Neutron - Dark Matter Connection: astrophysical consequences

Symphonie fantastique en cinq parties

Zurab Berezhiani

University of L'Aquila and LNGS
Seminar at the Lund Univ., 13 Sept. 2022

Contents

 partiesZurab Berezhiani

Movement I - canto espressivo Rêveries - Passions Dreams - Passions

Visible vs. Dark matter: $\quad \Omega_{D} / \Omega_{B} \sim 1$?

Visible matter from Baryogenesis $B(B-L) \& C P$ violation, Out-of-Equilibrium $\rho_{B}=n_{B} m_{B}, \quad m_{B} \simeq 1 \mathrm{GeV}, \eta=n_{B} / n_{\gamma} \sim 10^{-9}$ η is model dependent on several factors: coupling constants and CP-phases, particle degrees of freedom, mass scales and out-of-equilibrium conditions, etc.

- Sakharov 1967

Dark matter: $\quad \rho_{D}=n_{X} m_{X}$, but $m_{X}=$?, $\quad n_{X}=$? n_{X} is model dependent: DM particle mass and interaction strength (production and annihilation cross sections), freezing conditions, etc.

- Axion
- Neutrinos
- Sterile ν^{\prime}
- Mirror baryons
- WIMP
- WimpZilla
- $m_{a} \sim 10^{-5} \mathrm{eV} \quad n_{a} \sim 10^{4} n_{\gamma}-\mathrm{CDM}$
- $m_{\nu} \sim 10^{-1} \mathrm{eV} \quad n_{\nu} \sim n_{\gamma}-\operatorname{HDM}(\times)$
- $m_{\nu^{\prime}} \sim 10 \mathrm{keV} \quad n_{\nu^{\prime}} \sim 10^{-3} n_{\nu}$-WDM
- $m_{B^{\prime}} \sim 1 \mathrm{GeV} \quad n_{B^{\prime}} \sim n_{B}-$???
- $m_{X} \sim 1 \mathrm{TeV} \quad n_{X} \sim 10^{-3} n_{B}-\mathrm{CDM}$
- $m_{X} \sim 10^{14} \mathrm{GeV} \quad n_{X} \approx 10^{-14} n_{B \equiv} \mathrm{CDM}$

$S U(3) \times S U(2) \times U(1)+S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime}$

Regular world

Elementary Particles

Mirror world

- Two identical gauge factors, e.g. $S U(5) \times S U(5)^{\prime}$, with identical field contents and Lagrangians: $\quad \mathcal{L}_{\text {tot }}=\mathcal{L}+\mathcal{L}^{\prime}+\mathcal{L}_{\text {mix }}$
- Mirror sector $\left(\mathcal{L}^{\prime}\right)$ is dark - or perhaps grey? $\left(\mathcal{L}_{\text {mix }} \rightarrow\right.$ portals $)$
- MM is similar to standard matter, (asymmetric/dissipative/atomic) but realized in somewhat different cosmological conditions ($T^{\prime} / T \ll 1$)
- $G \rightarrow G^{\prime}$ symmetry $\left(Z_{2}\right.$ or $\left.Z_{2}^{L R}\right)$: no new parameters in \mathcal{L}^{\prime} spont. broken?
- Cross-interactions between O \& M particles
$\mathcal{L}_{\text {mix }}: \quad$ new operators - new parameters! dimited only by experiment! a

Quick overview ...

Parallel/mirror sector of particles as a duplicate of our $\mathrm{SM}: \mathrm{SM} \times \mathrm{SM}^{\prime}$ (or $S U(5) \times S U(5)^{\prime}$ or $E_{8} \times E_{8}^{\prime}$ or parallel branes \ldots or more sectors) - all our particles (e, $p, n, \nu, \gamma \ldots$) have dark M twins ($e^{\prime}, p^{\prime}, n^{\prime}, \nu^{\prime}, \gamma^{\prime} \ldots$) of exactly (or almost) the same masses

M matter is viable DM (asymmetric/baryonic/atomic/self-interacting/ dissipative etc. as ordinary (O) baryon matter) - but M sector must be colder than O sector: $T^{\prime} / T<0.2$ or so (BBN, CMB, LSS etc.)

- asymmetric reheating between the two sectors after inflation
- O matter mainly hydrogen ($\mathrm{H} 75 \%,{ }^{4} \mathrm{He} 25 \%$) while M matter mostly helium ($\mathrm{H}^{\prime} 25 \%,{ }^{4} \mathrm{He}^{\prime} 75 \%$) - first M stars are formed earlier than O stars, are bigger, helium dominated and end up in heavy $\mathrm{BH}: M \sim\left(10 \div 10^{2}\right) M_{\odot}$ (inferring $\sim 80 \%$ of DM in galactic halo and for the rest of $\sim 20 \%-M$ gas clouds, $\sim M_{\odot}$ stars etc.

There can exist interactions between O and M particles, e.g. photon kinetic mixing $\varepsilon F^{\mu \nu} F_{\mu \nu}^{\prime}$, some common gauge bosons, etc. Most interesting are the ones which violate baryon and lepton numbers between two sectors, and namely $B-L$ and $B^{\prime}-L^{\prime}$ which can co-generate baryon asymmetries in both sectors - and naturelly explain why the DM and baryon fractions are comparable, $\Omega_{B^{\prime}} / \Omega_{B} \simeq 5$ or so

... Quick overview

These interactions can induce mixing of neutral particles between two sectors, e.g. $\nu-\nu^{\prime}$ oscillations (M neutrinos $=$ sterile neutrinos)

Oscillation $n \rightarrow n^{\prime}$ can be very effective process, faster than the neutron decay. For certain parameters it can explain the neutron lifetime problem, 4.5σ discrepancy between the decay times measured by different experimental methods (bottle and beam), or anomalous neutron loses observed in some experiments and paradoxes in the UHECR detections $n \rightarrow n^{\prime}$ transition can have observable effects on neutron stars. It creates dark cores of M matter in the NS interiors, or eventually can transform them into maximally mixed stars with equal amounts of O and M neutrons

Such transitions in mirror NS create O matter cores. If baryon asymmetry in M sector has opposite sign, transitions $\bar{n}^{\prime} \rightarrow \bar{n}$ create antimatter cores which can be seen by Fermi LAT and explain the origin of mirror nuclei in cosmic rays seen by AMS-2
If neutron has mixings both with M neutron and M antineutron, then the neutron can be promptly transformed into the antineutron via travelling in M world, $n \rightarrow n^{\prime} / \bar{n}^{\prime} \rightarrow \bar{n}$. This can be tested in oscillation experiments with magnetic fields. If discovered, the cheap and ecologically clean machines become possible producing energy (almost) for free

$S U(3) \times S U(2) \times U(1) \quad$ vs. $\quad S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime}$

Two possible parities: with and without chirality change

Neutron - Dark Matter
Connection: astrophysical consequences
Symphoi fantastique en cinq parties

