

JOHANNES GUTENBERG UNIVERSITAT MAINZ

What are Axions?

Very likeable

Very popular (none available at present)

[https://www.particlezoo.net/collections/all]

What are Axions?

• The QCD Axion was postulated by Peccei and Quinn (1977) in their theory to solve the strong CP problem

What are Axions?

• The QCD Axion was postulated by Peccei and Quinn (1977) in their theory to solve the strong CP problem

Coupling:
$$g_i \propto rac{1}{f_a}$$
 $g_i \propto m_a$

PQ potential

[J. Ellis et al.: <u>arXiv.org:2105.01406</u>]

• Before QCD phase transition

- Exact symmetry
 - Spontaneously broken
 - Massless goldstone boson

Science Coffee seminar - Lund

• After QCD phase transition (Color anomaly N=4)

- Approximate symmetry
 - U(1) symmetry explicitly broken by color anomalies.
 - Restores CP symmetry
 - Axion gains mass

Couplings of the QCD Axion

- Axions couple to quarks by definition
- Axions also couple to **photons**
 - Can mix with pi0
- May couple to other SM particle

• Two benchmark models:

• KSVZ: Heavy, electrically neutral, quarks carrying PQ charge

• DFSZ:

Quarks carry PQ charge, additional Higgs doublet needed

Axion Like Particles

- Dropping requirement to solve strong CP problem:
 - No strict mass coupling strength relation
 - Vast parameter space opens up
- Any new pseudo-scalar particle:
 - Qualitatively similar properties to QCD Axion Axion Like Particle (ALP)

HYPOTHETICAL ELEMENTARY PARTICLE

LITTLE INTERACTION WITH REGULAR MATTER

MAY CONVERT INTO PHOTONS IN A MAGNETIC FIELD

NAMED BY ME, PHYSICIST FRANK WILCZEK

[https://www.symmetrymagazine.org/article/the-other-dark-matter-candidate]

Science Coffee seminar - Lund

MEANT TO

SOLVE STRUNG CP PROBLEM

DARK

Axion Like Particles

- Dropping requirement to solve strong CP problem:
 - No strict mass coupling strength relation
 - Vast parameter space opens up
- Any new pseudo-scalar particle:
 - Qualitatively similar properties to QCD Axion Axion Like Particle (ALP)
- ALPs appear in many extension to the SM
 - Any new symmetry breaking 'Higgs'-like field requires additional (pseudo)-scalar particles
 - e.g. SUSY, GUT
 - String theories:
 - Any theory predictions extra dimensions leads to the existence of ALPs

Axion Like Particles

- Dropping requirement to solve strong CP problem:
 - No strict mass coupling strength relation
 - Vast parameter space opens up
- Any new pseudo-scalar particle:
 - Qualitatively similar properties to QCD Axion Axion Like Particle (ALP)
- ALPs appear in many extension to the SM
 - Any new symmetry breaking 'Higgs'-like field requires additional (pseudo)-scalar particles
 - e.g. SUSY, GUT
 - String theories:
 - Any theory predictions extra dimensions leads to the existence of ALPs

- Contributes to $(g-2)_{\mu}$
 - Debated in literature if it helps to solve the (g-2)_µ discrepancy

• Axions could be Dark Matter!

- Axions follow Bose-Einstein statistics
- Ensemble of light axions: macroscopic, wave-like behaviour

• Acts as cold dark matter

- $m_a > 10^{-22}$ eV, otherwise no structure formation possible
- QCD axions:
 - $m_a < 2 \cdot 10^{-2}$ eV from neutrino flux of SN1987A
- No upper bound on mass of ALPs

Science Coffee seminar - Lund

- Axions follow Bose-Einstein statistics
- Ensemble of light axions: macroscopic, wave-like behaviour

• Acts as cold dark matter

- $m_a > 10^{-22}$ eV, otherwise no structure formation possible
- QCD axions:
 - $m_a < 2 \cdot 10^{-2}$ eV from neutrino flux of SN1987A
- No upper bound on mass of ALPs
- Assuming all of DM is QCD Axions: Predict it's mass
 - Depends on production mechanism
 - Generation in strings and domain walls
 - Computationally difficult:
 - no ab initio calculation possible model dependent results

