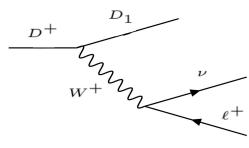
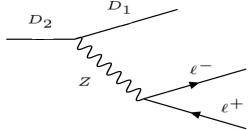
Exploring Multilepton Signatures From Dark Matter at the LHC

Arran Freegard

Supervisors: A. Belyaev, U. Blumenschein & S. Moretti


COST Advanced School on Physics of Dark Matter and Hidden Sectors 18/10/21-21/10/21



Outline

- Beyond mono-X searches →multilepton+missing ET
- Cover the full (3D) parameter space relevant to LHC for two representative minimal consistent DM models: MFDM (spin 1/2) and i2HDM (spin 0)
- New parameterization to visualise the viable parameter space and related no-loose theorem
- New important and complementary LHC sensitivity from 3-lepton signature
- LHC limits and efficiencies for 2- and 3-lepton signatures for reinterpretation by the community

Inert 2 Higgs Doublet Model (I2HDM)

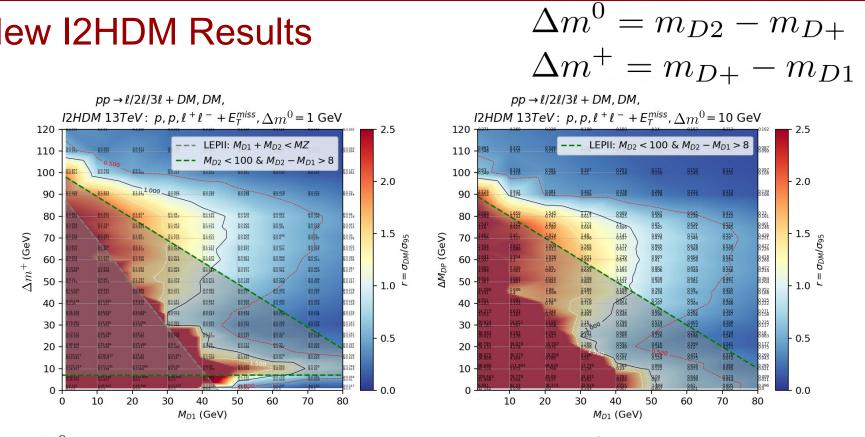
$$\mathcal{L}_{\phi} = |D_{\mu}\phi_1|^2 + |D_{\mu}\phi_2|^2 - V(\phi_1, \phi_2)$$

$$\phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+H \end{pmatrix}, \quad \phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}D^+\\ D_1+iD_2 \end{pmatrix}$$

 $[m_{D1}, m_{D+}, m_{D2}, \lambda_2, \lambda_{345}] \rightarrow [m_{D1}, \Delta m^+, \Delta m^0] \left[[m_{D1}, m_{D2} = m_{D+}, m_{D3}] \rightarrow [m_{D1}, \Delta m^+, \Delta m^0] \right]$

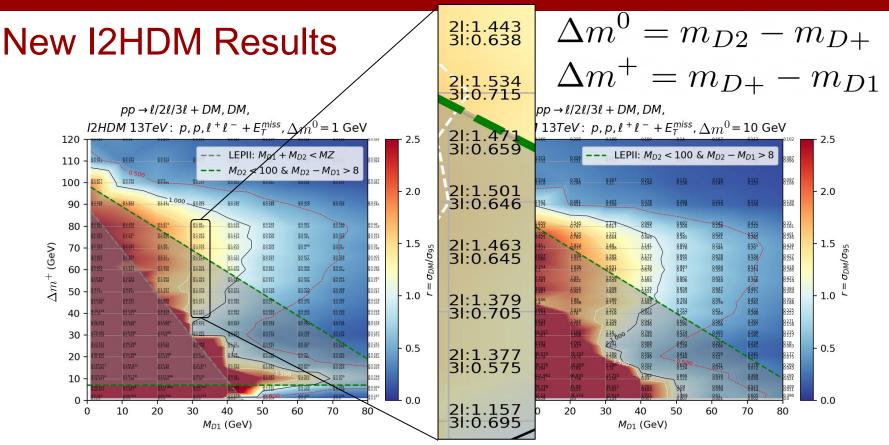
Minimal Fermion Dark Matter (MFDM) $$\begin{split} \mathcal{L}_{FDM} &= \mathcal{L}_{SM} + \bar{\psi}(i\not\!\!D - m_{\psi})\psi \\ &+ \frac{1}{2}\bar{\chi_s^0}(i\not\!\!\partial - m_s)\chi_s^0 - (Y_{\scriptscriptstyle DM}(\bar{\psi}\Phi\chi_s^0) + h.c.) \end{split}$$ $\psi = \begin{pmatrix} \chi^+ \\ \frac{1}{\sqrt{2}} \left(\chi^0_1 + i \chi^0_2 \right) \end{pmatrix}$ Majorana singlet χ^0_s Split to Majorana fermions (m_{D3}) D_{3}/D_{1}

 \downarrow D^+ H D_1/D_3 H D_1/D_2


HEP Tools

- CalcHEP: Parton-level event production and decays: LHE file output
- CheckMATE (+ Pythia + Delphes): Decays, parton-showers, detector effects and analysis checks
- 8 TeV: written new analysis for final states with 2ℓ and E_T^{miss}
- 13 TeV: Check any available ATLAS and CMS analyses, lists 2ℓ and 3ℓ channels

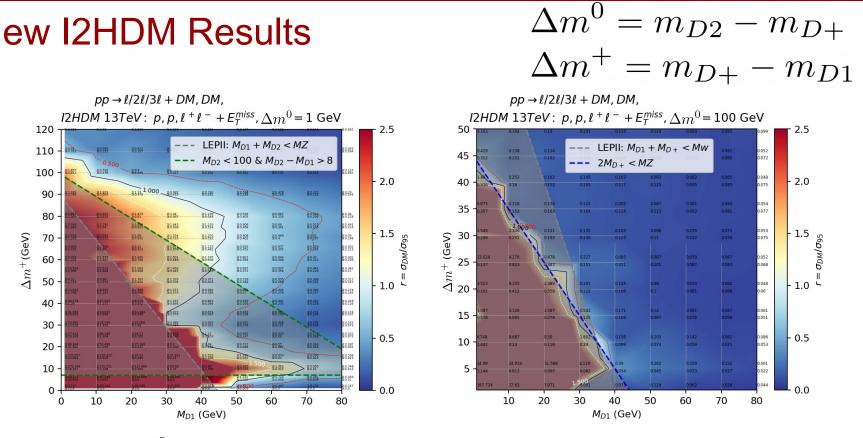
$$r = \frac{\sigma_{DM}}{\sigma_{95}}$$
 — Cross-section of DM events produced
— Cross-section required to exclude point at 95% confidence level


