# Detecting Gravitational Waves with the LHC

Daniel Zer-Zion Lund, Sweden, March 29, 2022

# Outlook

- ≻Introduction
- ≻Maxwell's Waves
- ≻Newton-Gauss gravity
- ➤General Relativity Field Equations
- ≻Einstein's Gravitational Waves
- ≻Hulse-Taylor pulsar and orbit decay
- ≻GWs spectrum
- ≻Direct observation of GWs by LIGO
- ≻Cyclotron motion (one particle) in a GW background
- >Interaction of a GW with a relativistic circular beam in a storage ring
- >LHC Instrumentation, orbit reconstruction, event definition, trigger and storing
- ➤ Highlights ARIES APEC 2021 workshop on "Storage Rings and GWs"
- ➤Conclusion





space-neutrinos, gamma rays, black holes, ... Cyclotron motion in GW bcknd

## **Maxwell's Wave Prototype**

- 1) Generation,
- 2) Propagation, and,
- 3) Detection

of a dynamic disturbance (change from equilibrium) of one or more quantities, described by a wave equation, that transfers energy, momentum, angular momentum, and, information about the generating process. And, it does not get tired!

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \qquad \text{Gauss's law}$$

$$\nabla \cdot \mathbf{B} = 0 \qquad \text{Gauss's law for magnetism}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \text{Faraday's law of induction}$$

$$\nabla \times \mathbf{B} = \mu_0 \left( \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) \qquad \text{Ampère's law}$$

Vacuum Maxwell's equations

$$egin{aligned} 
abla \cdot \mathbf{E} &= 0 & 
abla imes \mathbf{E} &= -rac{\partial \mathbf{B}}{\partial t}, \ 
abla \cdot \mathbf{B} &= 0 & 
abla imes \mathbf{E} &= -rac{\partial \mathbf{B}}{\partial t}, \ 
abla imes \mathbf{E} &= -rac{\partial \mathbf{B}}{\partial t}. \end{aligned}$$

 $abla imes (
abla imes {f A}) \; = \; 
abla (
abla \cdot {f A}) \; - \; 
abla^2 {f A}$ 

 $egin{aligned} &\mu_0arepsilon_0rac{\partial^2 \mathbf{E}}{\partial t^2}abla^2 \mathbf{E}=0\ &\mu_0arepsilon_0rac{\partial^2 \mathbf{B}}{\partial t^2}abla^2 \mathbf{B}=0 \end{aligned}$ 

E and B coupled Waves EM - Wave

$$egin{aligned} &rac{1}{c^2}rac{\partial^2 \mathbf{E}}{\partial t^2} - 
abla^2 \mathbf{E} = 0 \ &rac{1}{c^2}rac{\partial^2 \mathbf{B}}{\partial t^2} - 
abla^2 \mathbf{B} = 0 \end{aligned}$$

Compact notation for the wave equation using the D'Alembert operator (u = u(t, x, y, z)):

 $\Box u = 0,$ 

$$egin{aligned} &\Box = \partial^\mu \partial_\mu = g^{\mu
u} \partial_
u \partial_\mu = rac{1}{c^2} rac{\partial^2}{\partial t^2} - rac{\partial^2}{\partial x^2} - rac{\partial^2}{\partial y^2} - rac{\partial^2}{\partial z^2} \ &= rac{1}{c^2} rac{\partial^2}{\partial t^2} - 
abla^2 = rac{1}{c^2} rac{\partial^2}{\partial t^2} - 
abla^2 \ . \end{aligned}$$

With inverse signature between the time (00) and space (ii) components of the Minkowski metric tensor -> Time and space became spacetime, diag(+, -, -, -)

$$\left\{egin{array}{ll} g_{00} = 1 \ g_{11} = g_{22} = g_{33} = -1 \ g_{\mu
u} = 0 & ext{for } \mu 
eq 
u. \end{array}
ight.$$