Kristof Schmieden

Science Coffee seminar - Lund

- Axions follow Bose-Einstein statistics
- Ensemble of light axions: macroscopic, wave-like behaviour

• Acts as cold dark matter

- $m_a > 10^{-22}$ eV, otherwise no structure formation possible
- QCD axions:
 - $m_a < 2 \cdot 10^{-2}$ eV from neutrino flux of SN1987A
- No upper bound on mass of ALPs
- Assuming all of DM is QCD Axions: Predict it's mass
 - Depends on production mechanism
 - Generation in strings and domain walls
 - Computationally difficult:
 - no ab initio calculation possible model dependent results

Kristof Schmieden

Kristof Schmieden

Parameter Space for ALPs

Science Coffee seminar - Lund

• Production modes (at the LHC):

Photon fusion

• Decay channels considered

Photons

Kristof Schmieden

Heavy axions - Collider Based Searches - Photons

- Production modes (at the LHC):
 - Photon fusion

Decay channels considered

Photons

Kristof Schmieden

• Relativistic nuclei are an intense source of (quasi-real) photons

Equivalent photon flux scales with Z⁴

• Pb beams at LHC are a superb source of high energy photons!

Heavy axions - Collider Based Searches - Photons

Kristof Schmieden

Heavy axions - Collider Based Searches - Photons

Kristof Schmieden

Science Coffee seminar - Lund

ATLAS HION-2018-19

Kristof Schmieden

- Limits on coupling would improve by factor 3
 - From 6.10⁻² to 2.10⁻³

Heavy axions - Collider Based Searches - Higgs decays

- pp → H vs. pp → ZH
 - 65 times larger cross section

- If ALP is a pseudo scalar:
 - Yukawa interaction expected
 - B-quark / tau final states interesting • Large branching fraction
 - µ final states experimentally clean

$$a \rightarrow bb$$

 $a \rightarrow \mu\mu$ 10x better mass resolution

Heavy axions - Collider Based Searches - Higgs decays

- pp → H vs. pp → ZH
 - 65 times larger cross section

Science Coffee seminar - Lund

Forward searches / beam dump experiments

Forward searches / beam dump experiments

• **FASER**: installation completed, data taking during LHC run-3

FASER detector

- 1.5-meter magnetized decay volume
- 2-meter magnetic spectrometer
 - Three tracking stations
- •Electromagnetic calorimeter
- Three scintillator stations for triggering, veto and precise timing
- Aperture (10 cm radius) and length strongly constrained by available

Forward searches / beam dump experiments

- Sensitivity: ~10 MeV < ma < ~100 MeV
- Several proposals for new experiments
- Similar physics reach to ALPs

Phys. Rev. D 99,

Light Axions

Light shining through wall experiments

- Idea:
 - Produce axions from laser photons
 - After optically tight wall:
 - Detect photons from axion conversion
 - Sensitivity: m_a < meV
- Challenges:
 - High power laser resonator with large dimensions
 - Large B-field
 - Very sensitive, noise free optical detectors

- ALPS-II (Any Light Particle Search):
 - 70W laser @ 1064nm -> 150kW stored in resonator
 - 122m long optical cavity: BL = 560 Tm
 - 12 x 5.3T SC dipole magnets
 - Detection: Transition Edge Sensors & Heterodyne receiver

Light Axions - Helioscopes

- Using the sun as axion source
- Detection of axions in magnetic field, tracking sun
 - Conversion photons in x-ray regime
 - Sensitivity: m_a < ~1 eV
 - Current result: CAST (CERN Axion Solar Telescope)
 - New developments: IAXO (International AXion Observatory)

Helioscopes

[arXiv:1401.3233]

Kristof Schmieden

Light Axions - Helioscopes

- 20m long toroid magnet
- 8 x 60cm bores for instrumentation
- Readout using x-ray telescopes and micro mega detectors

- 15m long dipole magnet
 1 x 5cm bores for instrumentation
- Readout using various x-ray detectors

Light Axions - Haloscopes - RF cavity based searches

- Axion conversion to photons in B-field
- Using RF resonators to enhance the signal
- Sensitivity: ~µeV meV
- 3 orders of magnitude in frequency:
 - Various designs of resonators & DAQ
 - Many experiments!