Zurab Berezhiani

Summary

fermions and anti-fermions :

$$
\begin{aligned}
& q_{L}=\binom{u_{L}}{d_{L}}, \quad \ell_{L}=\binom{\nu_{L}}{e_{L}=1 / 3} ; \quad \begin{array}{l}
u_{R}, d_{R}, \quad e_{R} \\
\mathrm{~L}=1
\end{array} \quad \mathrm{~B}=1 / 3 \quad \mathrm{~L}=1 \\
& \bar{q}_{R}=\binom{\bar{u}_{R}}{\bar{d}_{R}}, \quad \bar{\ell}_{R}=\binom{\bar{\nu}_{R}}{\bar{e}_{R}} ; \quad \bar{u}_{L}, \quad \bar{d}_{L}, \quad \bar{e}_{L} \\
& \mathrm{~B}=-1 / 3 \quad \mathrm{~L}=-1 \quad \mathrm{~B}=-1 / 3 \quad \mathrm{~L}=-1
\end{aligned}
$$

Mirror fermions and antifermions :

$$
\begin{aligned}
& q_{L}^{\prime}=\binom{u_{L}^{\prime}}{d_{L}^{\prime}}, \quad \ell_{L}^{\prime}=\binom{\nu_{L}^{\prime}}{e_{L}^{\prime}} ; \quad u_{R}^{\prime}, \quad d_{R}^{\prime}, \quad e_{R}^{\prime} \\
& B^{\prime}=1 / 3 \quad \mathrm{~L}^{\prime}=1 \quad \mathrm{~B}^{\prime}=1 / 3 \quad \mathrm{~L}^{\prime}=1 \\
& \bar{q}_{R}^{\prime}=\binom{\bar{u}_{R}^{\prime}}{\bar{d}_{R}^{\prime}}, \quad \bar{\ell}_{R}^{\prime}=\binom{\bar{\nu}_{R}^{\prime}}{\bar{e}_{R}^{\prime}} ; \quad \bar{u}_{L}^{\prime}, \bar{d}_{L}^{\prime}, \quad \bar{e}_{L}^{\prime} \\
& B^{\prime}=-1 / 3 \quad L^{\prime}=-1 \quad B^{\prime}=-1 / 3 \quad L^{\prime}=-1 \\
& \mathcal{L}_{\text {Yuk }}=F_{L} Y \bar{F}_{L} \phi+\text { h.c. } \quad \mathcal{L}_{\text {Yuk }}^{\prime}=F_{L}^{\prime} Y^{\prime} \bar{F}_{L}^{\prime} \phi^{\prime}+\text { h.c. } \\
& Z_{2}: \quad L(R) \leftrightarrow L^{\prime}\left(R^{\prime}\right): \quad Y_{u, d, e}^{\prime}=Y_{u, d, e} \quad B, L \leftrightarrow B^{\prime}, L^{\prime}
\end{aligned}
$$

- Sign of baryon asymmetries (BA)?

Neutron - Dark Matter Connection: astrophysical consequences
Sympho fantastique en cinq parties

Ordinary BA is positive: $\quad \mathcal{B}=\operatorname{sign}\left(n_{b}-n_{\bar{b}}\right)=1$

- as produced by (unknown) baryogenesis a la Sakharov!

Sign of mirror $\mathrm{BA}, \mathcal{B}^{\prime}=\operatorname{sign}\left(n_{b^{\prime}}-n_{b^{\prime}}\right)$, is a priori unknown!
Imagine a baryogenesis mechanism separately acting in O and M sectors!

- without involving cross-interactions in $\mathcal{L}_{\text {mix }}$
E.g. EW baryogenesis or leptogenesis $N \rightarrow \ell \phi$ and $N^{\prime} \rightarrow \ell^{\prime} \phi^{\prime}$
$Z_{2}: \rightarrow Y_{u, d, e}^{\prime}=Y_{u, d, e} \quad$ i.e. $\mathcal{B}^{\prime}=1$
- O and M sectors are CP -identical in same chiral basis! $\mathrm{O}=$ left, $\mathrm{M}=$ left
$Z_{2}^{L R}: \rightarrow Y_{u, d, e}^{\prime}=Y_{u, d, e}^{*} \quad$ i.e. $\mathcal{B}^{\prime}=-1$
- O sector in L-basis is identical to M sector in R -basis! $\mathrm{O}=$ left, $\mathrm{M}=$ right

In the absence of cross-interactions in $\mathcal{L}_{\text {mix }}$ we cannot measure sign of BA (or chirality in weak interactions) in M sector - so all remains academic ...
But switching on cross-interactions, violating B and B^{\prime} - but conserving say $B-B^{\prime}$ as neutron-mirror neutron mixing: $\epsilon n^{\prime} n+$ h.c.
$\mathcal{B}^{\prime}=-1 \quad \rightarrow \quad \bar{n}^{\prime} \rightarrow n \quad \mathrm{M}$ (anti)matter $\rightarrow \mathrm{O}$ matter
$\mathcal{B}^{\prime}=1 \quad \rightarrow \quad n^{\prime} \rightarrow \bar{n} \quad \mathrm{M}$ matter $\rightarrow \mathrm{O}$ antimatter

Chapter I

Symphoi fantastique en cinq parties

Zurab Berezhiani

Movement II
Waltz in 3/8-dolce e tenero

Un Bal

A Ball

B -L violation in O and M sectors: Active-sterile mixing

Neutron - Dark Matter
Connection: astrophysical consequences
Sympho fantastique en cinq parties

- $\frac{A}{M}(\ell \phi)(\ell \phi)(\Delta L=2)$ - neutrino (seesaw) masses $m_{\nu} \sim v^{2} / M$ M is the (seesaw) scale of new physics beyond EW scale.

- Neutrino -mirror neutrino mixing - (active - sterile mixing) L and L^{\prime} violation: $\frac{A}{M}(\ell \phi)(\ell \phi), \frac{A}{M}\left(\ell^{\prime} \phi^{\prime}\right)\left(\ell^{\prime} \phi^{\prime}\right)$ and $\frac{B}{M}(\ell \phi)\left(I \ell^{\prime} \phi^{\prime}\right)$

Mirror neutrinos naturally sterile neutrinos: $\left\langle\phi^{\prime}\right\rangle /\langle\phi\rangle \sim 10 \div 10^{2}$ ZB and Mohapatra 95, ZB, Dolgov and Mohapatra 96,

Co-leptogenesis: B-L violating interactions between O and M worlds

Neutron - Dark Matter
Connection: astrophysical consequences
Sympho fantastique en cinq parties
L and L^{\prime} violating operators $\frac{1}{M}(\ell \phi)(\ell \phi)$ and $\frac{1}{M}(\ell \phi)\left(\ell^{\prime} \phi^{\prime}\right)$ lead to processes $\ell \phi \rightarrow \bar{\ell} \bar{\phi}(\Delta L=2)$ and $\ell \phi \rightarrow \bar{\ell}^{\prime} \bar{\phi}^{\prime}\left(\Delta L=1, \Delta L^{\prime}=1\right)$

After inflation, our world is heated and mirror world is empty: but ordinary particle scatterings transform them into mirror particles, heating also mirror world.

