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INTERLUDE: 
The Inert Doublet Model (IDM) 



The Two-Higgs Doublet potential

m2
12, λ5, λ6 and λ7 complex - seemingly 14 independent real parameters

Most general SU(2) × U(1) scalar potential:

Most frequently studied model: softly broken theory with a Z2 symmetry, 
Φ1 → - Φ1 and Φ2 →  Φ2, meaning λ6, λ7 = 0.  

 It avoids potentially large flavour-changing neutral currents



Inert vacua – preserve Z2 symmetry

• The  INERT minimum, 

• Since only Φ1 has Yukawa couplings, fermions are massive  – “OUR” minimum.
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WHY BOTHER? 
 In the inert minimum, the second doublet originates perfect Dark Matter 
candidates – the Z2 quantum number of “darkness” is preserved  and scalrs 
from the second doublet can only be produced in pairs. 
Inert neutral scalars do not couple to fermions or have triple vertices with 
gauge bosons. Only possible with EXACT Z2 symmetry – m12 term must be 
zero. 



• Model has very interesting phenomenology. 
• Presence of inert charged scalar could impact the diphoton width of the 

observed 125 GeV scalar. 
• Scalar dark sector can yield good matter candidates. 
• Current constraints from dark matter searches (Planck, Xenon1T, ...) can be 

reproduced by the model... 
• ... But the available parameter space is quite constrained (not many 

parameters to “adjust” to comply with different observables) and even a little 
fine-tuned. 

• Absolutely no possibility of CP violation in the scalar sector of the IDM, the 
Z2 symmetry prevents it.  

• To get larger parameter spaces and more interesting phenomenologies (e.g. 
CP violation with Dark Matter as well) we need to go to higher field contents 
– the N2HDM, for instance.





The Next-to-Two Higgs Doublet Model (N2HDM)

• The Next-to-2HDM (N2HDM) contains two hypercharge Y = 1 scalar doublets, 
Φ1  and Φ2, and a real scalar gauge singlet, ΦS.  

• There are several versions of this model, depending on the extra symmetries 
imposed. 

• We consider two discrete Z2 symmetries, of the form 

      and 

• Vacua which preserve one or both of these symmetries may yield viable Dark 
Matter candidates.



Scalar potential and spontaneous symmetry breaking
• With the two Z2 symmetries chosen, the  scalar potential becomes 

     with all parameters  taken, without loss of generality, real.  
• The most general  neutral vacuum has vevs v1, v2 for the doublets and vS for the 

singlet, 

• Spontaneous CP breaking is not possible in this model (unless one introduces  
soft breaking terms), so all these vevs are real.



(ASIDE: 
If the field content was the same but the discrete symmetry was different, 

the scalar potential would become quite different,  

where, with the exception of A, all the parameters are REAL. 
This model would have the possibility of explicit CP violation and a much different 
phenomenology.  

           END OF ASIDE) 
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Possible neutral vacua/phases
Depending which vevs are non-zero, there are several possible vacua which 
preserve or break different symmetries and thus describe different phases of the 
model, with different phenomenology. In all cases electroweak symmetry breaking 
occurs.

The Broken Phase (BP)



The Dark Doublet Phase (DDP)

Only one of the doublets, and the singlet, aquire vevs: 

      v = 246 GeV 
The discrete symmetry Z2

(1) is left unbroken by the vacuum, and the lightest 
neutral scalar from the second doublet will be a dark matter candidates.  
This phase is the equivalent, within the N2HDM, of the Inert Doublet model, 
but it has a larger parameter space and is not as constrained by current Dark 
Matter searches.  
The scalar spectrum includes four “dark” scalars which do not couple to 
fermions (two neutral scalars, a charged one); the singlet neutral field mixes 
with the neutral component of the first doublet and yields two CP-even scalars.



The Dark Singlet Phase (DSP)



The Fully Dark Phase (FDP)
Only one of the doublets has a vev: 

     v = 246 GeV 
Both discrete symmetries are preserved by the vacuum, and we can have two 
stable, dark, neutral scalars. This phase has a single observable scalar, the SM-
like Higgs boson, the remainder scalars – neutral and charged –  being “dark” 
and not interacting with fermions. The preservation of two separate quantum 
numbers means that there is the possibility of two scalars being stable.   