Typ signal power: 10-24W

Kristof Schmieden

• Depends on cavity material:

- High purity copper: ~5.10⁴
- Superconducting: difficult in high magnetic field!
 - 106
 - Achieved: 3.10⁵ (CAPP, non tunable)
 - Materials under study: Nb₃Sn, HTS materials (YBCO)

• Dielectric resonators (saphir): • Achieved: 9.10⁶ @ 8 T B-field (QUAX, non tunable)

- Superconducting: difficult in high magnetic field!

 - Materials under study: Nb₃Sn, HTS materials (YBCO)

- Achieved: 9.10⁶ @ 8 T B-field (QUAX, non tunable)
 - D. Ahn et. al (CAPP), ~7 GHz https://arxiv.org/abs/2002.08769
 - J. Golm et. al (RADES), ~8 GHz

https://arxiv.org/abs/2110.01296

• QUAX, ~10 GHz<u>arXiv:2201.04223</u>

• Increasing the cavities Q-factor:

• J. Golm et. al (RADES), ~8 GHz https://arxiv.org/abs/2110.01296

Kristof Schmieden

[source: https://github.com/cajohare/AxionLimits]

Light Axions - RF cavity based searches - Proposed experiments

- Increasing the cavities Q-factor:
 - Dielectric cylinders Quax's approach:
 - Shaping EM field to minimize losses in copper

Quax: arXiv:2201.04223

Increasing the Volume of the cavity

- Low frequency -> large size cavities:
 - KLASH: Cavity inside the KLOE magnet (0.6T)

[source: https://github.com/cajohare/AxionLimits]

Increasing the Volume of the cavity

- Low frequency -> large size cavities:
 - KLASH: Cavity inside the KLOE magnet (0.6T)

Kristof Schmieden

Increasing the Volume of the cavity

- Low frequency -> large size cavities:
 - KLASH: Cavity inside the KLOE magnet (0.6T)
 - https://arxiv.org/abs/1911.02427

Kristof Schmieden

- Use **higher order modes** in large R cavity
 - (ORGAN) TM₀₃₀ 26-27 GHz

https://doi.org/10.1007/978-3-319-92726-8_14

[source: https://github.com/cajohare/AxionLimits]

Light Axions - RF cavity based searches - High frequencies

- Creating a linear cavity using dielectric discs: MADMAX
- Exploiting interference effects
- Frequency range: 10-100 GHz

Kristof Schmieden

Eur. Phys. J. C 79 (2019) no.3, 186

[source: https://github.com/cajohare/AxionLimits]

Lower Readout noise

- Lower temperature: <100mK in dilution refrigerators
- Low noise amplifiers (ADMX):
 - Transistor based amplifiers: T_{noise} ~ 2-4 K
 - SQUID based readout:
 - Typical gain: 10 dB

 $T_{noise} \sim 100 \text{ mK}$

http://arxiv.org/abs/1105.4203v1

• Overcoming quantum limit of linear amplifiers

- Using squeezed states in cavity
- Using **q-bits** for single RF photon readout https://doi.org/10.1103/PhysRevLett.126.141302

[source: https://github.com/cajohare/AxionLimits]

Expectations on sensitivity for future experiments

Efforts in Mainz - SupAx setup

Kristof Schmieden

- Magnet bore: 89mm
 - Inner cryostat diameter: 50 mm
- Suppression of 300K noise from outside:
 - Attenuators on input lines @ 4K
- Isolator (Circulator) before Preamp
 - Reduction of residual RF reflection
- Cryo Preamp @ 4K, 10GHz:
 - Gain: 36 dB
 - Noise: 3.8K (0.06dB)