- These processes should be out-of-equilibrium
- Violate baryon numbers in both worlds, $B-L$ and $B^{\prime}-L^{\prime}$
- Violate also CP, given complex couplings

Green light to celebrated conditions of Sakharov

Neutron - Dark Matter
Connection: astrophysical consequences Sympho fantastique en cinq parties

Zurab Berezhiani

Summary

Operators $\frac{1}{M}(I \bar{\phi})(I \bar{\phi})$ and $\frac{1}{M}(I \bar{\phi})\left(I^{\prime} \bar{\phi}^{\prime}\right)$ via seesaw mechanism heavy RH neutrinos N_{j} with Majorana masses $\frac{1}{2} M g_{j k} N_{j} N_{k}+$ h.c.

Complex Yukawa couplings $Y_{i j} l_{i} N_{j} \bar{\phi}+Y_{i j}^{\prime} l_{i}^{\prime} N_{j} \bar{\phi}^{\prime}+$ h.c.
Z_{2} (Xerox) symmetry $\rightarrow Y^{\prime}=Y$,
$Z_{2}^{L R}$ (Mirror) symmetry $\rightarrow Y^{\prime}=Y^{*}$

Co-leptogenesis: Mirror Matter as Dark Anti-Matter

Z.B., arXiv:1602.08599

Hot O World \longrightarrow Cold M World

Neutron - Dark Matter
Connection:
astrophysical
consequences
Sympho fantastique en cinq parties

Zurab Berezhiani

Summary

$$
\begin{aligned}
& \frac{d n_{\mathrm{BL}}}{d t}+(3 H+\Gamma) n_{\mathrm{BL}}=\Delta \sigma n_{\mathrm{eq}}^{2} \\
& \frac{d n_{\mathrm{BL}}^{\prime}}{d t}+\left(3 H+\Gamma^{\prime}\right) n_{\mathrm{BL}}^{\prime}=\Delta \sigma^{\prime} n_{\mathrm{eq}}^{2} \\
& \sigma(I \phi \rightarrow \bar{I} \bar{\phi})-\sigma(\bar{l} \bar{\phi} \rightarrow I \phi)=\Delta \sigma
\end{aligned}
$$

$$
\begin{aligned}
& \sigma\left(I \phi \rightarrow \bar{I}^{\prime} \bar{\phi}^{\prime}\right)-\sigma\left(\bar{I} \bar{\phi} \rightarrow I^{\prime} \phi^{\prime}\right)=-\left(\Delta \sigma+\Delta \sigma^{\prime}\right) / 2 \quad \rightarrow \quad 0 \quad(\Delta \sigma=0) \\
& \sigma\left(I \phi \rightarrow I^{\prime} \phi^{\prime}\right)-\sigma\left(\bar{I} \bar{\phi} \rightarrow \bar{I}^{\prime} \bar{\phi}^{\prime}\right)=-\left(\Delta \sigma-\Delta \sigma^{\prime}\right) / 2 \quad \rightarrow \quad \Delta \sigma \quad(0)
\end{aligned}
$$

$\Delta \sigma=\operatorname{Im} \operatorname{Tr}\left[g^{-1}\left(Y^{\dagger} Y\right)^{*} g^{-1}\left(Y^{\prime \dagger} Y^{\prime}\right) g^{-2}\left(Y^{\dagger} Y\right)\right] \times T^{2} / M^{4}$ $\Delta \sigma^{\prime}=\Delta \sigma\left(Y \rightarrow Y^{\prime}\right)$
$\operatorname{Mirror}\left(Z_{2}^{L R}\right): \quad Y^{\prime}=Y^{*} \quad \rightarrow \quad \Delta \sigma^{\prime}=-\Delta \sigma \quad \rightarrow \quad B>0, B^{\prime}>0$ Xerox $\left(Z_{2}\right): \quad Y^{\prime}=Y \quad \rightarrow \quad \Delta \sigma^{\prime}=\Delta \sigma=0 \quad \rightarrow \quad B, B^{\prime}=0$ If $k=\left(\frac{\Gamma}{H}\right)_{T=T_{R}} \ll 1$, neglecting Γ in eqs $\rightarrow \quad n_{B L}=n_{B L}^{\prime}$ $\Omega_{B}^{\prime}=\Omega_{B} \simeq 10^{3} \frac{J M_{P P} T_{R}^{3}}{M^{4}} \simeq 10^{3} \mathrm{~J}\left(\frac{T_{R}}{10^{11} \mathrm{GeV}}\right)^{3}\left(\frac{10^{13} \mathrm{GeV}}{M}\right)^{4}$ fantastique en cinq parties

Zurab Berezhiani

If $k=\left(\frac{\Gamma_{2}}{H}\right)_{T=T_{R}} \sim 1$, Boltzmann Eqs.

$$
\frac{d n_{\mathrm{BL}}}{d t}+(3 H+\Gamma) n_{\mathrm{BL}}=\Delta \sigma n_{\mathrm{eq}}^{2} \quad \frac{d n_{\mathrm{BL}}^{\prime}}{d t}+\left(3 H+\Gamma^{\prime}\right) n_{\mathrm{BL}}^{\prime}=\Delta \sigma n_{\mathrm{eq}}^{2}
$$

should be solved with Γ :

$D(k)=\Omega_{B} / \Omega_{B}^{\prime}, \quad x(k)=T^{\prime} / T$ for different $g_{*}\left(T_{R}\right)$ and Γ_{1} / Γ_{2}.
So we obtain $\Omega_{B}^{\prime}=5 \Omega_{B}$ when $m_{B}^{\prime}=m_{B}$ but $n_{B}^{\prime}=5 n_{B}$

- the reason: mirror world is colder

Chapter II

Symphoi fantastique en cinq parties

Zurab Berezhian

Movement III Adagio in 6/8

Scène aux champs ...

Scene in the country
B violating operators between O and M particles in $\mathcal{L}_{\text {mix }}$

Ordinary quarks $u, d \quad($ antiquarks $\bar{u}, \bar{d})$ Mirror quarks $u^{\prime}, d^{\prime} \quad\left(\right.$ antiquarks $\left.\bar{u}^{\prime}, \bar{d}^{\prime}\right)$

- Neutron -mirror neutron mixing - (Active - sterile neutrons)

$$
\frac{1}{M^{5}}(u d d)(u d d) \quad \& \quad \frac{1}{M^{5}}(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right)
$$

Oscillations $n \rightarrow \bar{n} \quad(\Delta B=2)$
Oscillations $n \rightarrow \bar{n}^{\prime} \quad\left(\Delta B=1, \Delta B^{\prime}=-1\right) \quad B+B^{\prime}$ is conserved

Neutron- antineutron mixing

Majorana mass of neutron $\epsilon\left(n^{T} C n+\bar{n}^{T} C \bar{n}\right)$ violating B by two units comes from six-fermions effective operator $\frac{1}{M^{5}}(u d d)(u d d)$

It causes transition $n(u d d) \rightarrow \bar{n}(\bar{u} \bar{d} \bar{d})$, with oscillation time $\tau=\epsilon^{-1}$ $\varepsilon=\langle n|(u d d)(u d d)|\bar{n}\rangle \sim \frac{\Lambda_{Q \mathrm{CD}}^{6}}{M^{5}} \sim\left(\frac{100 \mathrm{TeV}}{M}\right)^{5} \times 10^{-25} \mathrm{eV}$
Key moment: $n-\bar{n}$ oscillation destabilizes nuclei: $(A, Z) \rightarrow(A-1, \bar{n}, Z) \rightarrow(A-2, Z / Z-1)+\pi^{\prime} s$