The Yukawa Lagrangian
In all phases, the Yukawa lagrangian considered is the analogous of a Type-I 
2HDM – only one of the doublets couples to all fermions: 



Stability of neutral vacua

• We therefore have different possible vacua, and unlike the 2HDM case, in 
the N2HDM minima which break different symmetries can coexist. 

• Therefore it is theoretically possible that, for some selection of parameters, a 
minimum with correct electroweak symmetry breaking is NOT the global 
minimum of the theory. 

• Tunelling to a deeper, unacceptable minimum becomes therefore possible – 
and unlike the SM case, this would already occur at tree-level....

“Our” local minimum -

Global minimum – DIFFERENT EWSB
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• We therefore have different possible vacua, and unlike the 2HDM case, in 
the N2HDM minima which break different symmetries can coexist. 

• Therefore it is theoretically possible that, for some selection of parameters, a 
minimum with correct electroweak symmetry breaking is NOT the global 
minimum of the theory.  

• Tunelling to a deeper, unacceptable minimum becomes therefore possible – 
and unlike the SM case, this would already occur at tree-level.... 

• It is possible to use a bilinear formalism to obtain analytic expressions for  
the differences in depth of the potential at two stationary points of different 
natures – this allows one to draw onclusions about the stability, or lack 
thereof, of certain minima. 

• This saves considerable time when considering vacuum stability in 
numerical scans, as we know certain types of minima are absolutely stable. 



• Given that we will be comparing the value of the potential at different 
stationary points, it becomes necssary to “tag” the vevs of the doublets and 
singlet, which will have different values at different extrema:  

• Likewise, we will encounter scalar masses evaluated at different  phases, 
which we also “tag” as:  “B” for the Broken Phase; “D” for the Dark 
Doublet Phase; “S” for the Dark Singlet Phase; and “F” for the Fully Dark 
Phase. 



To see an example of the bilinear formalism in action, let us assume that a 
Broken Phase (all fields having vevs) stationary point coexists with a Dark 
Doublet Phase (one doublet has no vev, other doublet and singlet do) 
extremum. It can be shown that the difference of the potential at both 
extrema is given by 

Notice how the difference of values of the potential  is proportional to the 
square of a Broken Phase vev, and the squared mass of a scalar in the Dark 
Doublet Phase. 
Therefore, if the Dark Doublet Phase is a minimum, that squared mass will 
necessarily be positive and we conclude 

It may also be shown that if the DDP is a minimum, the Broken Phase will 
necessarily be a saddle point, and this expression shows clearly that it lies 
above the DDP minimum.



• We can perform similar comparisons between the Broken, Dark Singlet and 
Fully Dark Phases, and we obtain 

• Similar conclusions apply: whenever there is a DSP or FDP minimum, any 
Broken Phase extremum that might occur lie ABOVE them. It can also be 
shown that it would be a saddle point. 

• But on the other hand, this analysis also shows that if the broken phase is a 
minimum, it is deeper than any other possible neutral extremum in the model – 
IT WOULD BE THE GLOBAL MINIMUM OF THE THEORY.



• Similar conclusions hold for the Fully Dark Phase: if it is a minimum, it will 
be the global minimum of the theory. We have already compared the FDP 
potential with the BP one, and if we do the same for the DDP and DSP cases, 
we obtain 

     Note that the difference in values of the potential is always proportional to a   
     squared scalar mass computed at the Fully Dark Phase – so that, if the FDP is 
     a minimum, it will necessarily be deeper than the DSP and DDP extrema.  
• Stability of a Fully Dark Minimum is therefore guaranteed!* 
• What about the Dark Doublet and Dark Singlet phases? For these two phases, 

the situation is different: DDP and DSP minima can coexist, and neither is a 
priori deeper than the other! 

 * At least against tunelling to other neutral minima, but the possibility of charge 
breaking for all these phases also has to be taken into account. 



• In fact, the bilinear formalism applied to Dark Doublet and Dark Singlet 
stationary points yields 

• Notice how the difference in depths of the potential depends on the difference 
between a combination of vevs and masses computed at each extremum. 

• Unlike previous expressions, the sign of this potential difference is not fixed 
when either the DDP or DSP are a minimum. 

• The phases can in fact coexist in the potential as minima of different depths, 
and different regions of parameter space will have either of them as the global 
minimum of the model.  

• Thus in order to ensure the stability of a DDP or DSP minimum one will have 
to compute the tunneling time to an eventual deeper vacuum, and verify 
whether it is larger than the current age of the Universe. 



