

ALICE 3

a next-generation heavy-ion experiment for LHC Run 5 and beyond

Science Coffee Lund

October 4, 2022

Jochen Klein (CERN)

- High-luminosity era of the LHC
 - LHC programme
 - ALICE 2 (Run 3 and 4)
- Heavy-ion physics at the LHC
 - programme for Run 3 and 4
 - remaining questions beyond Run 4
- Next-generation upgrade → ALICE 3 for Run 5 & 6
 - detector concept
 - physics performance

Outline

European Particle Physics Strategy Update recommends full exploitation of the LHC, incl. heavy-ion programme

intermediate upgrade

major upgrade

4

Heavy-ion physics at the LHC

LHC for heavy-ion physics

- **Unique potential** \rightarrow high T, low μ_B , large HF yields
- Progress enabled by
 - increased luminosity
 - improved **detector performance**, e.g. vertexing, acceptance

QGP evolution from early phase onwards: temperature, chiral symmetry restoration, ... \rightarrow precision measurements of dilepton spectra

Lund science coffee - ALICE 3 | October 4, 2022 | jkl

Transport properties and thermalisation in the QGP → precision measurements of heavy-flavour probes

Transition of partons from the QGP to hadrons \rightarrow charmed baryons, exotic states

Quenching and connection to collectivity in small systems → systematic measurements of different collision systems

Onset of collective behaviour \rightarrow high-multiplicity pp collisions, intermediate systems (pA, OO)

Nuclear PDFs → Ultra-peripheral collisions, pA

Many more opportunities \rightarrow Low's theorem, BSM searches, ...

7

Prospects for Run 3 & 4

- Runs 3 and 4 will bring new insights, e.g.
 - time-averaged thermal radiation from the quark-gluon plasma
 - medium effects and hadrochemistry of single charm
 - collectivity from small to large systems
 - jet substructure

Understanding of QGP will remain incomplete after Run 3 and 4

Questions beyond Run 4

- Fundamental questions will remain open after LHC Run 3 & 4
 → next-generation heavy-ion programme for LHC Run 5 & 6
 - What is the nature of interactions between highly energetic quarks and gluons and the quark-gluon plasma?
 - To what extent do quarks of different mass reach thermal equilibrium?
 - How do quarks and gluons transition to hadrons as the quark-gluon plasma cools down?
 - What are the mechanisms for the restoration of chiral symmetry in the quark-gluon plasma?
 - Does the production of ultra-soft photons deviate from Low's theorem?

Measurements beyond Run 4

- Further progress relies on
 - precision measurements of dileptons
 - evolution of the quark gluon plasma
 - mechanisms of chiral symmetry restoration in the quark-gluon plasma
 - systematic measurements of (multi-)heavy-flavoured hadrons
 - transport properties in the quark-gluon plasma
 - mechanisms of hadronisation from the quark-gluon plasma
 - hadron correlations
 - interaction potentials
 - fluctuations

. . .

c/b

Electromagnetic radiation ($\propto T^2$)

Hadron momentum distributions, azimuthal anisotropy

Hadron abundances 'hadrochemistry'

Hadron correlations, fluctuations

Heavy-ion collisions exhibit rich phenomenology and give access to many more topics, e.g. collective effects, BSM searches, ...

- Heavy-flavour hadrons ($p_T \rightarrow 0$, wide η range) vertexing, tracking, hadron ID
- Dileptons (p_T ~0.1 3 GeV/c, M_{ee} ~0.1 4 GeV/c²) vertexing, tracking, lepton ID
- Photons (100 MeV/c 50 GeV/c, wide η range) electromagnetic calorimetry
- Quarkonia and Exotica ($pT \rightarrow 0$) muon ID
- Jets

