The dark side of ALICE: from antinuclei interactions to dark matter searches in space

Laura Fabbietti Technische Universität München

Introduction

Cosmic ray antinuclei - unique dark matter probe

- Low background from astrophysical processes is expected
- •Need to determine exact primary and secondary fluxes, which requires precise knowledge of antinuclei production, propagation and annihilation

ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ Introduction

Predicted antinuclei fluxes near earth

[1] Physics Report 618, 1 (2016) [2] Phys. Rev. D 89, 076005 [2] Korsmeier et.al. <u>arXiv:1711.08465</u>

Kinetic Energy per Nucleon [GeV/n]

Introduction | ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ | Propagation using GALPROP Summary

Measurements of (anti-)nuclei production

JHEP 01 (2022) 106

JHEP 01 (2022) 106

This talk: annihilation of antinuclei and the impact on fluxes in space.

Space: the final frontier How can ALICE help the search for a dark matter signal in space?

Measure the production and annihilation of antinuclei >> this helps interpret measurements by

space bourne experiments, e.g.: AMS and GAPS

Annihilation: pieces of the puzzle

- Antinuclei (A \geq 2) σ_{inel} remained poorly known since the 70s – only 2 papers on d at high energies from '70, '71 [1-2]
- 3 years ago, ALICE started contributing to this field by measuring the inelastic cross sections of \overline{d} , \overline{t} and ${}^{3}\overline{He}$ [3-4]
- Studied the impact of these measurements on cosmic ray antinuclei
- This talk focuses mainly on A=3 results

[1] Binon et al. PLB 31 (1970) [2] Denisov et. al. Nuc. Phys. B 31 (1971) [3] PRL 125, 162001 (2020) [4] arxiv.org/2202.01549

Propagation using GALPROP Summary

Now

ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ Introduction

Current status of antinuclei inelastic cross sections

- Antiproton inelastic cross section is well known.
- Antideuteron inelastic cross section is poorly known at low energies.
- Antihelium/antitriton inelastic cross section has never been measured before.

→ Use ALICE to measure antinuclei inelastic cross sections!

[1] Phys. Rev. C 89, 054601 (2014) [2] Nuclear Physics B 31(2), 253 (1971)

Introduction | ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$

The ALICE experiment at CERN

- Excellent tracking and particle identification (PID) capabilities
- Most suitable detector at the LHC to study the physics of (anti)nuclei

Time Projection Chamber (TPC)

• Tracking, PID (dE/dx)

Time of Flight detector (TOF)

• PID (TOF measurement)

Transition Radiation Detector (TRD)

$_{el}(^{3}\overline{He})$ | Propagation using GALPROP | Summary

Introduction | ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ | Propagation using GALPROP | Summary

Use the LHC as an antimatter factory...

At LHC energies, particles and antiparticles are produced in almost equal amounts. \overline{p}/p ratio at mid-rapidity vs \sqrt{s} [1]

This talk has results from:

- High multiplicity pp collisions at $\sqrt{s} = 13$ TeV.
- Pb—Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.
- p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

Introduction | ALICE measurements of $\sigma_{inel}(^{3}\overline{He})$

... and the ALICE detector material as a target

- Antiparticles undergo annihilation while traveling through the detector material
- By quantifying this loss, we can measure the inelastic cross section of antinuclei!
- But: need to know our material budget very accurately

Introduction | ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$

... and the ALICE detector material as a target

- Antiparticles undergo annihilation while traveling through the detector material
- By quantifying this loss, we can measure the inelastic cross section of antinuclei!
- But: need to know our material budget very accurately

Details in <u>CERN public note</u>

The observables: antimatter-to-matter and TOF/TPC ratio

Antimatter-to-matter ratio

• Measure reconstructed ${}^{3}\overline{\text{He}}/{}^{3}\text{He}$ and compare with MC simulations

TOF-TPC-matching

• Measure reconstructed ${}^{3}\overline{\text{He}}_{TOF}/{}^{3}\overline{\text{He}}_{TPC}$ and compare with MC simulations

