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Motivations and what we do

(Dark) composite dynamics: non perturbative physics, dynamical
symmetry breaking, UV completion, naturalness
(Dark) composite dynamics face challenges to be explored both
theoretically and via experiments
We unify first principle lattice simulations and gravitational wave
astronomy to constrain the dark sector
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What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons⇒ confinement-deconfinement phase transition
Gluons + Fermions

Fermions in fundamental representation⇒ chiral phase transition
Fermions in adjoint representation⇒ confinement phase transition
Fermions in 2-index symmetric representation⇒ confinement phase
transition
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How to describe the strongly coupled sector?

Pure gluons
Polyakov loop model (Huang, Reichert, Sannino and Z-W W, PRD 104 (2021) 035005)

Matrix Model (Halverson, Long, Maiti, Nelson, Salinas, JHEP 05 (2021) 154)

Holographic QCD model

Gluons + Fermions
Polyakov loop improved Nambu-Jona-Lasinio model
(Reichert, Sannino, Z-W W and Zhang, arXiv:2109.11552.)

linear sigma model
Polyakov Quark Meson model
Polyakov loop improved linear sigma model
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Polyakov Loop Model for Pure Gluons: I

Pisarski first proposed the Polyakov-loop Model as an effective field
theory to describe the confinement-deconfinement phase transition of
SU(N) gauge theory.
In a local SU(N) gauge theory, a global center symmetry Z(N) is used to
distinguish confinment phase (unbroken phase) and deconfinement
phase (broken phase)
An order parameter for the Z(N) symmetry is constructed using the
thermal Wilson line:

L(~x) = P exp

[
i

∫ 1/T

0

A4(~x, τ) dτ

]

The symbol P denotes path ordering and A4 is the Euclidean temporal
component of the gauge field
The thermal Wilson line transforms like an adjoint field under local SU(N)
gauge transformations
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Polyakov Loop Model for Pure Gluons: II
The Polyakov loop as an order parameter for the Z(N) symmetry is
defined as the trace of the thermal Wilson line:

` (~x) =
1

N
Trc[L] ,

where Trc denotes the trace in the colour space.
Under a global Z(N) transformation, the Polyakov loop ` transforms as a
field with charge one

`→ eiφ`, φ =
2πk

N
, j = 0, 1, · · · , (N − 1)

The expectation value of ` i.e. < ` > has the important property:

〈`〉 = 0 (T < Tc) ; 〈`〉 > 0 (T > Tc)

At very high temperature, the vacua exhibit a N−fold degeneracy:

〈`〉 = exp

(
i
2πj

N

)
`0, j = 0, 1, · · · , (N − 1)

where `0 is defined to be real and `0 → 1 as T →∞
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Effective Potential of the Polyakov Loop Model: I

The simplest effective potential preserving the ZN symmetry in the
polynomial form is given by

V
(poly)
PLM = T 4

(
−b2(T )

2
|`|2 + b4|`|4 − b3

(
`N + `∗N

))
where b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

+ a4

(
T0

T

)4

For the SU(3) case, there is also an alternative logarithmic form

V
(3log)
PLM = T 4

(
− a(T )

2
|`|2 + b(T ) ln

(
1− 6|`|2 + 4(`∗3 + `3)− 3|`|4

))
a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

, b(T ) = b3

(
T0

T

)3

The ai, bi coefficients in V (poly)
PLM and V (3log)

PLM are determined by fitting the
lattice results
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Fitting the Coefficients Using the Lattice Results: I
Marco Panero, Phys.Rev.Lett. 103 (2009) 232001

0.5 1 1.5 2 2.5 3 3.5
T / T

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
 /

 T
 4

, 
n
o
rm

al
iz

ed
 t

o
 t

h
e 

S
B

 l
im

it

SU(3)

SU(4)

SU(5)

SU(6)

SU(8)

improved holographic QCD model

Pressure

Zhi-Wei Wang (Lund) Strongly Coupled Hidden Sectors Oct. 21, 2021 8 / 32



Fitting the Coefficients Using the Lattice Results: II
Marco Panero, Phys.Rev.Lett. 103 (2009) 232001
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Fitting the Coefficients Using the Lattice Results: III

Table: The parameters for the best-fit points.