• Point excluded if $\gamma \geq 1$

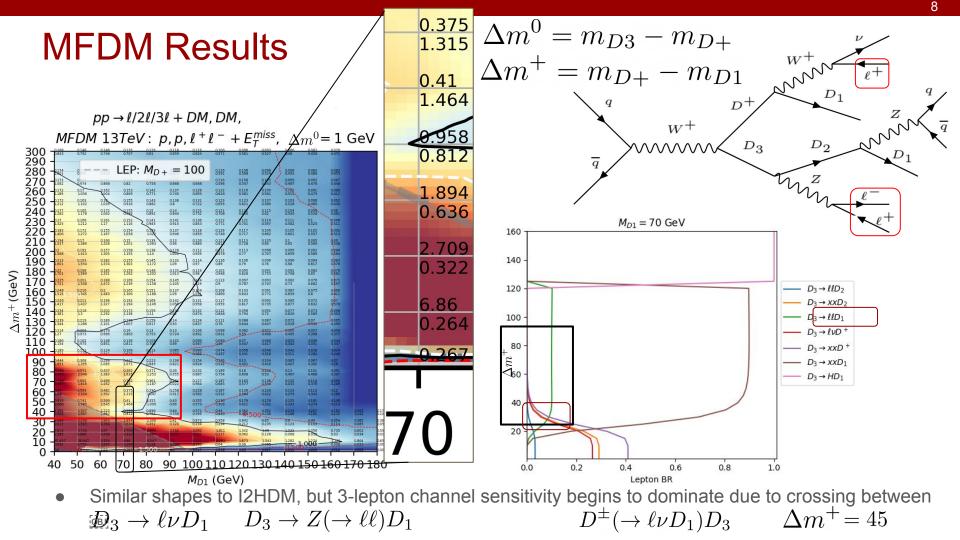
New I2HDM Results

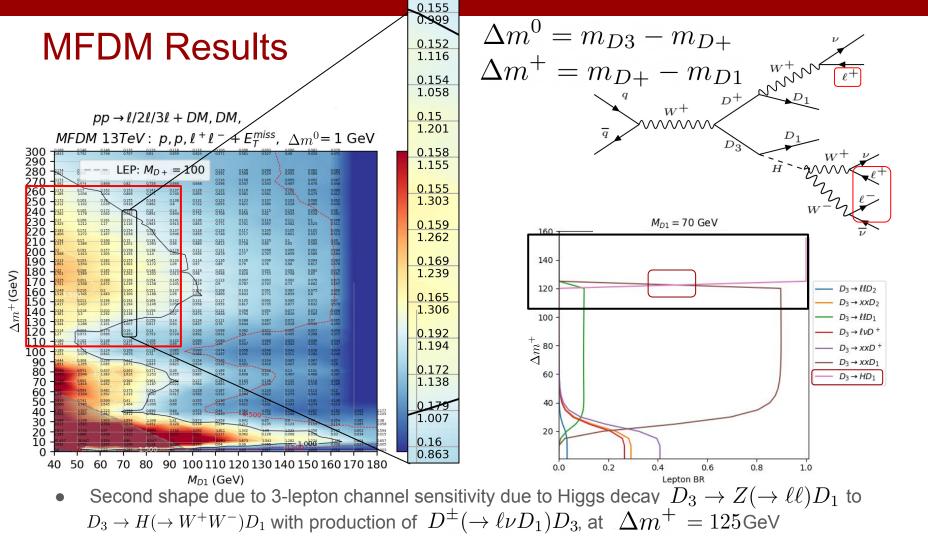
 Δm^0 = 1 GeV: Small wedge above $m_{D1} > 50$ GeV and below $\Delta m^+ < 8$ GeV still allowed by LEP

- Δm^+ is a better variable than m_{D+} , results not dependent on m_{D2} , only require plane of 2 variables.
- Important contributions from 3-lepton (up to 70%) which could be combined with 2-lepton

