictured as a periodic potential, with minima labeled by
integers, then the instantons correspond to vacuum fluctuations that tunnel between minima. With this
analogy, one can imagine that at finite temperature, a thermal fluctuation of the field could climb over the
barrier. The sphaleron [148–150] is such a configuration, in the presence of the Higgs vacuum expectation
value. The B + L violating rate mediated by sphalerons is Boltzmann suppressed:

Γsph ∝ e−Esph/T ,

where Esph = 2BmW /αW is the height of the barrier at T = 0, and 1.5 <∼ B <∼ 2.75 is a parameter that
depends on the Higgs mass.

For leptogenesis, we are interested in the B + L violating rate at temperatures far above the EWPT.
The large B + L violating gauge field configurations occur frequently at T ≫ mW [153–157]. The rate
can be estimated as (see [158] for a recent discussion)

ΓB+L✘✘ ≃ 250α5
W T . (3.11)

This implies that, for temperatures below 1012 GeV and above the EWPT, B + L violating rates are in
equilibrium [158,159].
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Electroweak baryogenesis

• Electroweak baryogenesis occurs at the boundary between 

different vacuum states (Kuzmin, Rubakov, Shaposhnikov ’85 ’86 ’87)

Morrissey et al,1206.2942
Strong first-order phase transi?on ⟹ !!

"!
≿ 1



Electroweak baryogenesis

• In the SM, the electroweak phase transition is first-order only if 

the Higgs boson mass is below 70 GeV (Mod. Phys. Lett. A 2, 

417 (1987), hep-lat/9510020).

• In addition, the CP violation induced by the CKM phase is not 

large enough to create sufficient asymmetries (hep-ph/9312215, 

hep-ph/9404302, hep-ph/9406289)

Morrissey et al,1206.2942



Leptogenesis

• Heavy neutrinos decay out of equilibrium into leptons and 

anti-leptons unevenly (Fukugita,Yanagida ’86)



Implication of L violation on B asymmetry



Chemical potential equilibrium

All chemical poten.als vanish a1er ΔL=2 kicks in !



Ø We single out operators which 
contribute to 0𝜈ββ decay with 
short- and long-range interactions. 

F. Deppisch, J. Harz, WCH, M. Hirsch, H. Päs, arXiv:1503.04825

Lepton Number Violation (LNV) Operators 



§ Since we only study wash-out effects resulting from the 
0𝜈ββ operators, only e-lepton asymmetry is eliminated.

§ To washout other flavor asymmetries, one would need 
LFV operators together with the 0𝜈ββ operators. 

§ We study ℓ( → ℓ) + 𝛾 and ℓ( → ℓ) conversion 

Lepton Flavor Violation (LFV)

F. Deppisch, J. Harz, WCH, M. Hirsch, H. Päs, arXiv:1503.04825



Numerical results

Ø From 0𝜈ββ, one can not 
differentiate O9 and O11 from 
O5

Ø However, O9 and O11 can be 
probed at the LHC 

F. Deppisch, J. Harz, WCH, M. Hirsch, H. Päs, arXiv:1503.04825



§ 0𝜈ββ decays only probe the electron flavor, so LFV is needed to 
wash out asymmetries stored in 𝜇 and 𝜏 flavors

§ To carry out the analysis in a model-independent way, we 
assume no correla.on between the genera.on mechanism 
and washout

§ The existence of a decoupled sector can protect asymmetries 
from washout in the visible sectors (Phys. LeK. B207, 210 
(1988) and 1309.4770)

Caveats



§ Given the DM relic density and B asymmetry are of the same 
order: ΩDM ~ 5.4 ΩB , it is naturally to conjecture that the DM is 
also asymmetric — only DM particles or anti-particles exist, 
aka asymmetric dark matter (ADM) — whose relic density is 
connected to that of baryon asymmetry.

§ Two examples to connect DM and baryon asymmetries are 
through the neutrino and neutron portal (hep-ph/0510079, 
0901.4117, 1009.0270)

Links between B and (A)DM



Chemical potential equilibrium

All chemical poten.als vanish a1er ΔL=2 kicks in !





Can ADM save the world?

If particles in the dark sector are also charged under 
SU(2)L, then the sphalerons can transfer symmetry 
between B, L and X (dark charge) ⟹ ADM 

M. T. Frandsen, C. Hagedorn, WCH, E. Molinaro, H. Päs, arXiv:1801.09314



If models need an extra asymmetry-transfer 
interac.on, then DM asymmetry will also vanish! 

M. T. Frandsen, C. Hagedorn, WCH, E. Molinaro, H. Päs, arXiv:1801.09314

Can ADM save the world?



Conclusions

Ø Neutrino masses can be linked to the DM mass.

Ø Majorana neutrinos could explain observed baryon asymmetry.

Ø Specific ADM models can prevent baryon asymmetry from washout in 
case of observations of lepton number violation.

Ø ADM models that require an extra asymmetry transfer mechanism may 
be constrained by LNV observations. 

Ø The synergy among DM, baryon asymmetry and neutrino physics is 
phenomenologically interesting.