- Signal Power (in 1kHz bin):
 - 10⁻²³ W = -200 dBm
- Thermal Power (in 1kHz bin):
 - 4K: 10^{-19} W = -160 dBm
 - 0.1K: 10⁻²¹ W = -176 dBm

Kristof Schmieden

• Tec details:

- Pre-amp @ 10 GHz, 4K:
 - $T_{noise} = 3.8K (0.06dB)$
 - Gain = 36 dB
- Signal Power:
 - 4·10⁻²⁰ W = -164 dBm

- Pre-amp @ 10 GHz, 296K:
 - $T_{noise} = 58K$
 - Gain = 38 dB
- Signal Power:
 - 3·10⁻¹⁶ W = -126 dBm

- Signal Power (in 1kHz bin):
 - 10⁻²³ W = -200 dBm
- Thermal Power (in 1kHz bin):
 - 4K: 10⁻¹⁹ W = -160 dBm
 - 0.1K: 10⁻²¹ W = -176 dBm

Kristof Schmieden

• Tec details:

- Pre-amp @ 10 GHz, 4K:
 - $T_{noise} = 3.8K (0.06dB)$
 - Gain = 36 dB
- Signal Power:
 - 4·10⁻²⁰ W = -164 dBm

- Pre-amp @ 10 GHz, 296K:
 - $T_{noise} = 58K$
 - Gain = 38 dB
- Signal Power:
 - $3 \cdot 10^{-16} \text{ W} = -126 \text{ dBm}$

Statistical Noise -> reduce by **averaging**

- Signal Power (in 1kHz bin):
 - 10⁻²³ W = -200 dBm
- Thermal Power (in 1kHz bin):
 - 4K: 10^{-19} W = -160 dBm
 - 0.1K: 10⁻²¹ W = -176 dBm

Kristof Schmieden

Statistical Noise -> reduce by **averaging**

- Real time acquisition:
 - 112 MS/s (= 56MS/s of IQ values)
 - Max. 40MHz bandwidth
 - IQ time series to app or file
 - Conversion from IF -> IQ in software

- Real time acquisition:
 - 112 MS/s (= 56MS/s of IQ values)
 - Max. 40MHz bandwidth
 - IQ time series to app or file
 - Conversion from IF -> IQ in software

Kristof Schmieden

- Example spectrum: **open RSA input**
 - 40MHz bandwidth
 - 2 second averaging
 - 4kHz RBW

- Example spectrum: test cavity at 4K
 - All preamps ON
 - Cavity resonance shape clearly visible

~20ms of data

- Averaging over several hours requires **stability**:
 - Freq.
 - Gain
 - Noise
- Environmental condition:
 - **Cavity**: Pressure, Temperature
 - **Readout**: Temperature, ageing
- Reflections:
 - Cause interference / beat frequencies
 - Noise scaling behaviour changed
 - Non-gaussian noise components

• Two approaches for data calibration:

- Calibration measurement with B-field OFF
 - Physics run with B-field ON normalized with calibration run
 - Offline averaging
 - Narrow band bump hunt for signal
- Requires long term stability of setup (~days)
 - Most likely not achievable

• Two approaches for data calibration:

- Calibration measurement with B-field OFF
 - Physics run with B-field ON normalized with calibration run
 - Offline averaging
 - Narrow band bump hunt for signal
- Requires long term stability of setup (~days)
 - Most likely not achievable

Baseline

- Physics run with B-field ON
 - Fit of cavity resonance curve
 - + Polynomial description of electronic gain variations
 - Repeat fit in regular chunks of data
 - Normalise data by fitted calibration
 - Offline averaging
 - Narrow band bump hunt for signal
- Requires stability over ~min
- Monitoring of drifts in DAQ for free
- Non-trivial modelling of signal path

Expected sensitivity

Scan rate: 1MHz/h

Tuning of cavities

- Aim: scan a large frequency range
 - Requires frequency tuning

Deformation of cavity

10.38 - 10.92 GHz - 5%

QUAX: arXiv:2004.02754

Kristof Schmieden

Science Coffee seminar - Lund

Movement of dielectric rods

2.45 - 2.65 GHz - 8%

CAPP: arXiv:1910.11591

Pressure change / gas chance

8.1 - 8.2 GHz - 1%

- Cavity within heat exchange gas
- Gas acts as dielectric
- Change in Pressure changes resonance frequency
- Few % tuning possible

Could RF cavities be used for something else?