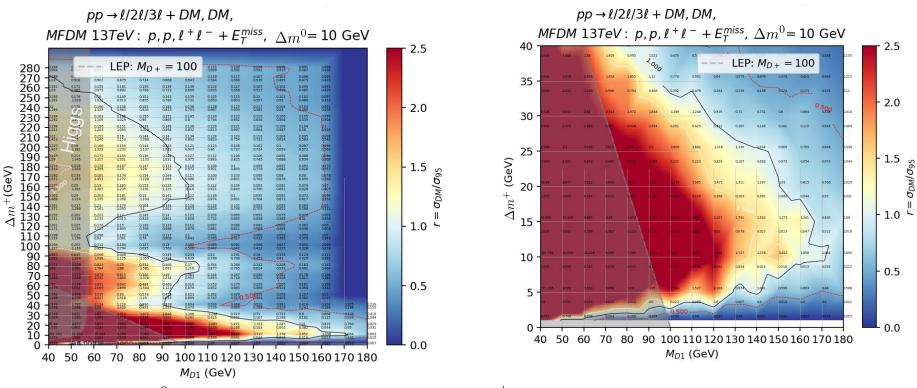


6

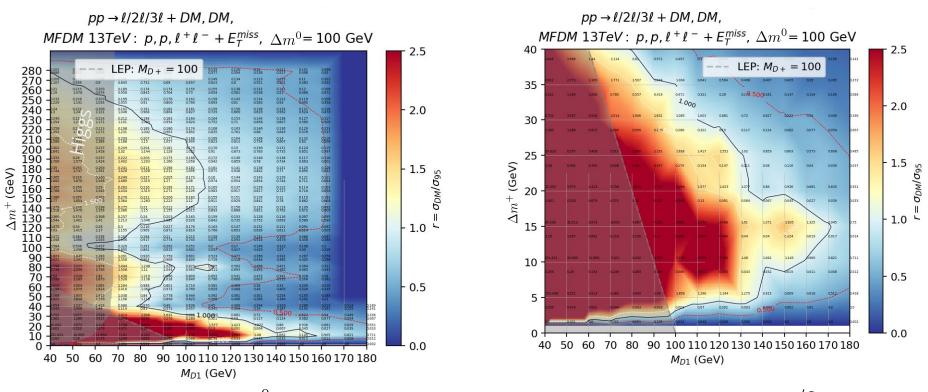

• Δm^0 = 1 GeV: Small wedge above m_{D1} > 50 GeV and below Δm^+ < 8 GeV still allowed by LEP

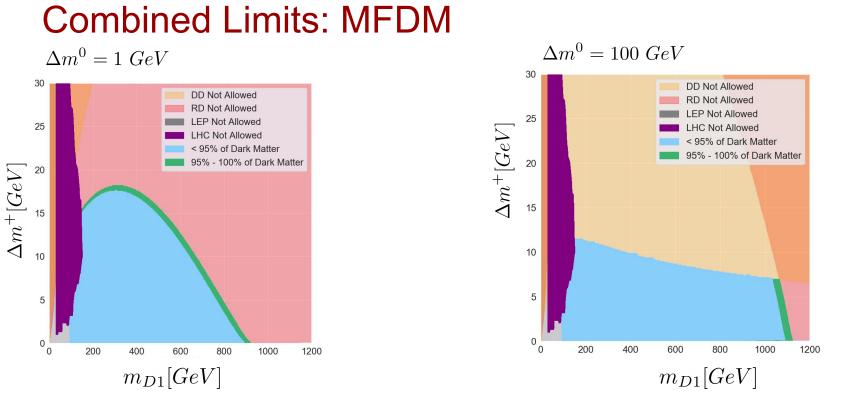

- Δm^+ is a better variable than m_{D+} , results not dependent on m_{D2} , only require plane of 2 variables
- Important contributions from 3-lepton (up to 70%) which could be combined with 2-lepton

New I2HDM Results


Increasing Δm^0 to 100 GeV means the Z veto $m_{\ell\ell}$ > 100 GeV requirement by the analysis cut-flow can no longer be fulfilled as production cross-section of the heavier states has fallen

MFDM Results


 $\Delta m^0 = m_{D3} - m_{D+}$ $\Delta m^+ = m_{D+} - m_{D1}$


• As Δm^0 increases, coupling between $D_1 - D^{\pm}$ increases, while heavy D_3 leads to suppressed production cross-section - 'no-lose' theorem

MFDM Results

 $\Delta m^0 = m_{D3} - m_{D+}$ $\Delta m^+ = m_{D+} - m_{D1}$

• With increasing Δm^0 , Higgs to invisible limit covers larger m_{D1} upto m_{D1} = $m_H/2$

- Under abundance of relic density in light blue region, is 'just right' in green line
- As Δm^+ increases, co-annihilation between the D,D+ is suppressed, due to the greater mass difference; so the relic density becomes too large (pink region)

- 1. New sensitivity results for MCDM models at the LHC (beyond mono-X)
- 2. Better parameterization in terms of DM couplings to visualise the viable parameter space and no-loose theorem
- 3. Show important role from 3-lepton final states, with leading role in MFDM (~SUSY Higgsino) via Higgs decays $D_3 \rightarrow H(\rightarrow W^+W^-)D_1$
- 4. Provide limits and efficiencies for re-interpretation of any scalar of fermion DM model by the community

I2HDM

	Sample A	Sample B	Sample C
No# Events:	50,000	150,000	100,000
Production:	$pp \to D^+ D^-$ $pp \to D_2 D_1$	$pp \to D^{\pm}D_2$	$pp \to ZD_1D_1$
Decays:	$D^{\pm} \to (W^{\pm} \to \ell^{\pm} \nu) D_1$ $D_2 \to (Z \to \ell^+ \ell^-) D_1$	$D_2 \to (Z \to \ell^+ \ell^-) D_1$	$Z \to \ell^+ \ell^-$

• While the genuine 2-2 process $pp \rightarrow D_2D_1$ is separate to 3-body decay $pp \rightarrow ZD_1D_1$, width of D_2 is small, so expected interference between these diagrams is small

MFDM

	Sample A	Sample B	Sample C
No# Events:	50,000	150,000	100,000
Production:	$pp \to D^+ D^-$ $pp \to D_2 D_1$	$pp \to D_2 D_3$	$pp \to D^{\pm}D_2$ $pp \to D^{\pm}D_3$
Decays:	$D^{\pm} \to (W^{\pm} \to \ell^{\pm} \nu) D_1$ $D_2 \to (Z \to \ell^+ \ell^-) D_1$	Any	$D_2 \to (Z \to \ell^+ \ell^-) D_1$ $D_3 \to (W^\pm \to \ell^\pm \nu) D^\pm$ $D_3 \to (Z \to \ell^+ \ell^-) D_2$