In one dimension, with initial conditions

$$f(x) = u(x,0)$$
 and  $g(x) = \left. \frac{\partial u(x,t)}{\partial t} \right|_{t=0}$ ,

the solution is given by  

$$u(x,t) = \frac{f(x-ct) + f(x+ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) \, ds$$

#### **Covariant formulation of classical electromagnetism**

$$\begin{aligned} x^{\alpha} &= (ct, \mathbf{x}) = (ct, x, y, z) \, . \\ u^{\alpha} &= \gamma(c, \mathbf{u}), \quad \gamma = \frac{dt}{d\tau} \\ p^{\alpha} &= (E/c, \mathbf{p}) = m_0 u^{\alpha} \\ \partial^{\nu} &= \frac{\partial}{\partial x_{\nu}} = \left(\frac{1}{c} \frac{\partial}{\partial t}, -\nabla\right) \, , \\ F_{\alpha\beta} &= \begin{pmatrix} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & -B_z & B_y \\ -E_y/c & B_z & 0 & -B_x \\ -E_z/c & -B_y & B_x & 0 \end{pmatrix} \end{aligned}$$

$$J^lpha = (c
ho, {f j})\,. \hspace{1cm} A^lpha = (\phi/c, {f A}) \;. \hspace{1cm} F_{lphaeta} = \partial_lpha A_eta - \partial_eta A_lpha \;.$$

$$\partial_{lpha}F^{lphaeta}=\mu_{0}J^{eta}$$
,  $\partial_{lpha}\left(rac{1}{2}\epsilon^{lphaeta\gamma\delta}F_{\gamma\delta}
ight)=0$  Lo

$$\partial^{
u}\partial_{
u}F^{lphaeta}\stackrel{
m def}{=}\partial^{2}F^{lphaeta}\stackrel{
m def}{=}rac{1}{c^{2}}rac{\partial^{2}F^{lphaeta}}{\partial t^{2}}-
abla^{2}F^{lphaeta}=0\,, \hspace{0.5cm} {\sf EM}$$
 - Wave

$$\eta^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \qquad F^{\mu\nu} \stackrel{\text{def}}{=} \eta^{\mu\alpha} F_{\alpha\beta} \eta^{\beta\nu} = \begin{pmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{pmatrix} \cdot \begin{pmatrix} \gamma(v) = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{1}{\sqrt{1 - \frac{v^2 + v^2_y + v^2_z}{c^2}}} \\ \sqrt{1 - \frac{v^2 + v^2_y + v^2_z}{c^2}} \\ \end{pmatrix}$$

$$T^{lphaeta} = egin{pmatrix} \epsilon_0 E^2/2 + B^2/2\mu_0 & S_x/c & S_y/c & S_z/c \ S_x/c & -\sigma_{xx} & -\sigma_{xy} & -\sigma_{xz} \ S_y/c & -\sigma_{yx} & -\sigma_{yy} & -\sigma_{yz} \ S_z/c & -\sigma_{zx} & -\sigma_{zy} & -\sigma_{zz} \ \end{pmatrix}, \qquad T^{lphaeta} = rac{1}{\mu_0} \left(\eta^{lpha
u} F_{
u\gamma} F^{\gammaeta} + rac{1}{4} \eta^{lphaeta} F_{\gamma
u} F^{\gamma
u}
ight)$$

$${f S}={1\over \mu_0}{f E} imes {f B} \qquad \qquad \sigma_{ij}=\epsilon_0 E_i E_j + {1\over \mu_0}B_i B_j - \left({1\over 2}\epsilon_0 E^2 + {1\over 2\mu_0}B^2
ight)\delta_{ij}\,.$$

$$rac{{\mathrm{d}} p^lpha}{{\mathrm{d}} au} = q F^{lphaeta} U_eta \qquad p^lpha = (p_0, p_1, p_2, p_3) = (\gamma mc, p_x, p_y, p_z)\,, \quad U_eta = (U_0, U_1, U_2, U_3) = \gamma \left(c, -v_x, -v_y, -v_z
ight),$$