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

Propagation using GALPROP Summary

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

Propagation using GALPROP Summary

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

Propagation using GALPROP Summary

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

Propagation using GALPROP Summary

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

Propagation using GALPROP Summary

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

Propagation using GALPROP Summary

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction

Antideuteron inelastic cross section $\sigma_{inel}(d)$ on average ALICE detector material Hint of a steeper rise at low momentum

 σ_{inel} (b) ALICE $p-Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$ 5 $\langle Z \rangle = 8.5, \langle A \rangle = 17.4, |\eta| < 0.8$ $--\sigma_{inel}(\overline{d} + \langle A \rangle)$ Geant4 4 $----\sigma_{inel}(d + \langle A \rangle)$ Geant4 ---- Data (ITS+TPC) 3 $\sigma_{inel}(\overline{d} + \langle A \rangle) \pm 1\sigma$ $\sigma_{\text{inel}}(\overline{\mathbf{d}} + \langle \mathbf{A} \rangle) \pm 2\sigma$ 2 0 3 2 0 *p* (GeV/*c*)

ALI-PUB-490977

PRL 125, 162001 (2020)

ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ Introduction

Antitriton inelastic cross section

$\sigma_{inel}(t)$ on average ALICE detector material Good agreement with Geant4, but with significant uncertainties

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Propagation using GALPROP Introduction

⁵He inelastic cross section

 $\sigma_{inel}(^{3}\overline{He})$ on average ALICE detector material

 Good agreement between the measurements and the Geant4 parameterizations

ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ Propagation using GALPROP

parameterizations

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction **Recipe to cook antinuclei fluxes** $\chi + \overline{\chi} \rightleftharpoons f + \overline{f}, W^+ + W^-, \dots \rightleftharpoons \overline{p}, \overline{d}, \overline{He}, \gamma, \dots$ **Dark matter** annihilation and decays $p + p, p + He, He + He \rightleftharpoons \overline{p}, \overline{d}, \overline{He}, \gamma \dots$ Production of secondary anti³He

Summary

Implementation of antinuclei propagation in GALPROP

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction

Galprop

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \mathbf{div}(D_{xx}\mathbf{grad}\psi - \mathbf{V}\psi) + \frac{\partial}{\partial p}p^2 D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p}\left[\psi\frac{dp}{dt} - \frac{p}{3}(\mathbf{div} \cdot \mathbf{V})\psi\right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_r}$$
Source
Function
Propagation: diffusion, convection...
Fragmentation

Propagation can be constrained using proton and heavier nuclei cosmic ray measurements

[1] Boschini et al. ApJS 250 27 (2020) A. Strong, et. al. Nuclear and Particle Physics Proceedings, 297-299, 2018

Transport equation

ation, ion

ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ Introduction

Antinuclei source terms

• The source term for antinuclei from dark matter can be written as: $1(a^2(r))$

$$q(\mathbf{r}, E_{kin}) = \frac{1}{2} \frac{\rho_{\text{DM}(r)}}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) \frac{u}{dl}$$

Propagation using GALPROP

dN

 E_{kin}

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction

Antinuclei source terms

• The source term for antinuclei from dark matter can be written as:

$$q(\mathbf{r}, E_{kin}) = \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) \frac{d}{dl}$$

lN

 E_{kin}

This is the thermally averaged annihilation cross section. We can use $< \sigma v > = 2.6 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$ [1] Korsmeier et al, Phys. Rev. D. 97, 103011 (2018)

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction

Antinuclei source terms

• The source term for antinuclei from dark matter can be written as:

$$q(\mathbf{r}, E_{kin}) = \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) \frac{\sigma}{dt}$$

dN

This accounts for anti-tritons which will then decay into ${}^{3}\overline{\text{He}}$. $\epsilon \approx 1$

ALICE measurements of $\sigma_{\text{inel}}({}^{3}\overline{\text{He}})$ Introduction

Antinuclei source terms

• The source term for antinuclei from dark matter can be written as:

$$q(\mathbf{r}, E_{kin}) = \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) \frac{d}{dl}$$

- The final term is the spectra of produced antinuclei, normalized to each dark matter annihilation.
- This can be calculated using a coalescence model. [3]