Mass parameter points

 $\overline{}$

			\											
m_{D1}	Δm^+	Δm^0	$2\ell \sigma_A^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_B^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \sigma_C^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \sigma_A^{95}$ (fb)	$\left \frac{100}{\sqrt{N_{MC}}}\right $	$3\ell \sigma_B^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_C^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$
1	5	1	3.26×10^{3}	71	-	100	6.51×10^{4}	71	1 0	-	1.21×10^3	24	-	-
1	10	1	97.0	41	-	100	-	-		-	$1.21{ imes}10^3$	24	-	100
1	20	1	$1.47{\times}10^3$	58	$6.63{ imes}10^3$	71	-	100	.= ::	-	933	21	-	-
1	40	1	$1.02{\times}10^5$	35	$8.17{ imes}10^4$	58	$8.17{ imes}10^4$	71		-	$1.2{ imes}10^3$	8	-	-
1	60	1	$8.84{ imes}10^3$	45	$5.3{ imes}10^3$	20	$2.94{ imes}10^4$	58		-	220	6	-	100
1	80	1	783	11	326	4	$1.15{ imes}10^3$	9		-	93.0	6	-	-
10	5	1	698	58	$3.14{ imes}10^3$	71	-	100		-	-	-	-	-
10	10	1	161	38	674	45	-	-	T 21	-	7	-	-	- :
10	20	1	287	45	7	100	$1.43{ imes}10^4$	71		-	$1.87{ imes}10^3$	30	-	100
10	40	1	$1.40{ imes}10^4$	50	$1.29{ imes}10^4$	28	$2.23{ imes}10^4$	45	-	-	531	5	$6.82{ imes}10^4$	71
10	60	1	$4.44{ imes}10^3$	26	507	5	604	7	-	-	165	5	-	-
10	80	1	150	5	248	4	630	7	20	-	80.0	5	-	-
10	120	1	281	6	$1.32{ imes}10^3$	8	411	6	20	-	62.0	4	-	<u>-</u>
20	5	1	97.0	41	877	71	-	-	-	-	-	-	-	-
20	10	1	140	35	562	41	-	-	-	-	-	-	-	-
20	20	1	4.78×10^{3}	58	$1.08{\times}10^4$	50	-	-	-	-	9.32×10^{3}	21	-	-
20	40	1	$6.31{ imes}10^3$	38	$6.02{ imes}10^3$	21	$1.76{ imes}10^4$	45	-	-	366	7	-	-
20	60	1	247	6	377	4	438	6	-	-	148	5	-	-
20	80	1	91.0	4	230	3	534	6		-	62.0	5	-	-
20	120	1	247	6	$1.50{\times}10^3$	9	321	5	= :	100	58.0	4	9.40×10^{3}	58

Cross-section limit (95% cl) for 2

lepton channel of sample A,B,C

~

						`		`						
m_{D1}	Δm^+	Δm^0	$2\ell \sigma_A^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \sigma_B^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \sigma_C^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \sigma_A^{95}$ (fb)	$\left \frac{100}{\sqrt{N_{MC}}} \right $	$3\ell \ \sigma_B^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_C^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$
1	5	1	3.26×10^{3}	71	-	100	6.51×10^{4}	71	1 0	-	1.21×10^3	24	-	-
1	10	1	97.0	41	-	100	-	-	-	-	$1.21{ imes}10^3$	24	-	100
1	20	1	$1.47{ imes}10^3$	58	6.63×10^{3}	71	-	100		-	933	21	-	-
1	40	1	$1.02{ imes}10^5$	35	$8.17{ imes}10^4$	58	$8.17{ imes}10^4$	71	-	-	$1.2{ imes}10^3$	8	-	-
1	60	1	$8.84{ imes}10^3$	45	$5.3{ imes}10^3$	20	$2.94{ imes}10^4$	58		-	220	6	-	100
1	80	1	783	11	326	4	$1.15{ imes}10^3$	9	-75	-	93.0	6	-	
10	5	1	698	58	$3.14{ imes}10^3$	71	-	100		-	≂.	-	-	-
10	10	1	161	38	674	45	-	-		-	7	-	-	-
10	20	1	287	45	<i>a</i>	100	$1.43{ imes}10^4$	71	a	-	$1.87{ imes}10^3$	30	-	100
10	40	1	$1.40{ imes}10^4$	50	$1.29{ imes}10^4$	28	$2.23{ imes}10^{4}$	45	-	-	531	5	$6.82{ imes}10^4$	71
10	60	1	$4.44{ imes}10^3$	26	507	5	604	7	-	-	165	5	-	-
10	80	1	150	5	248	4	630	7	<u>2</u> 7	-	80.0	5	-	-
10	120	1	281	6	$1.32{ imes}10^3$	8	411	6	20	-	62.0	4	-	_
20	5	1	97.0	41	877	71	-	-	-	-	-	-	-	-
20	10	1	140	35	562	41	-	-		-	-	-	-	-
20	20	1	4.78×10^{3}	58	$1.08{ imes}10^4$	50	-	-	-	-	9.32×10^{3}	21	-	
20	40	1	$6.31{ imes}10^3$	38	$6.02{ imes}10^3$	21	$1.76{ imes}10^4$	45	-	-	366	7	-	-
20	60	1	247	6	377	4	438	6	-	-	148	5	-	-
20	80	1	91.0	4	230	3	534	6	-	-	62.0	5	-	-:-
20	120	1	247	6	$1.50{ imes}10^3$	9	321	5	H (100	58.0	4	$9.40{ imes}10^3$	58

Cross-section limit (95% cl) for 3

lepton channel of sample A,B,C

														`
m_{D1}	Δm^+	Δm^0	$2\ell \ \sigma_A^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_B^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \sigma_C^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \sigma_A^{95}$ (fb)	$\left \frac{100}{\sqrt{N_{MC}}}\right $	$3\ell \sigma_B^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \sigma_C^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$
1	5	1	3.26×10^{3}	71	-	100	6.51×10^{4}	71		-	1.21×10^{3}	24	-	-
1	10	1	97.0	41	-	100	-			-	$1.21{ imes}10^3$	24	-	100
1	20	1	$1.47{ imes}10^3$	58	6.63×10^{3}	71	-	100		-	933	21	-	-
1	40	1	$1.02{\times}10^5$	35	$8.17{ imes}10^4$	58	$8.17{ imes}10^4$	71		-	$1.2{ imes}10^3$	8	-	-
1	60	1	$8.84{ imes}10^3$	45	$5.3{ imes}10^3$	20	$2.94{ imes}10^4$	58		-	220	6	-	100
1	80	1	783	11	326	4	1.15×10^3	9		-	93.0	6	-	-
10	5	1	698	58	$3.14{ imes}10^3$	71	-	100		-	-		-	-
10	10	1	161	38	674	45	-	-		-	5	70	-	
10	20	1	287	45	5	100	$1.43{ imes}10^4$	71		-	$1.87{ imes}10^3$	30	-	100
10	40	1	$1.40{ imes}10^4$	50	$1.29{ imes}10^4$	28	$2.23{ imes}10^4$	45	-	-	531	5	$6.82{ imes}10^4$	71
10	60	1	$4.44{ imes}10^3$	26	507	5	604	7	-	-	165	5	-	-
10	80	1	150	5	248	4	630	7	20	-	80.0	5	-	
10	120	1	281	6	$1.32{ imes}10^3$	8	411	6	20	-	62.0	4	-	-
20	5	1	97.0	41	877	71	-	-	-	-	2	-	-	-
20	10	1	140	35	562	41	-			-	-		-	-
20	20	1	4.78×10^{3}	58	$1.08{ imes}10^4$	50	-	-		-	9.32×10^{3}	21	-	_
20	40	1	$6.31{ imes}10^3$	38	$6.02{ imes}10^3$	21	$1.76{ imes}10^4$	45		-	366	7	-	
20	60	1	247	6	377	4	438	6		-	148	5	-	
20	80	1	91.0	4	230	3	534	6	- 1	-	62.0	5	-	-
20	120	1	247	6	$1.50{ imes}10^3$	9	321	5	- 3	100	58.0	4	9.40×10^{3}	58