Thus, to summarise: 
• If a minimum of the Broken Phase exists, it is the global minimum of the 

model – extrema of all other phases wil lie above it and be saddle points. 
Conversely, if a minimum of any of the other phases  exists, any Broken 
Phase extremum lies above it and is a saddle point. 

• Similarly, if the Fully Dark Phase is a minimum it is the global minimum. 
But if any other phase is a minimum, the FDP is a saddle point necessarily 
lying above it. 

• There can be coexisting minima of the Dark Doublet and Dark Singlet 
phases. Either phase can be the global minimum of the theory, depending 
on the choice of parameters. 

A numerical study of the properties of each of the phases reveals interesting 
aspects of each of them. 



IN ALL NUMERICAL ANALYSES PRESENTED, BASIC CONSTRAINTS 
WERE TAKEN INTO ACCOUNT VIA THE SCANNERS CODE.

• The scalar potential must be BOUNDED FROM BELOW and  preserve 
UNITARITY. 

• Any phase must reproduce ALL the SM’s experimental results. In particular, 
they must comply with ELECTROWEAK PRECISION DATA.  

• Substantial constraints to multiscalar models’ parameter space comes from 
requiring compliance with B-physics data (the b→ s γ measurements, for 
instance) and the existence of a scalar with mass equal to 125 GeV and 
properties very similar to those of the SM (ALIGNMENT LIMIT). 

• HIGGSBOUNDS and HIGGSSIGNALS were also used to account for all 
current experimental results for the scalar sector. 

• Dark Matter constraints, namely, the relic density and direct detection cross 
sections are calculated using MicrOMEGAs. The relic density is required not 
to oversaturate the observed relic abundance by more than 2σ and the 
Xenon1T direct detection bound is imposed. 



Is it Possible to Distinguish These Phases Experimentally?

• The discovery of a charged Higgs boson through its fermionic decays would 
immediately exclude the Dark Doublet and the Fully Dark phases, given that in 
those phases the charged scalar would be one of the “dark” particles, without 
fermionic interactions. The Fully Broken and Dark Singlet phases would still 
be allowed, of course. 

• Likewise, the discovery of three extra neutral scalars in the visible sector would 
exclude all phases except the broken phase. 

• Precision measurements of the discovered Higgs boson, however, could also 
provide hints as to the existence of these phases, and help in distinguishing 
them. 

• An obvious starting point in the Higgs diphoton decay, which gets contributions 
from the charged scalar, whether it is “dark” or “visible”. This could impact 
the diphoton signal strength measured at LHC,



Higgs Diphoton Signal Strength for the Four N2HDM Phases

The existence of 
several CP-even 
states opens the 
possibility that 
the 125 GeV state 
is not necessarily 
the lightest one.  
Several 
possibilities are 
explored here.



Extra Scalars’ Behaviour in Different Phases

For the phases for which one could have extra visible scalars (not FDP, of course), 
decays to tau or photon pairs could, for some regions of parameter space, 
distinguish between several of the phases. 
The DDP, for instance, would have enhanced diphoton decays for the extra 
neutral scalar for masses below 150 GeV, much more than what occurs for the 
other phases. Di-tau decays, however, would be suppressed for the DDP above that 
same mass.     



Dark Matter Constraints for all Phases

The Nucleon-Dark Matter direct detection cross section can have values well 
below 10-12 (the neutrino floor) for all phases, and as such current experimental 
limits can be easily satisfied, even saturating the relic density bound. Notice how 
the FDP has contributions from two Dark Matter particles. 



All phases, except for the DDP, have regions of parameter space for which the 
relic density is saturated – and so Dark matter is fully explained within the 
N2HDM for that phase – for all values of Dark Matter mass  above mh/2.  
The DDP has a DM mass region between about 100 and 500 GeV where it is not 
possible to find parameters such that the relic density is saturated, and therefore  
and extra DM candidates would be needed. Remember that the DDP is analog of 
the IDM, and it has been reported that for the Inert doublet Model, the relic 
density cannot be saturated for DM masses between about 75 and 500 GeV.



CONCLUSIONS (I)

• With two discrete symmetries applied, the N2HDM can have 
several different vacua yielding Dark matter candidates. 

• An analytical calculation revealed that minima of two of the 
possible phases would be absolutely stable, two others wouldn’t. 

• All phases can conform to existing LHC and Dark Matter 
experimental constraints. 