tracking and calorimetry, hadron ID

- Ultrasoft photons (pT = 1 50 MeV/c) dedicated forward detector
- Nuclei

 \rightarrow identification of z > 1 particles

Lund science coffee - ALICE 3 | October 4, 2022 | jkl

Probes

Qualitative steps needed in detector performance and statistics

→ next-generation heavy-ion experiment

11

Novel and innovative detector concept

- **Continuous read-out and online processing**

Lund science coffee - ALICE 3 | October 4, 2022 | jkl

12

Component	Observables	η < 1.75 (barrel)	1.75 < η < 4 (forward)	Detectors
Vertexing	Multi-charm baryons, dielectrons	Best possible DCA resolution, $\sigma_{DCA} \approx 10 \ \mu m$ at 200 MeV/c	Best possible DCA resolution, $\sigma_{DCA} \approx 30 \ \mu m$ at 200 MeV/c	Retractable silicon pixel tra $\sigma_{pos} \approx 2.5 \ \mu m$, $R_{in} \approx 5 \ mm$, X/X ₀ $\approx 0.1 \ \%$ for first layer
Tracking	Multi-charm baryons, dielectrons	σ _p т / рт	~ 1-2 %	Silicon pixel tracker: $\sigma_{pos} \approx 10 \ \mu m$, $R_{out} \approx 80 \ cm$ X/X ₀ $\approx 1 \ \%$ / layer
Hadron ID	Multi-charm baryons	π/K/p so up to a f	Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: aerogel, $\sigma_{\theta} \approx 1.5 \text{ mra}$	
Electron ID	Dielectrons, quarkonia, χ _{c1} (3872)	pion rejection by 1000x up to ~2 - 3 GeV/c		Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: aerogel, $\sigma_{\theta} \approx 1.5 \text{ mra}$ possibly preshower detect
Muon ID	Quarkonia, χ _{c1} (3872)	reconstructior i.e. muons fr	n of J/Ψ at rest, om 1.5 GeV/c	steel absorber: L \approx 70 cm muon detectors
Electromagnetic calorimetry	Photons, jets	large ac	Pb-Sci calorimeter	
	χc	high-resolution segment		PbWO ₄ calorimeter
Ultrasoft photon detection	Ultra-soft photons		measurement of photons in p⊤ range 1 - 50 MeV/c	Forward Conversion Tracker based on silicon pixel sens

Detector requirements

- Pointing resolution $\propto r_0 \cdot \sqrt{x/X_0}$ (multiple scattering regime) → 10 µm @ p_T = 200 MeV/c
 - radius and material of first layer crucial
 - minimal radius given by required aperture: $R \approx 5 \text{ mm at top energy}$, $R \approx 15 \text{ mm at injection energy}$ → retractable vertex detector
- 3 layers within beam pipe (in secondary vacuum) at radii of 5 - 25 mm
 - wafer-sized, bent Monolithic Active Pixel Sensors
 - $\sigma_{pos} \sim 2.5 \ \mu m \rightarrow 10 \ \mu m \ pixel \ pitch$
 - 1 ‰ X₀ per layer

Vertexing

5x better than ALICE 2.1 (ITS3 + TPC)

14

- (leveraging on ITS3 activities)
- (thin walls to minimise material)
- (impedance, aperture, ...)

R&D challenges on mechanics, cooling, radiation tolerance

- **Relative** p_T resolution \propto $B \cdot I$ (limited by multiple scattering) \rightarrow ~1 % up to $\eta = 4$
 - integrated magnetic field crucial
 - overall material budget critical
- ~11 tracking layers (barrel + disks)
 - MAPS
 - $\sigma_{pos} \sim 10 \ \mu m \rightarrow 50 \ \mu m \ pixel \ pitch$
 - $R_{out} \approx 80 \text{ cm}$ and $L \approx 4 \text{ m} (\rightarrow \text{magnetic field integral } \sim 1 \text{ Tm})$
 - timing resolution ~100 ns (\rightarrow reduce mismatch probability)
 - material ~1 % X₀ / layer \rightarrow overall $X/X_0 = ~10$ %

Tracking

η

- MAPS on modules on water-cooled carbon-fibre cold plate
- carbon-fibre space frame for mechanical support
- R&D challenges on
 - powering scheme (\rightarrow material)
 - industrialisation

Outer Tracker

Total silicon surface ~60 m²

- Separation power \propto $\sigma_{\rm tof}$
 - distance and time resolution crucial
 - larger radius results in lower p_T bound
- 2 barrel + 1 forward TOF layers
 - outer TOF at $R \approx 85$ cm
 - inner TOF at $R \approx 19$ cm
 - forward TOF at $z \approx 405$ cm
- Silicon timing sensors ($\sigma_{TOF} \approx 20 \text{ ps}$)
 - R&D on monolithic CMOS sensors with integrated gain layer

Time of flight

Total silicon surface ~45 m²

Ring-Imaging Cherenkov

- → Cherenkov

Elm. calorimeter

Large acceptance ECal

→ sampling calorimeter (à la EMCal/DCal): e.g. O(100) layers (1 mm Pb + 1.5 mm plastic scintillator)

Additional high energy resolution segment at midrapidity or forward → PbWO₄-based