							T	00			-%	Giv	<u> </u>	nercenta	age uncertainty
				1	Numb	per of Mo	onte (Carlo ev	ents s	survived	_ /0		C3 a	percente	age uncertainty
				V ·					onto t						
							\sim		$\overline{}$					1	$\overline{}$
1	m_{D1}	Δm^+	Δm^0	$2\ell \sigma_A^{95}$ (fb)	$\left \frac{100}{\sqrt{N_{MC}}} \right $	$2\ell \sigma_B^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \sigma_C^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \sigma_A^{95}$ (fb)	$\left \frac{100}{\sqrt{N_{MC}}} \right $	$3\ell \sigma_B^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \sigma_C^{95}$ (fb)	$\frac{100}{\sqrt{N_{MC}}}$
-	1	5	1	3.26×10^{3}	71	-	100	$6.51{ imes}10^4$	71	-	-	1.21×10^3	24	-	-
-	L	10	1	97.0	41	-	100	-	-	-	-	$1.21{ imes}10^3$	24	-	100
	L	20	1	$1.47{\times}10^3$	58	$6.63{ imes}10^3$	71	-	100	-	-	933	21	-	
	1	40	1	$1.02{ imes}10^5$	35	$8.17{ imes}10^4$	58	$8.17{ imes}10^4$	71	-	-	$1.2{ imes}10^3$	8	-	-
	1	60	1	$8.84{ imes}10^3$	45	$5.3{ imes}10^3$	20	$2.94{ imes}10^4$	58	-	-	220	6	-	100
-	L	80	1	783	11	326	4	$1.15{ imes}10^3$	9	-	-	93.0	6	-	-
	10	5	1	698	58	$3.14{ imes}10^3$	71	-	100		-	7	-	-	-
	10	10	1	161	38	674	45	-			-	=	-	-	T -1
	10	20	1	287	45	<u></u>	100	$1.43{ imes}10^4$	71	7 58	-	$1.87{ imes}10^3$	30	-	100
	10	40	1	$1.40{ imes}10^4$	50	$1.29{ imes}10^4$	28	$2.23{ imes}10^4$	45	-	-	531	5	$6.82{ imes}10^4$	71
	10	60	1	$4.44{ imes}10^3$	26	507	5	604	7	-	-	165	5	-	-
-	10	80	1	150	5	248	4	630	7	20	-	80.0	5	-	-
-	10	120	1	281	6	$1.32{ imes}10^3$	8	411	6	20	-	62.0	4	-	-
4	20	5	1	97.0	41	877	71	-	-	-	-	-	-	-	-
4	20	10	1	140	35	562	41	-	-	-	-	-	-	-	-
-	20	20	1	4.78×10^{3}	58	$1.08{\times}10^4$	50	-	-	-	-	9.32×10^{3}	21	-	-
4	20	40	1	$6.31{ imes}10^3$	38	$6.02{ imes}10^3$	21	$1.76{ imes}10^4$	45	-	-	366	7	-	-
4	20	60	1	247	6	377	4	438	6	-	-	148	5	-	-
-	20	80	1	91.0	4	230	3	534	6	-	-	62.0	5	-	-
4	20	120	1	247	6	$1.50{ imes}10^3$	9	321	5	-	100	58.0	4	$9.40{ imes}10^3$	58

Inert 2 Higgs Doublet Model (I2HDM)

$$\mathcal{L}_{\phi} = |D_{\mu}\phi_{1}|^{2} + |D_{\mu}\phi_{2}|^{2} - V(\phi_{1},\phi_{2}) \qquad \phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\v+H \end{pmatrix}, \quad \phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}D^{+}\\D_{1}+iD_{2} \end{pmatrix}$$

$$V = -m_{1}^{2}(\phi_{1}^{\dagger}\phi_{1}) - m_{2}^{2}(\phi_{2}^{\dagger}\phi_{2}) + \lambda_{1}(\phi_{1}^{\dagger}\phi_{1})^{2} + \lambda_{2}(\phi_{2}^{\dagger}\phi_{2})^{2} + \lambda_{3}(\phi_{1}^{\dagger}\phi_{1})(\phi_{2}^{\dagger}\phi_{2}) + \lambda_{4}(\phi_{2}^{\dagger}\phi_{1})(\phi_{1}^{\dagger}\phi_{2})$$

$$m_{H}^{2} = 2\lambda_{1}v^{2} = 2m_{1}^{2} \qquad m_{D+}^{2} = \frac{1}{2}\lambda_{3}v^{2} - m_{2}^{2} \qquad + \frac{\lambda_{5}}{2}[(\phi_{1}^{\dagger}\phi_{2})^{2} + (\phi_{2}^{\dagger}\phi_{1})^{2}]$$

$$m_{D1}^{2} = \frac{1}{2}(\lambda_{3} + \lambda_{4} - |\lambda_{5}|)v^{2} - m_{2}^{2} \qquad m_{D2}^{2} = \frac{1}{2}(\lambda_{3} + \lambda_{4} + |\lambda_{5}|)v^{2} - m_{2}^{2} > m_{D1}^{2}$$