Present bounds on ϵ from nuclear stability

$\varepsilon<1.2 \times 10^{-24} \mathrm{eV}$	\rightarrow	$\tau>1.3 \times 10^{8} \mathrm{~s}$	Fe, Soudan 2002
$\varepsilon<2.5 \times 10^{-24} \mathrm{eV}$	\rightarrow	$\tau>2.7 \times 10^{8} \mathrm{~s}$	O, SK 2015
$\varepsilon<7.5 \times 10^{-24} \mathrm{eV}$	\rightarrow	$\tau>0.9 \times 10^{8} \mathrm{~s}$	direct limit free n

Neutron - mirror neutron mixing

Neutron - Dark Matter
Connection: astrophysical consequences
Sympho fantastique en cinq parties

Zurab Berezhiani

Effective operator $\frac{1}{M^{5}}(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right) \quad \rightarrow \quad$ mass mixing $\epsilon n C n^{\prime}+$ h.c. violating B and B^{\prime} - but conserving $\quad B-B^{\prime}$

$\epsilon=\langle n|(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right)\left|\bar{n}^{\prime}\right\rangle \sim \frac{\Lambda_{\mathrm{QCD}}^{6}}{M^{5}} \sim\left(\frac{1 \mathrm{TeV}}{M}\right)^{5} \times 10^{-10} \mathrm{eV}$
Key observation: $n-\bar{n}^{\prime}$ oscillation cannot destabilise nuclei: $(A, Z) \rightarrow(A-1, Z)+n^{\prime}\left(p^{\prime} e^{\prime} \bar{\nu}^{\prime}\right)$ forbidden by energy conservation (In principle, it can destabilise Neutron Stars)
For $m_{n}=m_{n^{\prime}}, n-\bar{n}^{\prime}$ oscillation can be as fast as $\epsilon^{-1}=\tau_{n \bar{n}^{\prime}} \sim 1 \mathrm{~s}$ without contradicting experimental and astrophysical limits. (c.f. $\tau>10 \mathrm{yr}$ for neutron - antineutron oscillation)

Neutron disappearance $n \rightarrow \bar{n}^{\prime}$ and regeneration $n \rightarrow \bar{n}^{\prime} \rightarrow n$ can be searched at small scale 'Table Top' experiments

Neutron - mirror neutron oscillation probability

$$
\begin{aligned}
& P_{B}(t)=p_{B}(t)+d_{B}(t) \cdot \cos \beta \\
& p(t)=\frac{\sin ^{2}\left[\left(\omega-\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega-\omega^{\prime}\right)^{2}}+\frac{\sin ^{2}\left[\left(\omega+\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega+\omega^{\prime}\right)^{2}} \\
& d(t)=\frac{\sin ^{2}\left[\left(\omega-\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega-\omega^{\prime}\right)^{2}}-\frac{\sin ^{2}\left[\left(\omega+\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega+\omega^{\prime}\right)^{2}} \\
& \text { where } \omega=\frac{1}{2}|\mu B| \text { and } \omega^{\prime}=\frac{1}{2}\left|\mu B^{\prime}\right| ; \tau \text { - oscillation time } \\
& A_{B}^{\text {det }}(t)=\frac{N_{-B}(t)-N_{B}(t)}{N_{-B}(t)+N_{B}(t)}=N_{\text {collis }} d_{B}(t) \cdot \cos \beta \leftarrow \text { assymetry }
\end{aligned}
$$

Experiments

 stique en cinq partiesBy now 8 experiments were done at ILL/PSI (one exp by myself +collaborators using the UCN Chamber of 200ℓ volume)

Several new experiments are underway at PSI, ILL and ORNL and can be projected at the ESS

Experimental Strategy

Neutron - Dark Matter
Connection: astrophysical consequences
Sympho fantastique en cinq parties

To store neutrons and to measure if the amount of the survived ones depends on the magnetic field applied.

- Fill the Trap with the UCN
- Close the valve
- Wait for $T_{S}(300 \mathrm{~s} \ldots)$
- Open the valve
- Count the survived Neutrons

10

Repeat this for different orientation and values of Magnetic field. $N_{B}\left(T_{S}\right)=N(0) \exp \left[-\left(\Gamma+R+\overline{\mathcal{P}}_{B} \nu\right) T_{S}\right]$

$$
\frac{N_{B 1}\left(T_{S}\right)}{N_{B 2}\left(T_{S}\right)}=\exp \left[\left(\overline{\mathcal{P}}_{B 2}-\overline{\mathcal{P}}_{B 1}\right) \nu T_{S}\right]
$$

So if we find that:
$A\left(B, T_{S}\right)=\frac{N_{B}\left(T_{S}\right)-N_{-B}\left(T_{S}\right)}{N_{B}\left(T_{S}\right)+N_{-B}\left(T_{S}\right)} \neq 0 \quad E\left(B, b, T_{S}\right)=\frac{N_{B}\left(T_{S}\right)}{N_{b}\left(T_{S}\right)}-1 \neq 0$

Serebrov III - Drifts of detector and monitor counts

 stique en cinq partiesExp. sequence: $\left\{B_{-}, B_{+}, B_{+}, B_{-}, B_{+}, B_{-}, B_{-}, B_{+}\right\}, B=0.2 \mathrm{G}$

measurements- magnetic field vertical

Exp. sequence: $\left\{B_{-}, B_{+}, B_{+}, B_{-}, B_{+}, B_{-}, B_{-}, B_{+}\right\}, B=0.2 \mathrm{G}$

Analysis pointed out the presence of a signal:

$$
A(B)=(7.0 \pm 1.3) \times 10^{-4} \quad \chi_{/ \text {dof }}^{2}=0.9 \longrightarrow 5.2 \sigma
$$

interpretable by $n \rightarrow n^{\prime}$ with $\tau_{n n^{\prime}} \sim 2-10 s^{\prime}$ and $B^{\prime} \sim 0.1 G$
Z.B. and Nesti, 2012

My own experiment at ILL - Z.B., Biondi, Geltenbort et al. 2018

Neutron - Dark Matter Connection: astrophysical consequences
SymphoI fantastique en cinq parties

Zurab Berezhiani

Summary

$4 \sigma \quad \rightarrow \quad 2.5 \sigma \quad$ effect

Exp. limits on $n-n^{\prime}$ oscillation time - ZB et al, Eur. Phys. J. C. 2018

Neutron - Dark Matter
Connection: astrophysical consequences
SymphoI fantastique en cinq parties

Zurab Berezhiani

Summary

Free Neutrons: Where to find Them ?

Neutrons are making $1 / 7$ fraction of baryon mass in the Universe.
But most of neutrons bound in nuclei
$n \rightarrow \bar{n}^{\prime}$ or $n^{\prime} \rightarrow \bar{n}$ conversions can be seen only with free neutrons.
Free neutrons are present only in

- Reactors and Spallation Facilities (experiments are looking for)
- In Cosmic Rays ($n-n^{\prime}$ can reconcile TA and Auger experiments)
- During BBN epoch (fast $n^{\prime} \rightarrow \bar{n}$ can solve Lithium problem)
- Transition $n \rightarrow \bar{n}^{\prime}$ can take place for (gravitationally bound) Neutron Stars - conversion of NS into mixed ordinary/mirror NS

Chapter IV

Neutron - Dark
Matter
Connection:
astrophysical consequences
Symphoi fantastique en cinq parties

Zurab Berezhiani

Summary

Movement IV

Marche au supplice ...