ECal module	Barrel sampling	Endcap sampling	Barrel high-precision
acceptance	$\Delta arphi = 2\pi, \ \eta < 1.5$	$\Delta \varphi = 2\pi,$ 1.5 < η < 4	$\Delta \varphi = 2\pi, \\ \eta < 0.33$
geometry	$R_{\rm in} = 1.15$ m, z < 2.7 m	0.16 < R < 1.8 m, z = 4.35 m	$R_{\rm in} = 1.15$ m, z < 0.64 m
technology	sampling Pb + scint.	sampling Pb + scint.	PbWO ₄ crystals
cell size	$30 \times 30 \text{ mm}^2$	$40 \times 40 \text{ mm}^2$	$22 \times 22 \text{ mm}^2$
no. of channels	30 000	6 0 0 0	20 000
energy range	$0.1 < E < 100 { m GeV}$	0.1 < E < 250 GeV	$0.01 < E < 100 { m GeV}$

- Hadron absorber outside of the magnet
 - ~70 cm non-magnetic steel

Muon chambers

- search spot for muons ~0.1 x 0.1 (eta x phi) \rightarrow ~5 x 5 cm² cell size
- matching demonstrated with 2 layers of muon chambers
 - scintillator bars with SiPM read-out
 - resistive plate chambers

Muon ID

Forward conversion tracker

- Thin tracking disks to cover $3 < \eta < 5$
 - few ‰ of a radiation length per layer
 - position resolution $< 10 \, \mu m$
- Research & Development
 - Large area, thin disks
 - Minimisation of material in front of FCT
 - Operational conditions

Layer	<i>z</i> (m)	r_{\min} (m)	r _{max} (m
0	-4.50	0.05	0.45
1	-4.54	0.05	0.45
2	-4.58	0.05	0.46
3	-4.62	0.05	0.46
4	-4.66	0.05	0.47
5	-4.70	0.05	0.47
6	-4.90	0.05	0.49
7	-5.10	0.05	0.51
8	-5.30	0.05	0.53
9	-5.50	0.05	0.55
10	-5.70	0.05	0.57

Silicon pixel sensors •

- thinning and bending of silicon sensors \rightarrow expand on experience with ITS3
- exploration of new CMOS processes \rightarrow first in-beam tests with 65 nm process
- modularisation and industrialisation

Silicon timing sensors

- characterisation of SPADs/SiPMs \rightarrow first tests in beam
- monolithic timing sensors → implement gain layer

Photon sensors

 monolithic SiPMs → integrate read-out

Detector mechanics and cooling

- mechanics for operation in beam pipe → establish compatible with LHC beam
- minimisation of material in the active volume \rightarrow micro-channel cooling

Strategic R&D

Unique and relevant technologies → Synergies with LHC, FAIR, EIC, ...

Electric conductivity ALI-PREL-320238

Chiral symmetry restoration: $\rho - a_1$ mixing

Heavy flavour diffusion and thermalisation in the QGP

- Beauty and charm flow
- Charm hadron correlations

Hadronisation, final state interactions in heavy-ion collisions

- Multi-charm baryon production: thermal processes/quark recombination
- Quarkonia and exotic mesons: dissociation and regeneration

Structure of exotic hadrons

- Momentum correlations (femtoscopy)
- Production yields dissociation in final state scattering
- Decay studies in ultra-peripheral collisions
- New nuclear states: charm nuclei
- **Susceptibilities**
- **Ultra-soft photons:** experimental test of Low's theorem
- **BSM searches**: ALPs, dark photons

. . . [CERN-LHCC-2022-009]

 T/T_c

Y. Kamiya et al. arXiv:2108.09644v1

Time evolution & chiral symmetry

Understand time evolution and mechanisms of chiral symmetry restoration \rightarrow high-precision measurements of dileptons, also multi-differentially → further reduced material; excellent heavy-flavour rejection

Invariant mass

Lund science coffee - ALICE 3 | October 4, 2022 | jkl

\rightarrow dip in thermal spectrum

Non-central collision

Interactions with the plasma generate azimuthal anisotropy v_2 :

$$\frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2(\varphi - \psi)$$

- Heavy quarks: access to quark transport at hadron level
- measurement of e.g. Λ_c and Λ_b v₂

Heavy flavour transport

• Expect beauty thermalisation slower than charm — smaller v_2 Need ALICE 3 performance (pointing resolution, acceptance) for precision

relaxation time $\tau_Q = (m_O/T) D_s$

DD azimuthal correlations

Charm azimuthal correlations 10 \leq coll, K = 1.5Nahrgang coll+rad, K = 0.81 [10 - 20] GeV 10^{-1} $\mathrm{d}N_{car{c}}/\mathrm{d}\Delta\phi$ Д $c\bar{c}, 0-20\%$ മ 10^{-2} (a)フ 10^{-3} 10^{-4} 10^{-5} $\mathbf{2}$ 3 5 $\Delta \phi$