## **Newton-Gauss Gravity**

Gauss's gravity is mathematically similar to Gauss's electrostatics, one of Maxwell's equations,

$$abla \cdot {f E} = {
ho \over arepsilon_0}$$

Gauss's law for gravity has the same mathematical relation to Newton's law of gravity as Gauss's law for electrostatics bears to Coulomb's law. This is because both Newton's law and Coulomb's law describe inverse-square interaction in a 3-dimensional space. Gauss's gravitational field **g** (also called gravitational acceleration) is a vector field,  $\mathbf{F}$ =m $\mathbf{g}$ , and,

 $abla \cdot {f g} = -4\pi G
ho, \quad G = 6{,}674\,30(15) imes 10^{-11}~{
m m}^3~{
m kg}^{-1}~{
m s}^{-2}$ 

With the gravitational potential given by  $\mathbf{g} = -\nabla \phi$ .

and,

 $abla^2 \phi = 4\pi G 
ho.$ 



In radially symmetric systems, the gravitational potential is a function of only one variable, r,

$$egin{aligned} &rac{1}{r^2}rac{\partial}{\partial r}\left(r^2\,rac{\partial\phi}{\partial r}
ight) = 4\pi G
ho(r) \ & extbf{g}( extbf{r}) = - extbf{e}_{ extbf{r}}rac{\partial\phi}{\partial r}. \ & extbf{g}( extbf{r}) = -GMrac{\mathbf{e}_{ extbf{r}}}{r^2} \end{aligned}$$



Gauss's is a weak gravitational field and slow motion approximation.

GR-EFE generalize to gravity in extreme situations in which there are new predicted phenomena, such as gravitational waves, that transport energy as gravitational radiation, a form of radiant energy, similar to electromagnetic radiation. **GR-EFE** 

$$R=g^{\mu
u}R_{\mu
u}$$

 $R_{\mu
u} = R^{lpha}{}_{\mulpha
u}.$ 

$$R^{\rho}{}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}{}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}{}_{\mu\sigma} + \Gamma^{\rho}{}_{\mu\lambda}\Gamma^{\lambda}{}_{\nu\sigma} - \Gamma^{\rho}{}_{\nu\lambda}\Gamma^{\lambda}{}_{\mu\sigma}$$

$$\Gamma^{i}{}_{kl}=rac{1}{2}g^{im}\left(rac{\partial g_{mk}}{\partial x^{l}}+rac{\partial g_{ml}}{\partial x^{k}}-rac{\partial g_{kl}}{\partial x^{m}}
ight)=rac{1}{2}g^{im}\left(g_{mk,l}+g_{ml,k}-g_{kl,m}
ight),$$

$$A_{
u;
ho\sigma}-A_{
u;\sigma
ho}=A_{eta}R^{eta}{}_{
u
ho\sigma},$$

$$rac{d^2x^\mu}{ds^2}+{\Gamma^\mu}_{lphaeta}rac{dx^lpha}{ds}rac{dx^eta}{ds}=0,$$

The problem of the particle motion is the same as of the geodesic line equation in the curved or flat spacetime for which the metric solves the EFE.





$$F_f(r) = -rac{GMm}{r^2} + rac{L^2}{mr^3} - rac{3GML^2}{mc^2r^4}$$

| Rate of orbital decay | $\frac{\mathrm{d}r}{-}$ | 64  | $G^3$            | $(m_1m_2)(m_1+m_2)$             |
|-----------------------|-------------------------|-----|------------------|---------------------------------|
| of binary stars       | $\mathrm{d}t$ –         | 5   | $c^5$            | $r^{3}$ ,                       |
|                       | + _                     | 5   | $c^5$            | $r^4$                           |
| Time to merger        | ι —                     | 256 | $\overline{G^3}$ | $\overline{(m_1m_2)(m_1+m_2)}.$ |