N 3 3 log 4 5 6 8
a0 3.72 4.26 9.51 14.3 16.6 28.7
a1 -5.73 -6.53 -8.79 -14.2 -47.4 -69.8
a2 8.49 22.8 10.1 6.40 108 134
a3 -9.29 -4.10 -12.2 1.74 -147 -180
a4 0.27 0.489 -10.1 51.9 56.1
b3 2.40 -1.77 -5.61
b4 4.53 -2.46 -10.5 -54.8 -90.5
b6 3.23 97.3 157
b8 -43.5 -68.9
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Sample of PLM Potential
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Figure: PLM potential at T = Tc
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Polyakov-loop-Nambu-Jona-Lasinio (PNJL) model

The PNJL model can be used to describe phase-transition dynamics in
dark gauge-fermion sectors (beyond pure gluon case)
The finite-temperature grand potential of the PNJL models can be
generically written as

VPNJL = VPLM[`, `∗] + Vcond

[
〈ψ̄ψ〉

]
+ Vzero

[
〈ψ̄ψ〉

]
+ Vmedium

[
〈ψ̄ψ〉, `, `∗

]
VPLM[`, `∗] is the Polyakov loop model potential (discussed above)
Vcond

[
〈ψ̄ψ〉

]
represents the condensate energy

Vzero

[
〈ψ̄ψ〉

]
denotes the fermion zero-point energy

The medium potential Vmedium

[
〈ψ̄ψ〉, `, `∗

]
encodes the interactions

between the chiral and gauge sector which arises from an integration
over the quark fields coupled to a background gauge field
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The PNJL model Lagrangian

The PNJL Lagrangian can be generically written as:

LPNJL = Lpure-gauge + L4F + L6F + Lk

Without losing generality, we consider below massless 3-flavour case in
fundamental representation of SU(3) gauge symmetry
Here, L4F is the four-quark interaction which reads:

L4F = GS

8∑
a=0

[(ψ̄λaψ)2 + (ψ̄iγ5λaψ)2], ψ = (u, d, s)T

Six-fermion interaction L6F denotes the Kobayashi-Maskawa-’t Hooft
(KMT) term breaking U(1)A down to Z3 (generically ZNf for Nf flavours)

L6F = GD[det(ψ̄LiψRj) + det(ψ̄RiψLj)]
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The Condensate Energy of PNJL Model

In L4F, the condensate energy then comes from the combination

(ψ̄λ0ψ)2 + (ψ̄λ3ψ)2 + (ψ̄λ8ψ)2 = 2(ūu)2 + 2(d̄d)2 + 2(s̄s)2

We use the trick is to rewrite (ūu)2 as

(ūu)
2

= [(ūu− 〈ūu〉) + 〈ūu〉]2 = (ūu− 〈ūu〉)2
+ 2〈ūu〉 (ūu− 〈ūu〉) + 〈ūu〉2

' −〈ūu〉2 + 2〈ūu〉ūu ,

where the (ūu− 〈ūu〉)2 term is dropped in the spirit of the mean-field
approximation.
The 2〈ūu〉ūu term contributes to the constituent quark mass of u
The −〈ūu〉2 term leads to a contribution to the condensate energy
Similar procedures can be applied to (d̄d)2 and (s̄s)2, and to L6F leading
to the total condensate energy:

Vcond = 6GSσ
2 +

1

2
GDσ

3 , σ ≡ 〈ūu〉 = 〈d̄d〉 = 〈s̄s〉 =
1

3
〈ψ̄ψ〉
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The Constituent Quark Mass and Zero Point Energy: I

The 2〈ūu〉ūu term represents a mass correction by the mean-field
interaction and contributes to the constituent quark mass of u
Together with additional mass corrections from the KMT interaction, the
constituent quark mass is:

M = −4GSσ −
1

4
GDσ

2

The expression for the zero-point energy is given by:

Vzero

[
〈ψ̄ψ〉

]
= −dim(R) 2Nf

∫
d3p

(2π)
3Ep , Ep =

√
~p 2 +M2

Ep is the energy of a free quark with constituent mass M and
three-momentum ~p

The above momentum integration does not converge and we need to
introduce a regularization for the momentum integration. Here we choose
a sharp three-momentum cutoff Λ, which enters the expression for
observables and is thus also a parameter of the theory.
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The Constituent Quark Mass and Zero Point Energy: II

The integration can be carried analytically and the result is:

Vzero
[
〈ψ̄ψ〉

]
= −dim(R)NfΛ4

8π2

[
(2 + ξ2)

√
1 + ξ2

+
ξ4

2
ln

√
1 + ξ2 − 1√
1 + ξ2 + 1

]
,

in which ξ ≡ M
Λ .
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Medium Potential: Finite Temperature Contribution