Propagation using GALPROP Summary

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ | Introduction

He source function: Cosmic rays + Interstellar medium

Relevant collision systems: pp, p-He, He-p, He-He

- Other collision types scaled (A_TA_P)^{2.2/3}

• Production cross section in pp collisions from [1] (EPOS LHC + event-by-event coalescence)

Solar environment effects

Solar magnetic field forms heliosphere which shields cosmic rays. Solar modulation is accounted for using the Force-Field approximation [1] with Fisk potential ϕ = 0.4 GV:

$$F_{mod}(E_{mod},\phi)=F(E)\frac{(E-Z\phi)^2-m_{^3He}^2}{E^2-m_{^3He}^2}~,~\text{where}~E_{mod}=E-Z\phi$$

[1] Gleeson, Axford, Astrophys. J. 154 (1968) 1011

Introduction | ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$

Inelastic interactions

ALICE measurements of σ_{inel} are on heavy targets with $\langle A \rangle = 17.4$ to 34.7 Need to be scaled for proton and helium targets (ISM)

- Obtain correction factor for Geant4 parameterization using ALICE measurements
- Use this correction factor for all targets, with additional 8% uncertainty on possible A scaling [1]

[1] Uzhinsky et al., Phys. Lett. B 705 (2011) 235

```
is with \langle A \rangle = 17.4 to 34.7
(ISM)
rization using ALICE measurements
additional 8% uncertainty on possible A scaling [1]
```


Results: ³He fluxes

Effect of various inelastic cross sections on ${}^{3}\overline{\text{He}}$ fluxes

Solar modulated flux shifts particles to lower energies

Uncertainties only from ALICE measurement on $\sigma_{\rm inel}$

Small compared to other uncertainties in the field!

Rather constant transparency of 50% for typical DM scenario and 25%-90% for background

• High transparency of the galaxy to ${}^{3}\overline{He}$ nuclei!

Transparency =
$$\frac{Flux(\sigma_{inel})}{Flux(\sigma_{inel}=0)}$$

Outside heliosphere

Results: ³He fluxes

Effect of various inelastic cross sections on ${}^{3}\overline{\text{He}}$ fluxes

Solar modulated flux shifts particles to lower energies

Uncertainties only from ALICE measurement on $\sigma_{\rm inel}$

Small compared to other uncertainties in the field!

Rather constant transparency of 50% for typical DM scenario and 25%-90% for background

• High transparency of the galaxy to ${}^{3}\overline{He}$ nuclei!

Transparency =
$$\frac{Flux(\sigma_{inel})}{Flux(\sigma_{inel}=0)}$$

 $_{rel}(^{3}\overline{\text{He}})$ | Propagation using GALPROP | Summary

Near earth

ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ Propagation using GALPROP Introduction Summary

Summary and outlook

Analysis of raw reconstructed \overline{p}/p , \overline{d}/d , \overline{t}/t and $^{3}\overline{He}/^{3}He$ ratios and ${}^{3}\overline{\text{He}}_{TOF}/{}^{3}\overline{\text{He}}_{TPC}$ ratio

• Measurement of σ_{inel} via comparison with detailed ALICE Monte Carlo simulations using Geant4

First low energy measurement of the antideuteron inelastic cross section

Paper: <u>PRL 125, 162001 (2020)</u>

ALICE measurements of $\sigma_{inel}({}^{3}\text{He})$ Introduction

Summary and outlook

Analysis of raw reconstructed \overline{p}/p , \overline{d}/d , \overline{t}/t and $^{3}\overline{He}/^{3}He$ ratios and ${}^{3}\overline{\text{He}}_{TOF}/{}^{3}\overline{\text{He}}_{TPC}$ ratio

• Measurement of σ_{inel} via comparison with detailed ALICE Monte Carlo simulations using Geant4

First low energy measurement of the antideuteron inelastic cross section

Paper: PRL 125, 162001 (2020)

First measurement of the ${}^{3}\overline{He}$ inelastic cross section

Paper accepted by Nature Physics: <u>arxiv.org/2202.01549</u>

Propagation using GALPROP

ALICE measurements of $\sigma_{inel}({}^{3}\text{He})$ Introduction

Summary and outlook

Analysis of raw reconstructed \overline{p}/p , \overline{d}/d , \overline{t}/t and $^{3}\overline{He}/^{3}He$ ratios and ${}^{3}\overline{\text{He}}_{TOF}/{}^{3}\overline{\text{He}}_{TPC}$ ratio