## **Einstein's waves**

Weak-field approximation of the EFE, linearized gravity

 $g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}, \qquad |h_{\mu
u}| \ll 1.$  luminosity -> gravitosity

pp-wave spacetimes, or pp-waves for short, are an important family of exact solutions of Einstein's field equation. pp stands for plane-fronted waves with parallel propagation,

$$u = u(ct - z), v = v(ct + z)$$
  
 $ds^2 = H(u, x, y) du^2 + 2 du dv + dx^2 + dy^2$   
 $H_{xx} + H_{yy} = 0$ 

 $H(u, x, y) = a(u) \left(x^2 - y^2\right) + 2 \, b(u) \, xy + c(u) \left(x^2 + y^2\right)$ 

a(u) and b(u) are the wave profiles of the two linearly independent polarization modes of gravitational radiation which may be present, while c(u) is the wave profile of any nongravitational radiation. If c(u) = 0, H(u,x,y) represents the vacuum plane waves, which are often called plane gravitational waves.



### Hulse-Taylor binary: First pulsar in a binary stars system and orbit decay observation

$$-\left\langle \frac{dE}{dt} \right\rangle = \frac{32G^4 m_1^2 m_2^2 (m_1 + m_2)}{5c^5 a^5 (1 - e^2)^{7/2}} \left( 1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right)$$

$$-\left\langle \frac{dL_z}{dt} \right\rangle = \frac{32G^{7/2} m_1^2 m_2^2 \sqrt{m_1 + m_2}}{5c^5 a^{7/2} (1 - e^2)^2} \left( 1 + \frac{7}{8} e^2 \right)$$

$$-\left\langle \frac{dP_b}{dt} \right\rangle = \frac{192\pi G^{5/3} m_1 m_2 (m_1 + m_2)^{-1/3}}{5c^5 (1 - e^2)^{7/2}} \left( 1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) \left( \frac{P_b}{2\pi} \right)^{-5/3}$$

$$= \frac{192\pi G^{5/3} m_1 m_2 (m_1 + m_2)^{-1/3}}{5c^5 (1 - e^2)^{7/2}} \left( 1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) \left( \frac{P_b}{2\pi} \right)^{-5/3}$$

$$= \frac{192\pi G^{5/3} m_1 m_2 (m_1 + m_2)^{-1/3}}{5c^5 (1 - e^2)^{7/2}} \left( 1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) \left( \frac{P_b}{2\pi} \right)^{-5/3}$$

$$= \frac{192\pi G^{5/3} m_1 m_2 (m_1 + m_2)^{-1/3}}{5c^5 (1 - e^2)^{7/2}} \left( 1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) \left( \frac{P_b}{2\pi} \right)^{-5/3}$$

$$= \frac{192\pi G^{5/3} m_1 m_2 (m_1 + m_2)^{-1/3}}{5c^5 (1 - e^2)^{7/2}} \left( 1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) \left( \frac{P_b}{2\pi} \right)^{-5/3}$$

$$= \frac{192\pi G^{5/3} m_1 m_2 (m_1 + m_2)^{-1/3}}{5c^5 (1 - e^2)^{7/2}} \left( 1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) \left( \frac{P_b}{2\pi} \right)^{-5/3}$$

$$= \frac{192\pi G^{5/3} m_1 m_2 (m_1 + m_2)^{-1/3}}{5c^5 (1 - e^2)^{7/2}} \left( 1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) \left( \frac{P_b}{2\pi} \right)^{-5/3}$$

$$= \frac{192\pi G^{5/3} m_1 m_2 (m_1 + m_2)^{-1/3}}{5c^5 (1 - e^2)^{7/2}} \left( 1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) \left( \frac{P_b}{2\pi} \right)^{-5/3}$$

$$= \frac{192\pi G^{5/3} m_1 m_2 (m_1 + m_2)^{-1/3}}{5c^5 (1 - e^2)^{7/2}} \left( 1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) \left( \frac{P_b}{2\pi} \right)^{-2/3}$$