In the standard NJL model, the medium effect (finite temperature
contribution) is implemented by the grand canonical partition function
In the PNJL model, we can simply do the following replacement to
include the contribution from Polyakov loop

Vmedium = −2NcT
∑
u,d,s

∫
d3p

(2π)
3

(
ln
[
1 + e−β(E−µ)

]
+ ln

[
1 + e−β(E+µ)

])
→ −2T

∑
u,d,s

∫
d3p

(2π)
3 Trc

{(
ln
[
1 + L e−β(E−µ)

]
+ ln

[
1 + L†e−β(E+µ)

])}
L is the thermal Wilson line:

L(~x) = P exp

[
i

∫ 1/T

0

A4(~x, τ) dτ

]
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Bubble Nucleation: Generic Discussion

In a first-order phase transition, the transition occurs via bubble
nucleation and it is essential to compute the nucleation rate
The tunnelling rate due to thermal fluctuations from the metastable
vacuum to the stable one is suppressed by the three-dimensional
Euclidean action S3(T )

Γ(T ) = T 4

(
S3(T )

2πT

)3/2

e−S3(T )/T

The three-dimensional Euclidean action reads

S3(T ) = 4π

∫ ∞
0

dr r2

[
1

2

(
dρ

dr

)2

+ Veff(ρ, T )

]
,

where ρ denotes a generic scalar field with mass dimension one, [ρ] = 1
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Bubble Nucleation: Confinement Phase Transition
Confinement phase transition occurs for pure gluon case as well as
including adjoint fermions
Since ` is dimensionless while ρ in above has mass dimension one, we
rewrite the scalar field as ρ = ` T and convert the radius into a
dimensionless quantity r′ = r T :

S3(T ) = 4πT

∫ ∞
0

dr′ r′2
[

1

2

(
d`

dr′

)2

+ V ′eff(`, T )

]
,

which has the same form as the above generic equation.
The bubble profile (instanton solution) is obtained by solving the
E.O.M. of the S3(T )

d2`(r′)
dr′2

+
2

r′
d`(r′)

dr′
−
∂V ′eff(`, T )

∂`
= 0

The boundary conditions (deconfinement→ confinement) are

d`(r′ = 0, T )

dr′
= 0 , lim

r′→0
`(r′, T ) = 0

We used the method of overshooting/undershooting (Python package)
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Bubble Profile of Confinement Phase Transition
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Figure: The bubble radius is indicated by r′∗ and the wall width by ∆r′. Inside of the
bubble (r′ � r′∗), the ZN symmetry is unbroken and 〈`〉 = 0, while outside of the
bubble (r � r′∗), the ZN symmetry is broken and 〈`〉 > 0.
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Bubble Nucleation: Chiral Phase Transition

Chiral phase transition occurs for case including fermions in fundamental
representation
Since σ̄ is not a fundamental field, we have to include its wave-function

renormalization Zσ with Z−1
σ = −dΓσσ(q0,q,σ̄)

dq2

∣∣∣∣
q0=0,q2=0

M. Reichert, F. Sannino, Z. W. Wang and C. Zhang, arXiv:2109.11552.

The three-dimensional Euclidean action is slightly modified to:

S3(T ) = 4π

∫ ∞
0

dr r2

[
Z−1
σ

2

(
dσ̄

dr

)2

+ Veff(σ̄, T )

]
The bubble profile is obtained by solving the E.O.M. of the action:

d2σ̄

dr2
+

2

r

dσ̄

dr
− 1

2

∂ logZσ
∂σ̄

(
dσ̄

dr

)2

= Zσ
∂Veff

∂σ̄

The associated boundary conditions:

dσ̄(r = 0, T )

dr
= 0 , lim

r→∞
σ̄(r, T ) = 0
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Gravitational Wave Parameters: Inverse Duration Time

The phase-transition temperature T∗ is often identified with the nucleation
temperature Tn defined as the temperature where the rate of bubble
nucleation per Hubble volume and time is order one: Γ/H4 ∼ O(1)

More accurately, we can use percolation temperature Tp: the temperature
at which the probability to have the false vacuum is about 0.7.
For sufficiently fast phase transitions, the decay rate is approximated by:

Γ(T ) ≈ Γ(t∗)e
β(t−t∗)

The inverse duration time then follows as

β = − d

dt

S3(T )

T

∣∣∣∣
t=t∗

The dimensionless version β̃ is defined relative to the Hubble parameter
H∗ at the characteristic time t∗

β̃ =
β

H∗
= T

d

dT

S3(T )