 March to the scaffold ...
UHECR and GZK cutoff

 partiesTwo giant detectors see UHECR spectra different at $E>E_{\text {GZK }}$ $E>100 \mathrm{EeV}$ events observed: Cosmic Zevatrons exist in the Universe Pierre Auger Observatory (PAO) - South hemisphere Telescope Array (TA) - North hemisphere + older detectors: AGASA, HiRes, etc. (all in north hemisphere)

At $E<30 \mathrm{EeV}$ two spectra coincide (relative energy shift $\approx 8 \%$) But at $E>57 \mathrm{EeV} \quad$ TA: 109 events PAO: 231 events and at $E>100 \mathrm{EeV}$ TA: 18 events PAO: 8 events (as by ICRC 2015) Where is GZK cutoff? theoretically $E_{\mathrm{GZK}} \simeq 57 \mathrm{EeV}$ (for protons) but $E_{\mathrm{cut}}^{\mathrm{PAO}} \simeq 25 \mathrm{EeV}$ and $E_{\mathrm{cut}}^{\mathrm{TA}}>70 \mathrm{EeV}(? ?)$

But also other discrepancies are mounting ...

- Who are carriers of UHECR ?

PAO and TA see different chemical content:
TA: protons for $E=1 \div 30 \mathrm{EeV}+$ some light nuclei for $E>30 \mathrm{EeV}$
PAO: protons for $E=1 \div 10 \mathrm{EeV}$ and heavier nuclei above $E>10 \mathrm{EeV}$

- perhaps new physics ?
- Different anistropies from North and South ?

TA excludes isotropic distribution at $E>57 \mathrm{EeV}$, observes hot spot for events $E>E_{\text {GZK }}$ (which spot is colder for $E<E_{\text {GZK }}$). PAO anisotropies not prominent: warm spot around Cen A , and small dipole for $E>10 \mathrm{EeV}$ - are two skies realy different ?

- What are sources (BH in AGNs)? From where UHECR do come ? $E>100 \mathrm{EeV}$ are expected from local supercluster (Virgo, Fornax, UM, PP etc.) and closeby structures. But they do not come from these directions. TA observes small angle correlation for $E>100 \mathrm{EeV}$ events (2 doublets), which may indicate towards strong source - from where they come?
- Excess of cosmogenic photons and neutrinos ?

Standard GZK mechanism of UHECR produces too much cascades contradicts to Fermi-LAT photon spectrum at $E \sim 1-1 \mathrm{TeV} \equiv-$ local Fog ? ๑ac

UHECR as protons and GZK cutoff

Neutron - Dark
Matter
Connection: astrophysical consequences
Sympho fantastique en cinq parties

Zurab Berezhiani

GZK cutoff:

Photo-pion production on the CMB if $E>E_{\mathrm{GZK}} \approx \frac{m_{\pi} m_{p}}{\varepsilon_{\mathrm{CMB}}} \approx 6 \times 10^{19} \mathrm{eV}$ $p+\gamma \rightarrow p+\pi^{0}\left(\right.$ or $n+\pi^{+}$), $\quad l_{\text {mfp }} \sim 5 \mathrm{Mpc}$ for $E>10^{20} \mathrm{eV}=100 \mathrm{EeV}$ Neutron decay: $n \rightarrow p+e+\bar{\nu}_{e}, \quad l_{\text {dec }}=\left(\frac{E}{100 \mathrm{EeV}}\right) \mathrm{Mpc}$ Neutron on CMB scattering: $n+\gamma \rightarrow n+\pi^{0}$ (or $p+\pi^{-}$)

UHECR as nuclei

Neutron - Dark Matter
Connection: astrophysical consequences
SymphoI fantastique en cinq parties

Zurab Berezhiani

Summary

Swiss Cheese Structure of the Universe

R. Powell, https://commons.wikimedia.org/w/index.php?curid=54584281

Neutron - Dark Matter Connection: astrophysical consequences
Sympho fantastique en cinq parties

Zurab Berezhiani Summary

Local structure - 2Mass catalogue

(J. Huchra et al.)

Sympho fantastique - 0-15 • 15-30 • 30-45 (d [Mpc]) - 45-60 • 60-75 - 75-90 en cinq parties

From where highest energy CR are expected ?

For protons with $E>40,60$ and 100 EeV (Plots by Tynyakov)

$n-n^{\prime}$ oscillation and UHECR propagation

Neutron - Dark Matter Connection: astrophysical consequences
Sympho fantastique en cinq parties

Zurab Berezhiani

Z. Berezhiani, L. Bento, Fast neutron - Mirror neutron oscillation and ultra high energy cosmic rays, Phys. Lett. B 635, 253 (2006).
A. $p+\gamma \rightarrow p+\pi^{0}$ or $p+\gamma \rightarrow n+\pi^{+} \quad P_{p p, p n} \approx 0.5 \quad l_{\text {mfp }} \sim 5 \mathrm{Mpc}$
B. $n \rightarrow n^{\prime} \quad P_{n n^{\prime}} \simeq 0.5 \quad l_{\text {osc }} \sim\left(\frac{E}{100 \mathrm{EeV}}\right) \mathrm{kpc}$
C. $n^{\prime} \rightarrow p^{\prime}+e^{\prime}+\bar{\nu}_{e}^{\prime} \quad l_{\mathrm{dec}} \approx\left(\frac{E}{100 \mathrm{EeV}}\right) \mathrm{Mpc}$
D. $p^{\prime}+\gamma^{\prime} \rightarrow p^{\prime}+\pi^{\prime 0}$ or $p^{\prime}+\gamma^{\prime} \rightarrow n^{\prime}+\pi^{\prime+} \quad l_{\text {mfp }}^{\prime} \sim\left(T / T^{\prime}\right)^{3} l_{\text {mfp }} \gg 5 \mathrm{Mpc}$

$n-n^{\prime}$ oscillation in the UHECR propagation

Baryon number is not conserved in propagation of the UHECR

$$
H=\left(\begin{array}{cc}
\mu_{n} \mathbf{B} \sigma & \epsilon \\
\epsilon & \mu_{n} \mathbf{B}^{\prime} \sigma
\end{array}\right) \times\left(\gamma=E / m_{n}\right)
$$

In the intergalactic space magnetic fields are extremely small ... but for relativistic neutrons transverse component of B is enhanced by Lorentz factor: $\quad B_{\mathrm{tr}}=\gamma B \quad\left(\gamma \sim 10^{11}\right.$ for $\left.E \sim 100 \mathrm{EeV}\right)$