$$= \frac{192\pi G^{5/3} m_1 m_2 (m_1 + m_2)^{-1/3}}{5c^5 (1 - e^2)^{7/2}} \left( 1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) \left( \frac{P_b}{2\pi} \right)^{-2/3}$$

$$= \frac{192\pi G^{5/3} m_1 m_2 (m_1 + m_2)^{-1/3}}{5c^5 (1 - e^2)^{7/2}} \left( 1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) \left( \frac{P_b}{2\pi} \right)^{-2/3}$$

The orbit has decayed since the binary system was initially discovered (1974), in precise agreement with the loss of energy due to gravitational waves









Year

# The Gravitational Wave Spectrum





ect of this presentation: use ns of particles in storage rings, SPS, as GWs detectors



#### GWs laser interferometers observatory's network







## First observation of GWs and merger of a pair of black holes GW150914

Long list of new GWs observations since 2015

Multi-messenger Astronomy era (neutrinos, GWs, gamma rays, cosmic rays) and coincidence triggers







#### Future of present past: Laser Interferometer Space Antenna (LISA – Planned launch 2037), ESA.



## Cyclotron motion in a GW background (Jan van Holten, NIKEF/99-019)

Need to solve the Equation of motion of a relativistic charged particle in GW and EM background fields

$$\ddot{x}^{\mu} + \Gamma^{\mu}_{\lambda\nu} \dot{x}^{\lambda} \dot{x}^{\nu} = \frac{q}{m} F^{\mu}_{\nu} \dot{x}^{\nu}$$

- Simple case: constant magnetic field with nonzero comp.  $F_{xy} = -F_{yx} = B$ , in the same direction as the GWs, z
- > pp standard GWs H(u,x,y) = a(u)  $(x^2 - y^2) + 2 b(u) x y$
- Light cone coords. u = ct z, v = ct + z, to get the ODEs

$$x'' - k y' + a(u) x + b(u) y = 0$$
  

$$y'' + k x' - a(u) y + b(u) x = 0$$
  

$$x' = dx/du \text{ and } k \text{ given by } k = \frac{qB}{mc\gamma}, \text{ and,}$$
  

$$1 \quad 1 - \frac{v^2}{c^2}$$

$$\frac{1}{\gamma^2} = \frac{c^2}{1 - \frac{v_z^2}{c^2}} + H$$

 $I_{\perp} = \Lambda / I - H \gamma^{-}$ 

 $> H = 0 \rightarrow \frac{dt}{d\tau} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = \gamma,$  $x(u) = A \cos(ku) + B \sin(ku)$  $y(u) = B \cos(ku) - A \sin(ku)$  $\succ$ > In polar co-ordinates:  $\rho = \sqrt{A^2 + B^2} = constant$ ,  $\theta = \omega_0 t = \frac{qBt}{m\gamma}$   $\Rightarrow v = \rho \omega_0, \quad \gamma = \sqrt{1 + (q\rho B/mc)^2}, \quad \gamma \gg 1, \quad k = \frac{1}{\rho}$ No GW,  $v_0$  planar velocity,  $\gamma = \frac{1}{\sqrt{1 - \frac{v_0^2}{c^2}}}$  $\succ$  GW changes  $v_0$  to  $v = v_0 + \delta v$ > We look for the change in the kinetic energy due to the GW  $\gg$  With  $\delta v_z \ll \gamma^2 c$ ,  $H \approx 2 \frac{v_0 \, \delta v}{c^2}$ ,  $v_0 \, \delta v = \rho_0^2 \omega_0 \delta \omega = v_0^2 \frac{\delta \omega}{\omega_0}$ 

>  $H = \delta \left( \frac{v^2}{C^2} \right) \approx 2 \frac{\delta \omega}{\omega_0}$ , the change in kinetic energy is given