• Higgs precision measurements, and new scalars’ properties, could 
in principle help distinguish between the several phases. 
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THE MODEL 

Two SU(2) doublets of hypercharge Y = 1,  and , with an added REAL 
SINGLET  (no hypercharge). 
• Reproduces the LHC-observed Higgs boson phenomenology perfectly – VERY 

SIMILAR TO THE INERT MODEL. 
• Includes dark matter candidates, WHICH COMPLY WITH ALL CURRENT 

EXPERIMENTAL BOUNDS. 
• Has EXPLICIT CP VIOLATION IN THE SCALAR SECTOR. 

𝚽𝟏 𝚽𝟐
𝚽𝑺

• HOWEVER, THAT CP VIOLATION IS “CONFINED” TO THE DARK 
SECTOR. 

• THE 125 GeV HIGGS WILL BEHAVE LIKE A CP-EVEN SCALAR, 
WITHOUT SIGNS OF MIXING WITH CP-ODD STATES. 

• Inspired by A. Cordero-Cid, J. Hernandez-Sanchez, V. Keus, S. F. King, S. Moretti, D. 
Rojas, and D. Sokolowska, JHEP 12, 014 (2016), 1608.01673.



OUR SCALAR POTENTIAL: we choose to impose a discrete symmetry on the model; the 
two doublets and the real singlet transform as 

Further, we impose a CP symmetry of the form 

The scalar potential therefore becomes 

where, with the exception of A, all the parameters are REAL. 

CUBIC TERM!



Comparison with previous N2HDM

• With the two Z2 symmetries chosen, the  scalar potential was 

     with all parameters  taken, without loss of generality, real.  

•  Now:  

CUBIC TERM!



• 2HDM + Real Singlet = Next-2HDM = N2HDM. Bounded from below, unitarity 
and electroweak precision variables S, T and U already known, used results 
from 

• The discrete symmetry imposed prevents the occurrence of FCNC in the model, 
it is extended to the Yukawa sector so that only  couples to all fermions (type 
I-like model), 

• The CKM matrix is generated as in the SM – through complex Yukawa 
matrices which explicitly break CP in the fermion sector. But there is an added 
source of CP violation... 

• The second doublet and the singlet have “dark charge”, and therefore will 
originate dark matter – the lightest scalar from the dark sector will be stable. 

• The complex parameter A explicitly breaks CP in this model, as we will see. 

𝚽𝟏



SPONTANEOUS SYMMETRY BREAKING 

A vacuum where only the first doublet gains a vev is possible, provided the 
parameters of the potential obey 

with v = 246 GeV. The doublets can be expressed as  

with h the 125 GeV scalar, with mass given by 

The charged scalar has mass 

This is all very IDM-like, but the differences start in the dark neutral scalars... 



NEUTRAL SCALARS MIXING 

The two neutral components of the second doublet mix with the real singlet, 
yielding a 3×3 mass matrix, 

diagonalized by  

such that  

with 

(all angles in the interval –π/2 to π/2, without loss of generality)   



• The phenomenolegy of h is virtually identical to the SM Higgs (there is still a 
charged Higgs contribution to the diphoton signal, but it’ll be small). Neutral 
dark scalar masses chosen above 70 GeV, so no discalar decays for h occur. 

• Charged scalar  does not couple to fermions – all B-physics and LEP 
constraints satisfied. 

• Dark matter constraints implemented using MicrOMEGAS, with the latest 
results from PLANCK and Xenon1T. 

• Model implemented in ScannerS, extra scalars’ masses chosen between 70 and 
1000 GeV, quartic couplings allowed ample variations in their BFB and 
perturbative allowed ranges. Quadratic parameters  and  chosen 
between 0 and 106  GeV2. 

• Lower values of dark matter masses “D”  possible in the model, but would 
presumably require some finetuning to ensure decays h → DD did not ruin the 
Higgs invisible width results.   

𝒎𝟐
𝟐𝟐 𝒎𝟐

𝑺



DIPHOTON WIDTH FOR h 

Easily reproduces the SM expected value, charged Higgs contributions at most 
yield a ~20% deviation. 



DARK MATTER OBSERVABLES 

Both the relic density (LEFT) and direct detection limits (RIGHT) easily 
accounted for in the parameter space scanned. Grey line represents the latest 
XENON1T results. 