• Measurement of σ_{inel} via comparison with detailed ALICE Monte Carlo simulations using Geant4

First low energy measurement of the antideuteron inelastic cross section

• Paper: <u>PRL 125, 162001 (2020)</u>

First measurement of the ${}^{3}\overline{He}$ inelastic cross section

Paper accepted by Nature Physics: <u>arxiv.org/2202.01549</u>

First measurement of the antitriton inelastic cross section

Propagation using GALPROP

Introduction | ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$

Summary and outlook

Analysis of raw reconstructed \overline{p}/p , \overline{d}/d , \overline{t}/t and ${}^{3}\overline{He}/{}^{3}He$ ratios and ${}^{3}\overline{He}_{TOF}/{}^{3}\overline{He}_{TPC}$ ratio

- Measurement of σ_{inel} via comparison with detain ALICE Monte Carlo simulations using Geant4

First low energy measurement of the antideuteron inelastic cross section

• Paper: <u>PRL 125, 162001 (2020)</u>

First measurement of the ${}^{3}\overline{\text{He}}$ inelastic cross section

Paper accepted by Nature Physics: <u>arxiv.org/2202.01549</u>

First measurement of the antitriton inelastic cross section

Effect of σ_{inel} measurements:

• Transparency of the galaxy to ${}^{3}\overline{\text{He}}$ from different sources

TIM Back-up slides

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction Propagation using GALPROP Results

Particle identification in TPC and TOF

• TOF measurement
$$\beta = -\frac{v}{c}$$
, $p = \gamma\beta mc$ -> ma

ALICE material budget

ALICE material budget at mid-rapidity [1]:

- Beryllium beam pipe (~0.3% X_0)
- ITS (~8% X₀)
- **TPC (~4%** X_0)
- **TRD (~25%** X₀)
- **Space frame (~20%** X_0 between TPC and TOF)

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction

Raw primary antiproton-to-proton ratio

Raw primary \overline{p}/p ratio:

- Higher loss of antiprotons in detector material
- Step at 0.7 GeV/c due to additional detector material
- Monte Carlo simulation:
- Detailed simulations of the ALICE detector performance
- **Propagation with Geant4**

Agreement between data and MC confirms the correctness of the procedure.

ALICE measurements of $\sigma_{inel}(^{3}\overline{He})$ Propagation using GALPROP Introduction Summary

Antiproton inelastic cross section

 $\sigma_{inel}(\overline{p})$ on average ALICE detector material. Good agreement with Geant4 parameterization.

Introduction | ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ | Propagation using GALPROP | Summary

Antiproton inelastic cross section

 $\sigma_{inel}(\overline{p})$ on average ALICE detector material. Good agreement with Geant4 parameterization.

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Propagation using GALPROP Introduction Summary

Antideuteron inelastic cross section

 $\sigma_{inel}(d)$ on average ALICE detector material. Hint of a steeper rise at low momentum.

ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ Propagation using GALPROP Introduction

Antideuteron inelastic cross section

 $\sigma_{inel}(d)$ on average ALICE detector material. Hint of a steeper rise at low momentum.

Introduction | ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ | Propagation using GALPROP | Summary

Comparison of inelastic cross sections for A=3

Results are compatible within uncertainties.

Comparison of pp and p-Pb systems

Comparison of raw primary antiparticle-to-particle ratio in p-Pb and pp collisions.
➡Consistent with the difference expected from primordial antimatter-to-matter ratio.
➡The cross section measurements are independent of the collisions system, as expected.
➡Analysis method is consistent.