Example: GW with  $\omega_{+} = 2\pi f_{+}$  and , b(u)=0.

$$\Rightarrow a(u) = \frac{\omega_{+}^{2}}{2C^{2}}h_{+}\cos(\omega_{+}t - \alpha)$$

$$\Rightarrow H = \frac{\rho_{0}^{2}\omega_{+}^{2}}{2c^{2}}h_{+}\cos2\omega_{0}t\cos(\omega_{+}t - \alpha) = \frac{\rho_{0}^{2}\omega_{+}^{2}}{4c^{2}}h_{+}[\cos((\omega_{+} + 2\omega_{0})t - \alpha) + \cos((\omega_{+} - 2\omega_{0})t - \alpha)]$$

$$\Rightarrow For the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) \leq 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) \leq 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) \leq 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) \leq 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) \leq 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) \leq 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) \leq 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) \leq 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) \leq 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) = 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) = 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) = 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) = 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) = 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) = 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 4.2 \text{ Km}, H = \delta\left(\frac{v^{2}}{C^{2}}\right) = 0.4 \frac{\omega_{+}}{1Hz} \int_{0}^{2}h_{+}$$

$$for the LHC, \rho_{0} = 0.4 \frac{\omega_{+}}{1Hz}$$

Open question (not in Jan's paper, need research): longitudinal and frequency modulation effects. Easier to measure, FM is always cleaner.

# **Effect of a GW on a rotating ring (LHC beam)** (D. Zer-Zion, CERN-EP/98-63, Astroparticle Physics 2000 (pp. 239-243))

#### Geometry of a collider (LHC) beam

- > c = 1, change polar co-ords. from lab to a system of polar co-ords. attached to a bunch in the beam  $\rho_0 = \rho$ ,  $z_0 = z$ ,  $t_o = t$ ,  $\theta_0 = \theta + \omega t$
- > Apply the transformation to a spacetime line element in the lab

$$ds^{2} = - dt_{0}^{2} + d\rho_{0}^{2} + \rho_{0}^{2} d\theta_{0}^{2} + dz_{0}^{2}$$

$$ds^{2} = -(1 - \omega^{2}\rho^{2}) dt^{2} + d\rho^{2} + \rho^{2} d\theta^{2} + 2\omega\rho^{2} d\theta dt + dz^{2} = -dt^{2} + dt^{2}$$

$$dt' = \frac{dt}{\gamma} - \omega\rho^{2}\gamma d\theta, \quad \gamma = \frac{1}{\sqrt{1 - \omega^{2}\rho^{2}}}$$

$$dt'^{2} = d\rho^{2} + \rho^{2}\gamma^{2} d\theta^{2} + dz^{2}$$

$$\frac{d\theta}{dt} = -\omega \rightarrow 1 + \rho^{2}\omega^{2}\gamma^{2} = \gamma^{2}, \quad dt = \gamma^{-1} dt' \text{ (particle at rest in the lab as seen from the ring )}$$

 $\sim$  Calculate spatial Gauss curvature using Riemann and Ricci tensors (N. Rosen, PR, 1943)  $\approx -\frac{3\gamma^4}{r^2}$ 

The beam can locally be flat (clock hypothesis) but, being an extended object, with (negative) curvature it is subject to the GW *at large*: every bunch is considered a particle in a rotating ring and a GW affects the bunch wrt the nominal orbit of the collider which is a (forced) geodesic line.