Average oscillation probability:
$P_{n n^{\prime}}=\sin ^{2} 2 \theta_{n n^{\prime}} \sin ^{2}\left(\ell / \ell_{\mathrm{osc}}\right) \simeq \frac{1}{2}[1+Q(E)]^{-1} \quad \tan 2 \theta_{n n^{\prime}}=\frac{2 \epsilon}{\gamma \mu_{n} \Delta B}$
$Q=(\gamma \Delta B / 2 \epsilon)^{2} \approx 0.5\left(\frac{\tau_{n n^{\prime}}}{1 \mathrm{~s}}\right)^{2}\left(\frac{\Delta B}{1 \mathrm{fG}}\right)^{2}\left(\frac{E}{100 \mathrm{EeV}}\right)^{2} \quad \Delta B=\left|B_{\mathrm{tr}}-B_{\mathrm{tr}}^{\prime}\right|$
If $q=0.5\left(\frac{\tau_{n n^{\prime}}}{1 \mathrm{~s}}\right)^{2}\left(\frac{\Delta B}{1 \mathrm{fG}}\right)^{2}<1$,
$n-n^{\prime}$ oscillation becomes effective for $E=100 \mathrm{EeV}$

Earlier (than GZK) cutoff in cosmic rays

 fantastique en cinq partiesZ.B. and Gazizov, Neutron Oscillations to Parallel World: Earlier End to the Cosmic Ray Spectrum? Eur. Phys. J. C 72, 2111 (2012)

Baryon number is not conserved in propagation of the UHECR

Ordinary and Mirror UHECR

Neutron - Dark
Matter
Connection:
astrophysical
consequences

$$
\frac{n_{\mathrm{CMB}}^{\prime}}{n_{\mathrm{CMB}}}=\left(\frac{T^{\prime}}{T}\right)^{3} \ll 1 \quad \longrightarrow \quad \frac{\ell_{\mathrm{mfp}}^{\prime}}{\ell_{\mathrm{mfp}}} \simeq\left(\frac{T}{T^{\prime}}\right)^{3} \gg 1
$$

SymphoI fantastique en cinq parties

Zurab Berezhiani

Summary

Swiss Cheese Structure of the Universe

R. Powell, https://commons.wikimedia.org/w/index.php?curid=54584281

Neutron - Dark Matter Connection: astrophysical consequences
Sympho fantastique en cinq parties

Zurab Berezhiani Summary

Swiss Cheese Model: Mirror CRs transform into our CR in Voids.

Neutron - Dark Matter
Connection: astrophysical consequences
SymphoI fantastique en cinq parties

Zurab Berezhiani

Summary

Swiss Cheese Model: Mirror CRs are transformed into ordinaries in nearby Voids.

Neutron - Dark Matter
Connection: astrophysical consequences
Sympho fantastique en cinq parties

Zurab Berezhiani

Summary
$P_{n n^{\prime}} \simeq \frac{1}{2} \frac{1}{1+q_{B}(E / 100 \mathrm{EeV})^{2}}$
Adjacent Void (0-50 Mpc) $\quad q_{B}=0.5 \times\left(\frac{\tau_{n n^{\prime}}}{1 \mathrm{~s}}\right)^{2}\left(\frac{B_{\mathrm{tr}}-B_{\mathrm{tr}}^{\prime}}{1 \mathrm{fG}}\right)^{2}$

Swiss cheese: More distant Void (50-100 Mpc)

Neutron - Dark
Matter
Connection: astrophysical consequences
Sympho fantastique en cinq parties

Is northern sky (TA) is more " voidy" than the Southern sky (PAO) ? Interestingly, some 20-30\% admixture of protons above the GZK energies improves the "chemical" fit also for PAO data Muzio et al. 2019

Are North Sky and South Sky different?

Neutron - Dark Matter Connection: astrophysical consequences
Sympho fantastique en cinq parties

Zurab Berezhiani

Summary

The northern sky is well structured, dominated by LSC at the center, and the Great Wall and Pisces-Perseus ... The southern hemisphere is more amorphous. There is a Cetus Wall, southern part of LSC at the center, Hydra-Centaurus region but also a large and diffuse overdensity between 19 and 22 h ... "Hockey Puck" diagrams from Huchra et al., 2Mass

Arrival directions TA and PAO events of $E>100 \mathrm{EeV}$

Neutron - Dark Matter
Connection:
astrophysical consequences
Sympho
fanta-
stique
en cinq
parties

Zurab Berezhiani

Summary

TA 2008-14 • $\quad>100 \mathrm{EeV}, ~ \bullet 79 \div 100 \mathrm{EeV}$, $\circ 57 \div 79 \mathrm{EeV}$ PAO 2004-14 the same for $E_{r}=1.1 \times E$

TA \& PAO events:

correlations with sources (AGN \& radiogalaxies) and mass

Neutron - Dark Matter Connection: astrophysical consequences
Sympho fantastique en cinq parties

Zurab Berezhiani

Summary

Transient sources (GRB?)

TA \& PAO events: autocorrelations \& with tracers

Neutron - Dark Matter
Connection: astrophysical consequences
Sympho fantastique en cinq parties

Zurab Berezhian

Summary

Local structure - Mass2 catalogue

- 0-15 • 15-30
(d [Mpc])
- 45-60 • 60-75

75-90

en cinq parties

Summary

The UHECR spectra observed by TA and PAO are perfectly concordant (after 10% rescaling) at energies up to 10 EeV ... but become increasingly discordant at higher energies, very strongly above the GZK cutoff (60 EeV)
The discrepancy can be due to difference between the N - and S-skies ... N -sky is well structured, with prominent overdensities and large voids inbetween S-sky is more amorphous with diffused galaxies ...

It is unlikely that PAO-TA discrepancy is due to different power of sources within the GZK radius (no correlation with the mass distribution at highest energies $E>79 \mathrm{EeV}$, no event from the Virgo or Fornax clusters, etc.)
But it can be explained in "Swiss Cheese" model: the highest energy UHECR are born from mirror UHECR in nearby holes within the GZK radius (Voids $=$ small magnetic fileld) via $n^{\prime}-n$ conversion

The TA signal at super-GZK energies is boosted by prominent Voids in N -hemisphere. This can also explain intermediate scale anisotropies (20-30 degrees) in the TA arrival directions while the PAO data show non ... Interestingly, the TA/PAO spectra are concordant in the common sky ...
Our hypothesis is testable by analyzing the new data of TA/PAO at higher statistics (e.g. studying the average $h_{\max }$ and its RMS in the common sky)

Summary

Symphol fantastique en cinq parties
$n-n^{\prime}$ conversion also has interesting implications for the neutron stars (gradual conversion of the neutron stars into mixed ordinary-mirror stars till achieving "fifty-fifty" mixed twin star configuration with $\sqrt{2}$ times smaller radius and $\sqrt{2}$ smaller maximal mass

Remarkably, it can be tested in laboratories via looking for anomalous (magnetic field dependent) disappearance of the neutrons (for which there already exist some experimental indications, most remarkable at the 5.2σ level) due to $n \rightarrow n^{\prime}$ conversion and and "walking through the wall" experiments $\left(n \rightarrow n^{\prime} \rightarrow n\right.$ regeneration). $n-n^{\prime}$ oscillation can be also related to the neutron lifetime puzzle.