CP VIOLATION IN THE SCALAR SECTOR 

CP violation occurs in the model, due to the mixing between two neutral, real, 
components and the imaginary neutral one. This leads to kinetic terms of the form 

Which in turn implies that  

are possible – thus, the hi particles cannot have definite CP quantum numbers. 

Observation of all vertices of the Z into two scalars would thus in principle be a 
confirmation CP violation in the scalar sector of the model. But since some of 
those scalars are dark matter this complicates things – eventual occurrence of 
these decays yields final states identical to those of other dark matter models, 
regardless of the CP properties of the particles. Thus this could not probe the CP 
nature of the model. 



CP VIOLATION IN THE SCALAR SECTOR 
A clear sign of CP violation in the model is the fact that CPV form factors in 
vertices such as ZZZ and ZWW are NON-ZERO due to neutral scalar mixing. 
For instance, there is a single  diagram contributing to the CPV form factor in 
ZZZ, namely  

with the CPV form factor defined by 



CP VIOLATION IN THE SCALAR SECTOR 
The CPV form factor is given in terms of LoopTools functions by (assuming two 
on-shell Z’s, p1 the four-momentum of the off-shell third Z) 

For our model, in terms of elements of  the rotation matrix R, 

Thus, notice that without the mixing between real and imaginary  
scalar components, one would obtain f4 = 0 (no CPV).



COMPARISON WITH THE C2HDM 

This same observable occurs, as a sign of CPV, in the Complex 2HDM (C2HDM), 
but there three diagrams contribute to it: 

In our model the two latter diagrams vanish due to the discrete symmetry 
imposed.  This simplifies considerably the expression for f4, but typically also 
reduces the magnitude of the form factor, compared to that obtained in the 
C2HDM. 



CP VIOLATION 

Momentum dependence on the off-shell Z does influence the magnitude 
of f4,  

Maximum value allowed for f123 is , red points correspond to all neutral 
scalars having masses below 200 GeV.  
For comparison, in the C2HDM, due to the alignment limit, smaller maximum 
values of f123 would be expected.  

(𝟏 / 𝟑)𝟑



CP VIOLATION – EXPLICIT OR SPONTANEOUS? 

Non-zero values for f4 implies, without a doubt, that CP violation occurs. But what 
type? 
• The presence of a complex phase in the potential suggests  EXPLICIT CP 

BREAKING, but that is not mandatory. The potential violates the following CP 
symmetry, 

      (notice that the singlet does not transform) 
• However, conceivably another CP symmetry could occur for which the 

potential is invariant... 

• Notice, though, that the vacuum of the model PRESERVES the above CP 
transformation, and still there is CP violation – thus the CP violation is NOT 
SPONTANEOUS, but rather, as expected, EXPLICIT. 



EXPERIMENTAL HINTS OF CP VIOLATION 

Experimentalists use the following Lagrangian triple vertex parametrization, 

where f4 again violates CP. But in this formulation the form factor is constant 
with the external momentum and real. Measurements of ZZ production cross 
section yield limits, of order 10-4, on f4 . But the comparison isn’t 
straightforward... 
Asymmetries can be constructed, such as, for                  with unpolarized beams, 



EXPERIMENTAL HINTS OF CP VIOLATION 

Too small to measure...? 
Other asymmetries, involving other vertices and other form factors, are also 
possible, but the magnitudes obtained are similar.



EXPERIMENTAL HINTS OF CP VIOLATION – THE ZW+W- VERTEX 

• Discrete symmetry eliminates all but one diagram contributing to the CPV 
form factor in the ZWW vertex.  

• Simple expression:  
     Notice this form factor now involves the charged mass as well.       
• Can yield larger values of the CPV form factor than the corresponding ZZZ 

quantity, by a factor of ten. But still seems to be too small an effect to yet 
measure... 



CONCLUSIONS (II) 

• A 2HDM complemented with a real singlet and a discrete symmetry yields a 
model with explicit CPV in the scalar sector and dark matter. 

• Current dark matter bounds are easily satisfied by the model, without the 
need for any fine tuning. 

• CPV occurs exclusively in the “dark” sector – the LHC-observed scalar 
would behave (up to small loop effects) as a true scalar. 

• CPV manifests itself in the observable sector in anomalous triple gauge 
couplings, in the ZZZ or ZWW vertices, among others. 

• Current experimental bounds on the CPV form factors are orders of 
magnitude above the values predicted for our model, but the comparison 
between theory and what the experimentalists set bounds on does not seem 
trivial... 