#### Gravitational wave traveling towards you through different planes

Gravitational wave – elliptically polarized



EM waves study areas:

- Transmission ٠
- Absorption ٠
- Reflection •
- Refraction •
- Diffraction
- Interference •
- Polarization .
- Dispersion •



Transition to QM, photons, gravitons, QED **Extended GW astrophysics** 

Amplitude, h Frequency, f Wavelength,  $\lambda$ Speed, c  $f \lambda = c$ 



Markus Pössel, "The wave nature of simple gravitational waves" in: *Einstein Online* **Band 02** (2006), 02-1008 https://www.einstein-online.info/en/spotlight/gw\_waves/

## Interaction of a GW with the LHC beam I

- Charge and mass densities are constant
- EM fields impose curvature on the rotating ring and GWs cause local deviations from the steady state well correlated all around the ring
- > Consider a monochromatic («monogravtic») GW

$$\begin{aligned} h_{xx} &= -h_{yy} = h_{+} e^{-i\omega_{\rm g}(t-z)} \\ h_{xy} &= -h_{yx} = h_{\rm x} e^{-i\omega_{\rm g}(t-z)} \end{aligned}$$

> Which give the respective non-zero elements of the Riemann curvature tensor

$$R_{xtxt} = -R_{ytyt} = -\frac{1}{2}h_{xx,tt}$$
$$R_{xtyt} = R_{ytxt} = -\frac{1}{2}h_{xy,tt}$$

> For the simple case  $h_x = 0$ , z = 0,

$$\begin{aligned} \ddot{x} &= -R_{xtjt}x^{j} = -\frac{1}{2}\omega_{g}^{2}h_{+}x \ e^{-i\omega_{g}(t-z)}\\ \ddot{y} &= -R_{ytjt}x^{j} = +\frac{1}{2}\omega_{g}^{2}h_{+}y \ e^{-i\omega_{g}(t-z)}\\ \ddot{z} &= 0\end{aligned}$$

> Driving radial acceleration due to the GW  $\ddot{\xi} = \frac{x}{\rho_c} \ddot{x} + \frac{y}{\rho_c} \ddot{y} = -\frac{1}{2}\omega_g^2 \rho_c h_+ \cos 2\theta e^{-i\omega_g t}$ 

 $\succ \ddot{\xi}$  is the relative radial acceleration due to the GW bunch wrt the nominal orbit -> Equation



## Interaction of a GW with the LHC beam II

- > Simple ring with natural frequency of vibration  $\omega_0$  and dampint time  $\tau_0 ~\gg~ 1/\omega_0$
- > Equation of motion for a bunch in the beam (see Goldtein, LL)

$$\ddot{\xi} + \dot{\xi}/\tau_0 + \omega_0^2 \xi = -\frac{1}{2} \omega_g^2 \rho_c h_+ \cos 2\theta e^{-i\omega_g t}$$

$$\xi = \frac{1}{2} \frac{\omega_g^2 \rho_c h_+ \cos 2\theta e^{-i\omega_g t}}{\omega_g^2 - \omega_0^2 + i\omega_g/\tau_0} = \alpha_g \cos 2\theta \cos \omega_g t$$

$$\alpha_g = \frac{1}{2} \frac{\omega_g^2 \rho_c h_+}{\omega_g^2 - \omega_0^2 + i\omega_g/\tau_0}$$

$$\gg \omega_g \approx \omega_0, \quad \alpha_g^{res} = \frac{1}{2} Q \rho_c h_+$$

➤ From the energy absorved and dissipated by the beam due to the GW (see articles) a cross section can be calculated

 $\sigma_{\rm res} = \pi \rho_c^2 M \omega_{\rm g} Q$ > In the lab. :  $\xi = \alpha_g \cos \left[ 2 \left( \theta_0 - \omega t_0 \right) \right] \cos \omega_{\rm g} t_0$ 

- > Need research on Q large values to improve the potential for observation
- There is also a change in the arrival time of a bunch. Need research on BTM (*Beam time measurements*).