Variations of σ_{el} with simple Geant4 model

Vary each σ_{el} by ±20% in all combinations and check the final ratio

- σ_{el} contributes to scattering effects in ITS, TPC and TRD material
- Only a minor effect on the ratio ($\leq 1\%$ for \overline{p} / p , $\leq 2\%$ for \overline{d} / d)

For final results: cross-check the variations with full ALICE MC simulations

nd check the final ratio FPC and TRD material / p, ≲2% for ₫ / d)

Parameterisations used in GEANT4

Direct Glauber calculations in GEANT4 in a run-time mode are too heavy \rightarrow parametrise Glauber calculations with [1]:

$$\sigma_{hA}^{tot} = 2\pi R_A^2 \ln\left[1 + \frac{A\sigma_{hN}^{tot}}{2\pi R_A^2}\right] \qquad \sigma_{BA}^{tot} = 2\pi \left(R_B^2 + R_A^2\right) \ln\left[1 + \frac{BA\sigma_{NN}^{tot}}{2\pi \left(R_B^2 + R_A^2\right)}\right] \\ \sigma_{hA}^{in} = \pi R_A^2 \ln\left[1 + \frac{A\sigma_{hN}^{tot}}{\pi R_A^2}\right], \qquad \sigma_{BA}^{in} = \pi \left(R_B^2 + R_A^2\right) \ln\left[1 + \frac{BA\sigma_{hN}^{tot}}{\pi \left(R_B^2 + R_A^2\right)}\right],$$

 R_A cannot be directly connected with known values due to some simplifications. Use equations as a determination of R_A having calculated σ_{hA} and σ_{BA} with Glauber

For total cross-section:

 $\bar{p}A R_A = 1.34A^{0.23} + 1.35/A^{1/3}$ (fm), $\bar{d}A R_A = 1.46A^{0.21} + 1.45/A^{1/3}$ (fm), $\bar{t}A R_A = 1.40A^{0.21} + 1.63/A^{1/3}$ (fm), $\bar{\alpha}A R_A = 1.35A^{0.21} + 1.10/A^{1/3}$ (fm).

[1] V.M. Grichine, Eur. Phys. J. C 62 (2009) 399, Nucl. Instrum. Methods B 267 (2009) 2460

For inelastic cross-section:

$$\bar{p}A R_A = 1.31A^{0.22} + 0.90/A^{1/3}$$
 (fm),
 $\bar{d}A R_A = 1.38A^{0.21} + 1.55/A^{1/3}$ (fm),
 $\bar{t}A R_A = 1.34A^{0.21} + 1.51/A^{1/3}$ (fm),
 $\bar{\alpha}A R_A = 1.30A^{0.21} + 1.05/A^{1/3}$ (fm).

- Production: constrained using collider measurements large uncertainty
- Annihilation: no experimental data at low energies unknown uncertainty

Uncertainty bands due to coalescence probability [1] 10^{-5}

Current predictions of antinuclei fluxes near earthe

Propagation: constrained using cosmic ray measurements - large uncertainty

Propagation in the galaxy

3

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \mathbf{div}(D_{xx}\mathbf{grad}\psi - \mathbf{V}\psi) + \frac{\partial}{\partial p}p$$

2

- 1 source function: PRIMARY OR SECONDARY
- ² diffusion
- convection 3
- 4 diffusive reacceleration momentum losses:
 - ⁵ via ionisation and bremsstrahlung
 - 6 adiabatic
- annihilation 7

Work of L. Šerkšnytė.

10⁻⁵

BESS-TeV

³*He* in cosmic rays?

 $^{3}\overline{He}$ in cosmic rays is expected to be exceedingly rare, since the secondary flux expected from cosmic ray collisions is negligible.

- In ALICE, ca. $1^{3}\overline{He}$ per 10⁶ high multiplicity pp events at $\sqrt{s}=13$ TeV.
- AMS has teased the observation of ${}^{3}\overline{He}$ candidates at conferences for the past few years, but the results have not been published yet.
- If published, even the observation of 1 event would signal new physics, because the flux cannot currently be explained by any considered production process (except an antistar within 1 parsec).
- This is why it is vital to measure these cross sections.

[1] Abe et. al., 2012, <u>arXiv:1201.2967</u> [astro-ph.CO] [2] Poulin et. al., 2018, <u>arXiv:1808.08961</u> [astro-ph.HE]

Physics of AMS on ISS: Complex anti-matter He, C, O

and S. Ting, 2018, [1] A. Kounine and ICHEP Conference

Ш

AMS ³He candidates