Яq

$$\mathcal{L} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} = g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$$
$$\boldsymbol{j}_{\text{eff}} \supset g_{a\gamma\gamma} \partial_t a \mathbf{B}_0 \simeq \omega_a \theta_a \mathbf{B}_0$$

• Preferred mode: TE₀₁₀

Kristof Schmieden

- Gravitational Waves:
 - Always relativistic
 - Resulting E-field direction given by GW direction

• Effective signal current enters Maxwell equations:

 $\nabla \cdot \mathbf{E} = \rho_{\text{eff}} + \rho,$

• GW excites different mode compared to axion!

axion

• Preferred mode: TE₂₁₂

$$P_{\rm sig} = \frac{1}{2} Q \,\omega_g^3 \, V_{\rm cav}^{5/3} \, (\eta_n \, h_0 \, B_0)^2$$

Effective coupling to EM field, dependent on selected cavity mode

$$\eta_n \equiv \frac{\left| \int_{V_{\text{cav}}} d^3 \mathbf{x} \, \mathbf{E}_n^* \cdot \hat{\boldsymbol{j}}_{+,\times} \right|}{V_{\text{cav}}^{1/2} \left(\int_{V_{\text{cav}}} d^3 \mathbf{x} \, |\mathbf{E}_n|^2 \right)^{1/2}} ,$$

Kristof Schmieden

Kristof Schmieden

• Expecting competitive measurements w.r.t. Haystack

 10^{-19}

NB.: Only a personal selection of experimental approaches was shown

Kristof Schmieden

Science Coffee seminar - Lund

ALPs & Axions:

Theoretically well motivated — Intriguing candidate for Dark Matter — Huge parameter range Diverse array of experimental approaches

Advertisement: Wavy Dark Matter summer in Mainz

https://wavydarkmatter.org/

17TH PATRAS WORKSHOP ON AXIONS, WIMPS AND WISPS 08-12 August 2022

31.0705.08.2022	Ultralight Dark Matter searches Summer Sc (Physics Center Bad F
08.0812.08.2022	<u>17th Patras Workshop</u> (Johannes Gutenberg
15.0819.08.2022	<u>Wavy Dark Matter De</u> Workshop

Kristof Schmieden

Science Coffee seminar - Lund

<u>r - Scientific foundations and experimental</u> <u>chool</u> Honnef, Germany) <u>Scientific program</u>

p on Axions, WIMPs and WISPs J University in Mainz (JGU), Germany)

etection with Quantum Networks

(Mainz Institute for Theoretical Physics (MITP), Germany)

Axion Spektrum from the sun

Blackbody radiation in solar core in keV regime
Convert to axions in sun's magnetic field

• Axions mainly produced in core of sun

Light Axions - RF cavity based searches

- Integration time is defined by targeted SNR
- Null measurement with expected SNR 5.1 <=> 95% CL upper limit on $g_{a_{\gamma\gamma}}$

Cavity bandwidth depending on Q, typ: ~25kH

Main figure of merit: scanning speed

$$\frac{\partial \nu}{\partial t} \propto \frac{g_{a\gamma\gamma}^4}{m_a^2} \left(\frac{1}{SNR}\right)^2 \left(\frac{1}{k_b T_{sys}}\right)^2 B^4 V^2 Q$$

	11
	11
7	
	1.1

Light Axions - RF cavity based searches - Proposed experiments

- Medium frequencies:
 - Coupled cavities: CAPP-9T (3 GHz) https://doi.org/10.1103/PhysRevLett.125.221302