Angular decorrelation directly probes QGP scattering

- Signal strongest at low pT
- Very challenging measurement: need good purity, efficiency and n coverage \rightarrow heavy-ion measurement only possible with ALICE 3

Lund science coffee - ALICE 3 | October 4, 2022 | jkl

С

Multi-charm baryons

Expected enhancement of multi-charm states strangeness tracking

Status and planning

- Physics case and detector concept developed in the course of 2020-2021 → Letter of Intent
 - endorsed by Collaboration Board in January 2022
 - **LHCC** review concluded in March 2022
 - \rightarrow very positive evaluation [LHCC-149]
 - Exciting physics program
 - Detector well matched with physics program and strategically interesting R&D opportunities
 - R&D activities have started
- Timeline
 - 2023-25: selection of technologies, small-scale proof of concept prototypes
 - **2026-27**: large-scale engineered prototypes → Technical Design Reports
 - 2028-31: construction and testing
 - **2032**: contingency
 - **2033-34**: Preparation of cavern and installation of ALICE 3

Letter of intent for ALICE 3

VERSION 1

[CERN-LHCC-2022-009]

- ALICE 3 is needed to unravel the properties of the quark-gluon plasma Thermal radiation and chiral symmetry restoration

 - Hadronisation and nature of hadronic states
 - and much more ...
- **Innovative detector concept**
 - to meet the requirements for the ALICE 3 physics programme building on experience with technologies pioneered in ALICE
 - requiring R&D activities in several strategic areas

Thank you for your attention!

Conclusions

Backup

LHC experiments

→ evolution of LHC and the experiments

Probes and detector

- Heavy-flavour hadrons (p_T → 0, wide η range)
 w vertexing, tracking, hadron ID
- Dileptons (p_T ~0.1 3 GeV/c, M_{ee} ~0.1 4 GeV/c²)
 Ultrasoft photons (p_T = 1 50 MeV/c)
 w→ dedicated forward detector
- Photons (100 MeV/c 50 GeV/c, wide η range)
 electromagnetic calorimetry
- Quarkonia and Exotica ($p_T \rightarrow 0$)

• Jets

tracking and calorimetry, hadron ID

Nuclei

• identification of z > 1 particles

Installation of ALICE 3 around nominal IP2

- L3 magnet can remain, ALICE 3 to be installed inside
- Cryostat of ~8 m length, free bore radius 1.5 m, magnetic field configuration to be optimised

Running scenario

Baseline approach for heavy-ion programme

- maximise statistics for rare probes identify species best suited for physics programme
- 6 running years with 1 month / year with that species
- Complemented with high-rate **pp running** (3 fb⁻¹ / year) at 14 TeV
- Consider **special runs** (low B field, pp reference, small systems), also based on insights from Run 3 & 4

	optimistic scenario	0-0	Ar-Ar	Ca-Ca	Kr-Kr	In-In	Xe-Xe	Pb
Nucleon-nucleon	⟨L _{AA} ⟩ (cm ⁻² s ⁻¹)	9.5·10 ²⁹	2.0·10 ²⁹	1.9·10 ²⁹	5.0·10 ²⁸	2.3·10 ²⁸	1.6·10 ²⁸	3.3.
luminosity:	⟨L _{NN} ⟩ (cm-² s-1)	2.4 · 1032	3.3 · 1032	3.0 · 1032	3.0·10 ³²	3.0 · 1032	2.6·10 ³²	1. 4·
$\mathcal{X}_{NN} = A^{-} \cdot \mathcal{X}_{AA}$	L _{AA} (nb ⁻¹ / month)	1.6·10 ³	3.4·10 ²	3.1·10 ²	8.4 · 10 ¹	3.9·10 ¹	2.6·10 ¹	5.6
	ℒ _{NN} (pb-1 / month)	409	550	500	510	512	434	24

new ideas under study, e.g. charge states and bunch splitting

[https://indico.cern.ch/event/1078695/]

Strength of QGP effects (e.g. charm abundance, quenching, also background)