## Measurement of the effect

- $\succ$  Last report indicates LHC BPM resolution of 1  $\mu$ m
- $\succ$  Streak cameras (rev by rev observation images of short light pulses) to see the time decay
- Synchronised BPMs storing the information long enough for short-range logic decisions

## > Trigger system

р

LHC 500 pickups used to form a closed orbit measurement

- $\succ$  Frequency power spectrum studies and Fourier on line
- > Computer simulations MC programs to create wavelets for possible templates and compare them with real data.
- > Add LHC to other observatories (bi-directional) such as gamma rays, LIGO, neutrinos. Be part of the network
- $\succ$  The all beam reconstruction gives the trigger, the adjacent BPMs outputs the relative motion of adjacent bunches, which is the effect
- > Trigger LHC and SPS coincidences to reduce noise effects and use the fact that the beams rotate in opposite directions (need research on the











## **Comment on Noise**

- > Noise is more a crucial point in GWs detectors than any other domain (dogma)
- Signal small, never really seen, but inferred
- Beams are stable for many hours after injection, acceleration and steering to nominal energy, most noise sources are known, such as
  - Parasitic currents
  - Thermal behaviour
  - Sporadic changes in magnetic fields of magnets
- ➤ Geological sources
- Deeper insight and research needed

## **Highlights from the ARIES APEC workshop SRGW2021**

SRGW2021

- ➤ Workshop on virtual space Feb. 2 to Mar. 18 2021
- ➤ arXiv:2015.00992v1 Storage Rings and GWs: Summary and Outlook (Ellis, Zimmermann)
- Storage-ring experts, accelarator scientists, experimental particle physicists, theoretical physicists, astrophysicits, members of the GW community.
- > 115 participants
- ➤ Highlights:
  - Storage rings sensitivity to tides and large-scale perturbations, earthquakes, noise examples from LEP and LHC (*Wenninger*)
  - Ground vibration (*Deng*)
  - Response of a SR beam to a GW (Oide)
  - Detection of millihertz GW using SR (Rao, Bruggen, Liske)
  - SR as detectors for relic GW background (Ivanov, Kobushkin, Wellenzohn)
  - GW at particle SRs (D'Agnolo)
  - Gravitational synchrotron radiation from SRs (Chen; Jowett)
  - GW detection in SRF cavity (Berlin, D'Agnolo, Ellis)
  - Atom interferometer to search for ultralight dark matter and GW at CERN (Buchmuller, Ellis)



Frequency / Hz

#### Conclusion

«The prospects of using SRs as GWs detectors or sources are fascinating, and the opportunities for using CERN's technical infrastructure to add GW physics to its Physics Beyond Colliders programme are too interesting to be ignored. « (*J. Ellis*)

A group, having the BPMs and machine experts working on GWs has still to be formed.

## LHC long term Schedule





Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning/magnet training

## Historical background (see Øyvind Grøn, Oslo)

**Problem:** Is an observer in a frame of reference on a ring with constant radial accelaration in hyperbolic motion?

Ehrenfest paradox (1909): 
$$\frac{\text{circumference}}{\text{diameter}} = \frac{2\pi R \sqrt{1 - (\omega R)^2/c^2}}{2R} = \pi \sqrt{1 - (\omega R)^2/c^2}.$$



 $r = r', v = \omega r, C = 2 \pi r > C' = 2 \pi r' \otimes$ 

Einstein: The rotating disk is not Euclidean, GR is born (see Gorn @ Oslo).



In GR, the quadrupole formula describes the rate at which gravitational waves are emitted from a system of masses based on the change of the mass quadrupole moment.

The spatial part of the trace reversed perturbation of the metric, i.e. the gravitational wave, is given by

$$ar{h}_{ij}(t,r)=rac{2G}{c^4r}\ddot{I}_{\,ij}(t-r/c),$$

with the traceless part of the mass quadrupole moment

$$I_{ij}^T = \int 
ho({f x}) \left[r_i r_j - rac{1}{3} r^2 \delta_{ij}
ight] d^3 r,$$

The total energy (luminosity -> gravitosity) carried away by gravitational waves is

$$rac{dE}{dt} = \sum_{ij} rac{G}{5c^5} igg( rac{dI_{ij}^T}{dt^3} igg)^2$$

## App. Quadrupole formula