T

∣∣∣∣
T=T∗

,

where we used that dT/dt = −H(T )T .
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Gravitational Wave Parameters: Strength Parameter I

We define the strength parameter α from the trace of the
energy-momentum tensor θ weighted by the enthalpy

α =
1

3

∆θ

w+
=

1

3

∆e − 3∆p

w+
, ∆X = X(+) −X(−), for X = (θ, e, p)

(+) denotes the meta-stable phase (outside of the bubble) while (−)
denotes the stable phase (inside of the bubble).
The relations between enthalpy w, pressure p, and energy e are given by

w =
∂p

∂ lnT
, e =

∂p

∂ lnT
− p ,

which are extracted from the effective potential with

p(±) = −V (±)
eff
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Gravitational Wave Parameters: Strength Parameter II

α is thus given by

α =
1

3

4∆Veff − T ∂∆Veff
∂T

−T ∂V
(+)

eff
∂T

,

For confinement phase transition: α ≈ 1/3 (∆Veff is negligible since
e+ � p+ and e− ∼ p− ∼ 0 in PLM potential )
For chiral phase transition: we find smaller values, α ∼ O(10−2), due to
the fact that more relativistic d.o.f.s participate in the phase transition
Relativistic SM d.o.f.s do not contribute to our definition of α since they
are fully decoupled from the phase transition but these d.o.f.s will play a
role to dilute the GW signals
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GW parameters α, β and PNJL observables
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Figure: The GW parameters β̃, α with the observables M , fπ, and mσ as a function of
GS = kGS · 4.6 GeV−2 and GD = kGD · (−743 GeV−5). We use Tc = 100 GeV, the
ratio Λ/T0 = 3.54. Below kGS ,crit = 0.882, no chiral symmetry breaking occurs.
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Gravitational-wave spectrum
The contributions from bubble collision and turbulence in the plasma are
subleading compared with sound waves
The GW spectrum from sound waves is given by

h2ΩGW(f) = h2Ωpeak
GW

(
f

fpeak

)3
[

4

7
+

3

7

(
f

fpeak

)2
]− 7

2

The peak frequency

fpeak ' 1.9 · 10−5 Hz
( g∗

100

)1
6

(
T

100 GeV

)(
β̃

vw

)
The peak amplitude

h2Ωpeak
GW ' 2.65 · 10−6

(
vw

β̃

)(
κsw α

1 + α

)2(
100

g∗

)1
3

Ω2
dark

The factor Ω2
dark accounts for the dilution of the GWs by the visible SM

matter which does not participate in the phase transition.

Ωdark =
ρrad,dark

ρrad,tot
=

g∗,dark

g∗,dark + g∗,SM
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The Efficiency Factor κ
The efficiency factor for the sound waves κsw consist of the factor κv as
well as an additional suppression due to the length of the sound-wave
period τsw

κsw =
√
τsw κv

τsw is dimensionless and measured in units of the Hubble time

τsw = 1− 1/

√
1 + 2

(8π)
1
3 vw

β̃ Ūf
⇒ τsw ∼

(8π)
1
3 vw

β̃ Ūf
forβ >> 1

where Ūf is the root-mean-square fluid velocity

Ū2
f =

3

vw(1 + α)

∫ vw

cs

dξ ξ2 v(ξ)2

1− v(ξ)2
' 3

4

α

1 + α
κv

τsw is suppressed for large β occurring often in strongly coupled sectors
κv was numerically fitted to simulation results depends α and vw. At the
Chapman-Jouguet detonation velocity it reads

κv(vw = vJ) =

√
α

0.135 +
√

0.98 + α
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GW Signatures for Arbitrary N in the Pure Gluon Case
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Figure: The dependence of the GW spectrum on the number of dark colours is shown
for the values N = 3, 4, 5, 6, 8. All spectra are plotted with the bubble wall velocity set
to the Chapman-Jouguet detonation velocity and with Tc= 1 GeV.
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A Landscape of GW Signatures with Pure Gluon
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Figure: We display the GW spectrum of the SU(6) phase transition for different
confinement scales including Tc = 1 GeV, 1 TeV, and 1 PeV. We compare it to the
power-law integrated sensitivity curves of LISA, BBO, DECIGO, CE, and ET.
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Landscape of GW spectrum with three Dirac fermions
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Figure: Gravitational-wave spectrum with three Dirac fermions in the fundamental
representation for different critical temperatures. The dark sector and visible sector are
thermalized in the very early universe but decouple sufficiently prior to the CMB epoch
(before the electroweak scale Tew and the chiral phase transition should happen even
before the decoupling).
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