1. λ_2 is quartic inert doublet self-coupling **2.** $\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5$ is Higgs-DM coupling: HD_1D_1 **3.** m_{D1} is DM mass **4.** m_{D2} is second lightest, neutral Higgs mass **5.** m_{D+} is charged Higgs mass

Relevant parameters for our study: $[m_{D1}, m_{D+}, m_{D2}, \lambda_2, \lambda_{345}] \rightarrow [m_{D1}, m_{D+}, m_{D2}]$

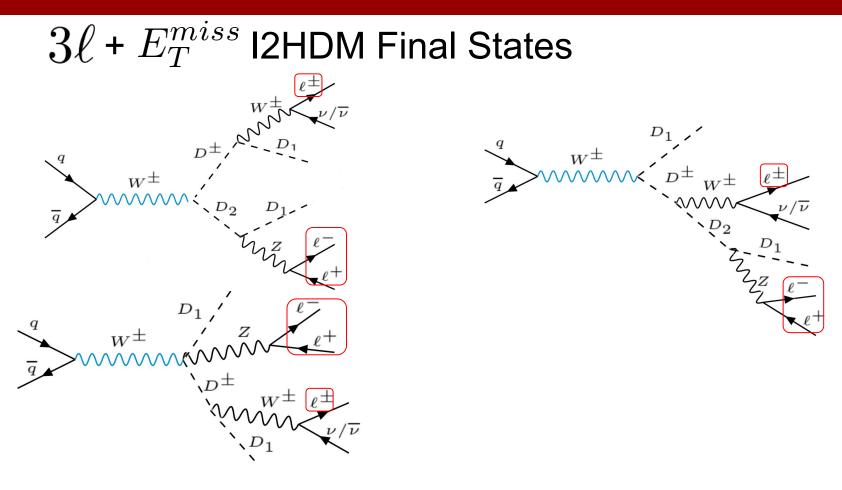
Parameterisations which are more physical for our analysis: $[m_{D1}, \Delta m^+, \Delta m^0]$

$$\Delta m^0 = m_{D2} - m_{D+}$$
$$\Delta m^+ = m_{D+} - m_{D1}$$

Minimal Fermion Dark Matter (MFDM)

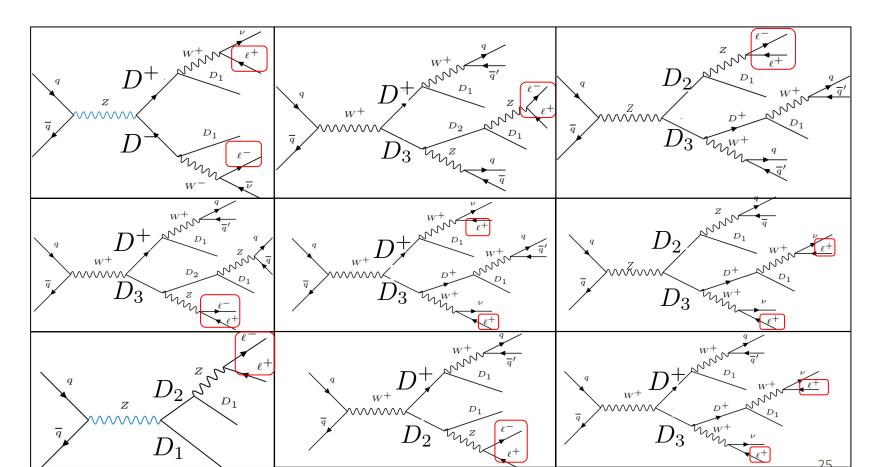
$$\mathcal{L}_{FDM} = \mathcal{L}_{SM} + \bar{\psi}(i\not\!\!D - m_{\psi})\psi + \frac{1}{2}\bar{\chi}_s^0(i\not\!\!\partial - m_s)\chi_s^0 - (Y(\bar{\psi}\Phi\chi_s^0) + h.c.)$$

- Minimal model with an EW fermion DM doublet
- To provide provide the correct amount of relic density, suppress DM scattering through intermediate Z/Higgs boson:
 - Majorana neutral D-odd particles χ_1^0 , χ_2^0 $\psi = \begin{pmatrix} \chi^+ \\ \frac{1}{\sqrt{2}} (\chi_1^0 + i\chi_2^0) \end{pmatrix}$ additional Majorana singlet fermion χ_s^0
 - 0
- χ_1^0 and χ_s^0 mix via Yukawa coupling, χ_2^0 and χ^+ are mass degenerate $Y_{DM} = \frac{\sqrt{(m_{D3} m_{D+})(m_{D+} m_{D1})}}{(m_{D+} m_{D1})}$

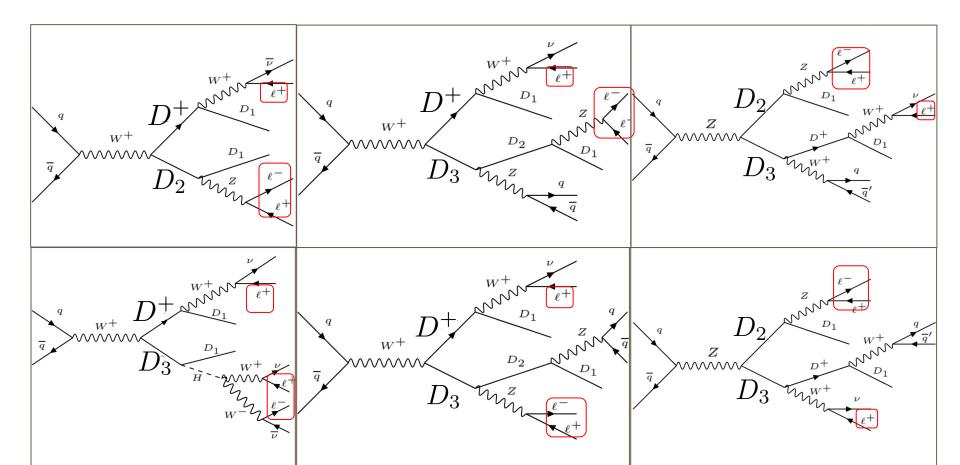

1. m_{D1} is DM mass **2.** $m_{D+} = m_{D2}$ is chargino mass **3.** m_{D3} is third lightest, neutralino mass

$$\begin{split} m_{D3} > m_{D+} &= m_{D2} > m_{D1} \\ \text{Parameterisations which are more physical for our analysis:} \quad \Delta m^0 = m_{D3} - m_{D+} \quad Y_{DM} = \frac{\sqrt{\Delta m^0 \Delta m^+}}{v} \\ & \left[m_{D1}, \Delta m^+, \Delta m^0 \right] \qquad \qquad \Delta m^+ = m_{D+} - m_{D1} \end{split}$$