Rates and radiation

- Design to handle available heavy-ion luminosities, with current estimates hit rates similar across collision systems
- **First layer at 5 mm** \rightarrow challenging hit rates and radiation load: ~1.5 10¹⁵ 1 MeV n_{eq} / cm² per operational year (comparable to first layer in ATLAS/CMS)
- Moderate hit rates and radiation load in other layers, already at R = 20 cm (inner TOF) down to ~10¹² 1 MeV n_{eq} / cm² per operational year

		рр	Ar-Ar	Kr-Kr	Xe-Xe	Pb-Pb
	L _{AA} (cm ⁻² s ⁻¹)	3.0 · 10 ³²	3.2·10 ²⁹	8.5 · 10 ²⁸	3.3·10 ²⁸	1.2·10 ²⁸
	⟨L _{AA} ⟩ (cm ⁻² s ⁻¹)	3.0 · 10 ³²	2.0·10 ²⁹	5.0·10 ²⁸	1.6·10 ²⁸	3.3 · 10 ²⁷
	R _{hit} (cm ⁻² s ⁻¹)	9.4 · 10 ⁷	6.9·10 ⁷	5.3·10 ⁷	4.6·10 ⁷	3.5·10 ⁷
R = 0.5 cm	NIEL (1 MeV n _{eq} / cm ² / month)	1.8 ·10 ¹⁴	8.6 · 10 ¹³	6.0·10 ¹³	4.1 · 10 ¹³	1.9 ·10 ¹³
	TID (Rad / m)	5.8·10 ⁶	2.8·10 ⁶	1.9·10 ⁶	1.3·10 ⁶	6.1 · 10 ⁵
	R _{hit} (cm ⁻² s ⁻¹)	5.9·10 ⁴	4 . 3 · 10 ⁴	3.3·10 ⁴	2.8 ·10 ⁴	2.2 ·10 ⁴
R = 20 cm	NIEL (1 MeV n _{eq} / cm ² / month)	1.1 ·10 ¹¹	5.4 · 10 ¹⁰	3.7·10 ¹⁰	2.6·10 ¹⁰	1.2 ·10 ¹⁰
	TID (Rad / m)	3.6·10 ³	1.7·10 ³	1.2·10 ³	8.2·10 ²	3.8·10 ²
	R _{hit} (cm ⁻² s ⁻¹)	2.4 · 10 ³	1.7·10 ³	1.3·10 ³	1.1·10 ³	8.8·10 ²
R = 100 cm	NIEL (1 MeV n _{eq} / cm ² / month)	4.5·10 ⁹	2.1·10 ⁹	1.5·10 ⁹	1.0·10 ⁹	4.7·10 ⁸
	TID (Rad / m)	1.4·10 ²	6.9·10 ¹	4.8·10 ¹	3.3 · 10 ¹	1.5·10 ¹

Understand mass and time dependence as well as onset in small systems

- \rightarrow precision measurements, also with new probes and in intermediate systems
- \rightarrow statistics and new collision systems (OO, pO, also high-multiplicity pp)

Quenching

Run 3 (pp HM, OO, p-Pb)

37

Nature of exotic states

See Y. Kamiya et al. arXiv:2108.09644v1

- Study interaction between hadrons trough momentum correlation
- Carries information about existence
 of bound states

Lund science coffee - ALICE 3 | October 4, 2022 | jkl

DD* momentum correlation

- Characteristic sign-change between pp and Pb-Pb in case of bound T_{cc} state
- Effect clearly visible within experiment precision

le¥ 17), 2nd

t 4th order LQCD shows a deviation from Hadron Resonance Gas (HRG)

Low's theorem — soft photons

• Low's theorem: production of soft photons linked to charged final state (not to "blob")

$$\frac{\mathrm{d}N^{\gamma}}{\mathrm{d}^{3}\vec{k}} = \frac{\alpha}{(2\pi)^{2}} \frac{-1}{E_{gamma}} \int \left(\mathrm{d}^{3}\vec{p}_{1}\ldots\mathrm{d}^{3}\vec{p}_{N}\right) \left(\sum_{\mathrm{Particle}} \frac{\eta_{i}e_{i}\mathsf{P}_{i}}{\mathsf{P}_{i}\mathsf{K}}\right)$$

Observational question: Photon excess in association with hadrons seen in previous experiments (not in $e^+e^- \rightarrow \mu^+\mu^-$)

Observable: (ultra-)soft photons (p_T < 50 MeV/c) at forward rapidity

Lund science coffee - ALICE 3 | October 4, 2022 | jkl

Single event photon emission

$\mathrm{d}\textit{N}^{\mathrm{H}}$

Rapidity distribution signal and decay

S/B best at large rapidity, very low p_T

0.0

0.0

0.0