Chapter IV

Movement V Allegro in 6/8 ft. Dies Irae Songe d'une nuit du sabbat Dreaming the Sabbath of witches

Neutron Stars: $n-n^{\prime}$ conversion

Neutron - Dark Matter
Connection:
astrophysical consequences
Symphoi fantastique en cinq parties

Zurab Berezhiani

Summary

Two states, n and n^{\prime}

$$
H=\left(\begin{array}{cc}
m_{n}+V_{n}+\mu_{n} \vec{B} \vec{\sigma} & \varepsilon \\
\varepsilon & m_{n}^{\prime}+V_{n}^{\prime}-\mu_{n} \vec{B}^{\prime} \vec{\sigma}
\end{array}\right)
$$

$$
n_{1}=\cos \theta n+\sin \theta n^{\prime}, \quad n_{2}=\sin \theta n-\cos \theta n^{\prime}, \quad \theta \simeq \frac{\epsilon}{V_{n}-V_{n}^{\prime}}
$$

Fermi degenerate neutron liquid $p_{F} \simeq\left(n_{b} / 0.3 \mathrm{fm}^{-3}\right)^{2 / 3} \times 400 \mathrm{MeV}$ $n n \rightarrow n n^{\prime}$ with rate $\Gamma=2 \theta^{2} \eta\langle\sigma v\rangle n_{b}$

$$
\frac{d N}{d t}=-\Gamma N \quad \frac{d N^{\prime}}{d t}=\Gamma N \quad N+N^{\prime}=N_{0} \text { remains Const. }
$$

$$
\tau_{\epsilon}=\Gamma^{-1}=\epsilon_{15}^{-2}\left(\frac{M}{1.5 M_{\odot}}\right)^{2 / 3} \times 10^{15} \mathrm{yr} \quad N^{\prime} / N_{0}=t / \tau_{\epsilon}
$$

$$
\text { for } t=10 \mathrm{Gyr}, \tau_{\epsilon}=10^{15} \mathrm{yr} \text { gives } \mathrm{M} \text { fraction } 10^{-5} \text { - few Earth mass }
$$

$$
\dot{\mathcal{E}}=\frac{E_{F} N}{\tau_{\epsilon}}=\left(\frac{10^{15} \mathrm{yr}}{\tau_{\epsilon}}\right)\left(\frac{M}{1.5 M_{\odot}}\right) \times 10^{31} \mathrm{erg} / \mathrm{s} \quad \text { NS heating - surface } \mathrm{T}
$$

Mixed Neutron Stars: TOV and $M-R$ relations

Neutron - Dark
Matter
Connection:
astrophysical consequences
Sympho fantastique en cinq parties

Zurab Berezhiani

Summary

$$
\begin{aligned}
& g_{\mu \nu}=\operatorname{diag}\left(-g_{t t}, g_{r r}, r^{2}, r^{2} \sin ^{2} \theta\right) \quad g_{t t}=e^{2 \phi}, g_{r r}=\frac{1}{1-2 m / r} \\
& T_{\mu \nu}=T_{\mu \nu}^{1}+T_{\mu \nu}^{2}=\operatorname{diag}\left(\rho g_{t t}, p g_{r r}, p r^{2}, p r^{2} \sin ^{2} \theta\right) \\
& \quad \rho=\rho_{1}+\rho_{2} \& p=p_{1}+p_{2}, \quad p_{\alpha}=F\left(\rho_{\alpha}\right)
\end{aligned}
$$

$$
\frac{d m}{d r}=4 \pi r^{2} \rho \rightarrow \frac{d m_{1,2}}{d r}=4 \pi r^{2} \rho_{1,2} \quad m=m_{1}+m_{2}
$$

$$
\frac{d \phi}{d r}=-\frac{1}{\rho+p} \frac{d p}{d r} \rightarrow \frac{d p_{1} / d r}{\rho_{1}+p_{1}}=\frac{d p_{2} / d r}{\rho_{2}+p_{2}}
$$

$$
\frac{d p}{d r}=(\rho+p) \frac{m+4 \pi p r^{3}}{2 m r-r^{2}}
$$

$$
\left(m_{1} \neq 0, m_{2}=0\right)_{\text {in }} \rightarrow\left(m_{1}=m_{2}\right)_{\mathrm{fin}} \quad r \rightarrow \frac{r}{\sqrt{2}}, \quad m_{\alpha} \rightarrow \frac{m_{\alpha}}{2 \sqrt{2}}
$$

$\sqrt{2}$ rule: $\quad M_{\text {mix }}^{\max }=\frac{1}{\sqrt{2}} M_{\mathrm{NS}}^{\max } \quad R_{\text {mix }}(M)=\frac{1}{\sqrt{2}} R_{\mathrm{NS}}(M)$

Neutron Star transformation

$$
\frac{d N}{d t}=-\Gamma N \quad \frac{d N^{\prime}}{d t}=\Gamma \quad N+N^{\prime}=N_{0} \quad \text { remains Const. }
$$

$$
\text { Initial state } N=N_{0}, N^{\prime}=0 \quad \text { final state } N=N^{\prime}=\frac{1}{2} N_{0}
$$

Quark stars: in strange quark matter (color-superconducting phase) transition is not energetically farored. So Quark stars (which perhaps are heavy pulsars with $M \simeq 2 M_{\odot}$ or so) are insensitive to $n \rightarrow n^{\prime}$.

Neutron Stars Evolution to mixed star

$\tau_{\epsilon}=\left(10^{-15} \mathrm{eV} / \epsilon\right)^{2} \times 10^{15} \mathrm{yr} \quad$ Two regimes are allowed :

1. slow transformation ($\tau_{\varepsilon} \gg 14 \mathrm{Gyr}$ age of universe) then limit from pulsar heating tells $\tau_{\epsilon}>10^{15} \mathrm{yr} \longrightarrow \epsilon<10^{-15} \mathrm{eV}$ or so matches exp. limits for exactly degenerate $n-n^{\prime}$
2. fast transformation $\tau_{\epsilon}<10^{5} \mathrm{yr}$ or so $\longrightarrow \epsilon>10^{-10} \mathrm{eV}$ or so

- then old pulsars all should be transformed into maximally mixed stars matches explanation of neutron lifetime anomaly, non-degenerate $n-n^{\prime}$

Neutron Stars: mass distribution

Neutron - Dark Matter Connection: astrophysical consequences
Sympho fantastique en cinq parties

Zurab Berezhiani

Summary

Neutron Stars: observational $M-R$

Neutron - Dark Matter Connection: astrophysical consequences
Sympho fantastique en cinq parties

Zurab Berezhiani

Summary

The combined constraints at the 68% confidence level over the neutron star mass and radius obtained from (Left) all neutron stars in low-mass X-ray binaries during quiescence (Right) all neutron stars with thermonuclear bursts. The light grey lines show mass-relations corresponding to a few representative equations of state (see Section 4.1 and Fig. 7 for detailed descriptions.)