 2ℓ + E_T^{miss} I2HDM Final States



- DM decays via Z production
- Looking at Higgs funnel: $\lambda_{345} \sim 0$, and λ_2 not relevant

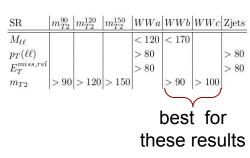


• DM decays via W production, x2 for the +/- processes

 $2\ell + E_T^{miss}$ MFDM Final States

 3ℓ + E_T^{miss} MFDM Final States

8 TeV Analysis Cuts

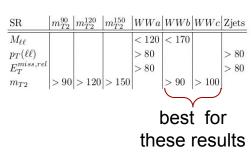

https://checkmate.hepforge.org/AnalysesList/ATLAS_8TeV.html

 8 TeV ATLAS SUSY analysis <u>arXiv:1403.5294</u> cutflows for dilepton+MET finals states, implemented in CheckMATE:

https://checkmate.hepforge.org/validationNotes/atl

as_1403_5294.pdf

Global Cut		
E_T^{miss}	> 0 GeV	
Base leptons	2	
e + e - trigger	97%	SR
$\mu^+\mu^-$ trigger	89%	$M_{\ell\ell}$
$e\mu$ trigger	75%	$p_T(\ell D_T)$
Signal leptons	2	E_T^{mis} m_{T2}
Leading lepton p_T	$> 35 { m ~GeV}$	11012
sub-leading lepton p_{T}	> 20 GeV	
$M_{\ell\ell}$	> 20 GeV	
jets	0	
$ M_{\ell\ell} - M_Z $	> 10 GeV	


8 TeV Analysis Cuts

https://checkmate.hepforge.org/AnalysesList/ATLAS_8TeV.html

 8 TeV ATLAS SUSY analysis <u>arXiv:1403.5294</u> cutflows for dilepton+MET finals states, implemented in CheckMATE: <u>https://checkmate.hepforge.org/validationNotes/atl</u>

as_1403_5294.pdf

Global Cut		
E_T^{miss}	> 0 GeV	
Base leptons	2	
e + e - trigger	97%	SR
$\mu^+\mu^-$ trigger	89%	$M_{\ell\ell}$
$e\mu$ trigger	75%	$p_T(\ell\ell)$ $E_T^{miss,}$
Signal leptons	2	E_T m_{T2}
Leading lepton p_T	$> 35 { m ~GeV}$	1112
sub-leading lepton p_{T}	> 20 GeV	
$M_{\ell\ell}$	> 20 GeV	
jets	0	
$ M_{\ell\ell} - M_Z $	> 10 GeV	

 8 TeV ATLAS Z+Higgs->invisible analysis <u>arXiv:1402.3244</u> cutflows for dilepton+MET finals states, implemented in CheckMATE: https://checkmate.hepforge.org/validationNotes/atlas higg 2013 03.pdf

Global Cut	
Base leptons	2
Lepton p_T	$> 20 { m GeV}$
Z-window	$76 < M_{\ell\ell} < 106 \text{ GeV}$
E_T^{miss}	$> 90 { m GeV}$
$d\phi(E_T^{miss}, p_T^{miss})$	< 0.2
$\Delta \phi(p_T(\ell \ell), E_T^{miss})$) > 2.6
$\Delta \phi(\ell,\ell)$	< 1.7
$\Big \frac{E_T^{miss} - p_T(\ell\ell)}{p_T(\ell\ell)}\Big $	> 0.2
jets	0

Validated against MadAnalysis (Belanger et.al paper <u>arXiv:1503.07367</u>)

CheckMATE 8 TeV Sample Validation Tables

https://checkmate.hepforge.org/AnalysesList/ATLAS 8TeV.html

Cut	Acc	Weighted	Change	MadAnalysis	Change	Official	Change
01 Initial	1	3375.0		3375			
02 2 OS leptons	0.16405	553.7	84%	545.8	84%		
$03 \ m\ell\ell > 20 \ \text{GeV}$	0.16119	544.0	2%	537.8	1%		
04 tau veto	0.16100	544.0	0%	537.8	0%		
05 ee leptons	0.03680	124.2	77%	132.4	75%	139.6	
06 ee jet veto	0.02018	68.1	45%	79.2	40%	65.7	53%
07 ee Z veto	0.01690	57.0	16%	67.3	15%	55.5	16%
08 ee WWb mT2;90 GeV	0.00136	4.6	92%	5.3	92%	4.5	92%
09 ee WWb $m\ell\ell < 170 \text{ GeV}$	0.00115	3.9	15%	4.3	19%	3.9	13%

Table 4: $\chi + \chi - (140/20)$, Wwbee

Cut	Acc	Weighted	Change	MadAnalysis	Change	Official	Change
01 Initial	1	3375.0		3375			
02 2 OS leptons	0.16405	553.7	84%	545.8	84%		
$03 \ m\ell\ell > 20 \ { m GeV}$	0.16119	544.0	2%	537.8	1%		
04 tau veto	0.16100	544.0	0%	537.8	0%		
05 emu leptons	0.07158	241.6	56%	239.9	55%	253.8	
06 emu jet veto	0.03899	131.6	46%	142.6	41%	118.6	53%
08 emu WWb mT2;90 GeV	0.00273	9.2	93%	10.5	93%	8	93%
09 emu WW b $m\ell\ell < 170~{\rm GeV}$	0.00245	8.3	10%	9.3	11%	7.2	10%