• High frequencies:

- Use higher order modes in large R cavity
 - (ORGAN) TM₀₃₀ 26-27 GHz
 - Need to introduce dielectric rings to keep coupling high https://doi.org/10.1007/978-3-319-92726-8_14

[source: https://github.com/cajohare/AxionLimits]

• Signal Power
$$P_{\rm sig} = \frac{1}{2} Q \omega_g^3 V_{\rm cav}^{5/3} (\eta_n h_0 B_0)^2$$

Effective coupling to EM field, dependent on selected cavity mode

$$\eta_n \equiv \frac{\left| \int_{V_{\text{cav}}} d^3 \mathbf{x} \, \mathbf{E}_n^* \cdot \hat{j}_{+,\times} \right|}{V_{\text{cav}}^{1/2} \left(\int_{V_{\text{cav}}} d^3 \mathbf{x} \, |\mathbf{E}_n|^2 \right)^{1/2}} ,$$

Heavy axions - Collider Based Searches

• Production modes (at the LHC):

Photon fusion

Gluon fusion

• Decay channels considered

Photons

Kristof Schmieden

Science Coffee seminar - Lund

Leptons

Invisible

Heavy axions - Collider Based Searches - Higgs decays

- pp → H vs. pp → ZH
 - 65 times larger cross section

- Event selection exploiting:
 - 4 particle invariant mass
 - relation between reconstructed axions
 - Usually MVA methods utilised to reduce background
- Axion mass reconstruction:
 - Easy with leptons in final state
 - Hadronic final states:
 - Worse mass resolution
 - Attempts to reconstruct mass using NN

Example: $H \rightarrow aa \rightarrow 2b2\mu$

- Background: Drell-Yan + jets, top
- Event selection (ATLAS):
 - using kinematic fit to optimise 4-object invariant mass
 - MVA method exploiting dijet and dimuon kinematics

• Event selection (CMS): • Defining chi2 variable based on relative mass differences

$$\chi_{\rm bb} = \frac{(m_{\rm bb} - m_{\mu\mu})}{\sigma_{\rm bb}}$$

$$\chi_{\rm h} = \frac{(m_{\mu\mu \rm bb} - m_{\rm h})}{\sigma_{\rm h}}$$

Kristof Schmieden

Example: $H \rightarrow aa \rightarrow 2b2\mu$

- Background: Drell-Yan + jets, top
- Event selection (ATLAS):
 - using kinematic fit to optimise 4-object invariant mass
 - MVA method exploiting dijet and dimuon kinematics

• Event selection (CMS): • Defining chi2 variable based on relative mass differences

$$\chi_{\rm bb} = \frac{(m_{\rm bb} - m_{\mu\mu})}{\sigma_{\rm bb}}$$

$$\chi_{\rm h} = \frac{(m_{\mu\mu \rm bb} - m_{\rm h})}{\sigma_{\rm h}}$$

Kristof Schmieden

Phys. Rev. D 105 (2022) 012006

CMS: <u>Phys. Lett. B 795 (2019) 398</u>

Local: 3.3 σ , Global: 1.7 σ @ m = 52 GeV

Photon collisions using proton - proton beams

- Scattered protons need to be tagged
 - Invariant di-photon mass depends on proton tagger position & LHC optics

•CMS & TOTEM:

- Measurement can be interpreted as ALP search
 - In progress

Kristof Schmieden

Science Coffee seminar - Lund

<u>CMS PAS EXO-18-014</u>

ALPs @ LHC: Mono - X signatures

inuvsible

0

- ALP invisible

 - Long lived
- Missing transverse energy typ. > 200 GeV
- No reconstruction of ALP mass
- Triggering

Jeeeee

C~

• Decay to invisible particles

ALPs @ LHC: Mono - X signatures

• Z/W + jet processes

• ALP invisible

• Decay to invisible particles • Long lived

- Missing transverse energy typ. > 200 GeV
- No reconstruction of ALP mass
- Final state particles: Triggering

• Largest backgrounds • ZZ, WZ