Table 5: $\chi + \chi - (140/20)$, Wwbemu

Cut	Acc	Weighted	Change	MadAnalysis	Change	Official	Change
01 Initial	1	3375.0		3375			
02 2 OS leptons	0.16405	553.7	84%	545.8	84%		
$03 \ m\ell\ell > 20 \ { m GeV}$	0.16119	544.0	2%	537.8	1%		
04 tau veto	0.16100	544.0	0%	537.8	0%		
05 mumu leptons	0.05281	178.2	67%	165.5	69%	168.7	
06 mumu jet veto	0.02877	97.1	46%	100.7	39%	78.2	54%
07 mumu Z veto	0.02408	81.3	16%	84.2	16%	65.5	16%
08 mumu WWb mT2;90 GeV	0.00182	6.2	92%	6.8	92%	5.2	92%
09 mumu WW b $m\ell\ell < 170~{\rm GeV}$	0.00169	5.7	7%	6.2	9%	4.5	13%

Table 6: $\chi+\chi-$ (140/20), Wwbmumu

CheckMATE 8 TeV Sample Validation Tables

https://checkmate.hepforge.org/AnalysesList/ATLAS 8TeV.html

Cut	Acc	Weighted	Change	MadAnalysis	Change	Official	Change
01 Initial	1	835.5		835.5			
02 2 OS leptons	0.19479	162.7	81%	155.4	81%		
$03 \ m\ell\ell > 20 \ { m GeV}$	0.19232	160.7	1%	153.3	1%		
04 tau veto	0.19232	160.7	0%	153.3	0%		
05 ee leptons	0.04540	38.0	76%	39	75%	40.9	
06 ee jet veto	0.02291	19.1	50%	22.8	42%	17.5	57%
07 ee Z veto	0.02005	16.8	12%	19.9	13%	15.5	11%
08 ee WWc mT2;100 GeV	0.00302	2.5	85%	3.1	84%	2.4	85%

Table 7: $\chi + \chi - (200/0)$, Wwcee

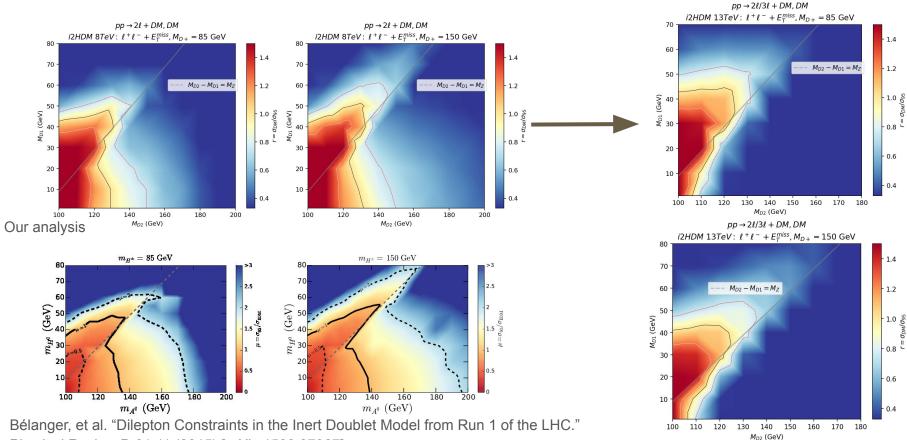
Cut	Acc	Weighted	Change	MadAnalysis	Change	Official	Change
01 Initial	1	835.5		835.5			
02 2 OS leptons	0.19479	162.7	81%	155.4	81%		
$03 \ m\ell\ell > 20$	0.19232	160.7	1%	153.3	1%		
04 tau veto	0.19232	160.7	0%	153.3	0%		
05 emu leptons	0.08430	70.4	56%	67.6	56%	71.1	
06 emu jet veto	0.04308	36.0	49%	39.9	41%	30.8	57%
$08 \text{ emu WWc mT2}_{2100 \text{ GeV}}$	0.00612	5.1	86%	6.7	83%	4.6	85%

Table 8: $\chi + \chi - (200/0)$, Wwcemu

Cut	Acc	Weighted	Change	MadAnalysis	Change	Official	Change
01 Initial	1	835.5		835.5			
02 2 OS leptons	0.19479	162.7	81%	155.4	81%		
$03 \ m\ell\ell > 20 \ { m GeV}$	0.19232	160.7	1%	153.3	1%		
04 tau veto	0.19232	160.7	0%	153.3	0%		
05 mumu leptons	0.06259	52.3	67%	46.7	70%	46.3	
06 mumu jet veto	0.03230	27.0	48%	26.9	42%	20.7	55%
07 mumu Z veto	0.02764	23.1	14%	23.4	13%	18	13%
08 mumu WWc mT2;100 GeV	0.00416	3.5	85%	3.7	84%	2.8	84%

Table 9: $\chi + \chi - (200/0)$, Wwcmumu

CheckMATE 8 TeV Sample Validation Tables


https://checkmate.hepforge.org/AnalysesList/ATLAS 8TeV.html

Cut	Acc	Weighted	Change	MadAnalysis	Change	Official	Change
01 Initial	1.00	838.9		838.9			
02 OS leptons	0.40	336.1	60%	256.2	69%		
03 Zwindow	0.38	317.7	5%	244.1	5%	243	
04 MET > 90	0.15	122.8	61%	105.1	57%	103	58%
05 dilepton-MET separation	0.12	104.3	15%	91.7	13%		
06 lepton-lepton separation	0.10	86.4	17%	82.9	10%		
07 pTmiss-MET separation	0.10	81.5	6%	76.5	8%		
08 pTll-MET similarity	0.07	60.4	26%	63.2	17%		
09 jetveto	0.06	51.1	15%	54.8	13%	$44\pm1\pm3$	

Table 1: Cutflow table for benchmark point of the process $HZ \to \nu\nu\nu\nu\nu\ell\ell$, for $M_H = 125.5 \text{ GeV}$

I2HDM Validations

8 TeV

Physical Review D 91.11 (2015) [arXiv:1503.07367]

13 TeV

Our analysis