Neutron Star Mergers

Neutron - Dark
Matter
Connection: astrophysical consequences
Sympho fantastique en cinq parties

NS-NS merger and kilonova (GW170817 ?)
r-processes can give heavy *trans-Iron* elements
Mirror NS-NS merger is invisible (GW190425 ? $M_{\text {tot }}=3.4 M_{\odot}$)
But not completely ... if during the evolution they developed small core of our antimatter (depends on the mirror BA sign)

- their mergers can be origin of antinuclei for AMS-2

Antimatter Cores in Mirror Neutron stars

DUPOURQUÉ, TIBALDO, and VON BALLMOOS

PHYS. REV. D 103, 083016 (2021)

FIG. 1. Positions and energy flux in the $100 \mathrm{MeV}-100 \mathrm{GeV}$ range of antistar candidates selected in 4FGL-DR2. Galactic coordinates. The background image shows the Fermi 5 -year all-sky photon counts above 1 GeV (image credit: NASA/DOE/Fermi LAT Collaboration).
Antimatter production rate: $\dot{N}_{\bar{b}}=\frac{N_{0}}{\tau_{\epsilon}} \simeq \epsilon_{15}^{2}\left(\frac{M}{M_{\odot}}\right)^{2 / 3} \times 3 \cdot 10^{34} \mathrm{~s}^{-1}$ ISM accretion rate: $\dot{N}_{b} \simeq \frac{(2 G M)^{2} n_{\text {is }}}{v^{3}} \simeq \frac{10^{32}}{v_{100}^{3}} \times\left(\frac{n_{\text {is }}}{1 / \mathrm{cm}^{3}}\right)\left(\frac{M}{M_{\odot}}\right)^{2} \mathrm{~s}^{-1}$ Annihilation γ-flux from the mirror NS as seen at the Earth: $J \simeq \frac{10^{-12}}{v_{100}^{3}}\left(\frac{n_{\text {is }}}{1 / \mathrm{cm}^{3}}\right)\left(\frac{M}{1.5 M_{\odot}}\right)^{2}\left(\frac{50 \mathrm{pc}}{d}\right)^{2} \frac{\mathrm{erg}}{\mathrm{cm}^{2} \mathrm{~s}} \quad d$-distance to source
Alternative: Antistars - Dolgov \& Co. but some difference:

- the surface redshift s expected $\sim 15 \div 30 \%$ for the NS
- which should be absent for antistars (weak gravity)

Getting Energy from Dark Parallel World

I argued that in O and M worlds baryon asymmetries can have same signs: $B>0$ and $B^{\prime}>0$. Since $B-B^{\prime}$ is conserved, our neutrons have transition $n \rightarrow \bar{n}^{\prime}$ (which is the antiparticle for M observer)
while n^{\prime} (of M matter) oscillates $n^{\prime} \rightarrow \bar{n}$ into our antineutron Neutrons can be transformed into antineutrons, but (happily) with low efficiency: $\tau_{n \bar{n}}>10^{8} \mathrm{~s}$
dark neutrons, before they decay, can be effectively transformed into our antineutrons in controllable way, by tuning vacuum and magnetic fields, if $\tau_{n \bar{n}^{\prime}}<10^{3} \mathrm{~s}$
$E=2 m_{n} c^{2}=3 \times 10^{-3} \mathrm{erg}$
 per every \bar{n} annihilation

Two civilisations can agree to built scientific reactors and exchange neutrons we could get plenty of energy out of dark matter !
E.g. source with $3 \times 10^{17} \mathrm{n} / \mathrm{s}(\mathrm{PSI}) \longrightarrow$ power $=100 \mathrm{MW}$

Asimov Machine: the "Pump"

THEGOM HeM selve ANDVEIBY ISAAB ASIMOV

First Part: Against Stupidity ...
Second Part: ...The Gods Themselves ...
Third Part: ... Contend in Vain?
"Mit der Dummheit kämpfen Götter selbst vergebens!" - Friedrich Schiller

Radiochemist Hallam constructs the "Pump": a cheap, clean, and apparently endless source of energy functioning by the matter exchange between our universe and a parallel universe His "discovery" was inspired by beings of "parallel" universe where stars were old and became too cold - they had no more energy resources ...

Majorana Machine

 en cinq partiesZurab Berezhiani

Che cretini! Hanno scoperto il protone neutro e non se ne accorgono!

La fisica è su una strada sbagliata. Siamo tutti su una strada sbagliata...

La fantomatica macchina forse teorizzata da Ettore Majorana! Nella sua formulazione attuale violerebbe un'infinità di principi scientifici, producendo enormi quantità di energia a costo zero. Non può affatto esistere ...

Backup

Some auxiliary slides

Neutron-antineutron oscillation

Neutron - Dark Matter
Connection: astrophysical consequences
Symphol fantastique en cinq parties

Neutron is a Dirac particle: $m \bar{n} n$ conserves B
Majorana mass of neutron $\quad \frac{\epsilon}{2}\left(n^{T} C n+\bar{n}^{T} C \bar{n}\right) \quad \Delta B=2$ comes from six-fermions effective operator $\frac{1}{M^{5}}(u d d)(u d d)$

transition $n(u d d) \rightarrow \bar{n}(\bar{u} \bar{d} \bar{d})$, oscillation time $\tau_{n \bar{n}}=\epsilon^{-1}$
$\epsilon \sim \frac{\Lambda_{Q C D}^{6}}{M^{5}} \sim\left(\frac{1 \mathrm{PeV}}{M}\right)^{5} \times 10^{-25} \mathrm{eV} \quad \tau_{n \bar{n}} \sim 10^{9} \mathrm{~s}$
ILL experiment: $\tau_{n \bar{n}}>0.86 \times 10^{8} \mathrm{~s} \longrightarrow \epsilon<7.7 \times 10^{-24} \mathrm{eV}$
Key moment: $n-\bar{n}$ oscillation destabilizes nuclei:

$$
(A, Z) \rightarrow(A-1, \bar{n}, Z) \rightarrow(A-2, Z / Z-1)+\pi^{\prime} s
$$

Nuclear stability bounds: Oxygen $\rightarrow 2 \pi-\tau_{\text {nucl }}>10^{32}$ yr (SK) $\epsilon<2.5 \times 10^{-24} \mathrm{eV} \quad \rightarrow \quad \tau>2.7 \times 10^{8} \mathrm{~s}$

$n-\bar{n}$ oscillation: Free (or bound)

SymphoI fantastique en cinq parties

Zurab Berezhiani

Summary

Two states, n and \bar{n}

$$
H=\left(\begin{array}{cc}
m+\mu \vec{B} \vec{\sigma}-V_{n} & \epsilon \\
\epsilon & m-\mu \vec{B} \vec{\sigma}-V_{\bar{n}}
\end{array}\right)
$$

Free oscillation probability $P_{n \bar{n}}(t)=\frac{\epsilon^{2}}{\omega_{B}^{2}} \sin ^{2}\left(\omega_{B} t\right), \quad \omega_{B}=\mu B$
$\omega_{B} t<1 \rightarrow P_{n \bar{n}}(t)=(\epsilon t)^{2}=\left(t / \tau_{n \bar{n}}\right)^{2}$
$\omega_{B} t \gg 1 \rightarrow P_{n \bar{n}}(t)=\frac{1}{2}\left(\epsilon / \omega_{B}\right)^{2}<\frac{(\epsilon t)^{2}}{\left(\omega_{B} t\right)^{2}}$
for a given free flight time t, magn. field should be properly suppressed to achieve "quasi-free" regime: $\omega_{B} t<1$

Baldo-Ceolin et al, 1994 (ILL, Grenoble) : $t \simeq 0.1 \mathrm{~s}, \quad B<1 \mathrm{mG}$ $P_{n \bar{n}}(t)=\left(t / \tau_{n \bar{n}}\right)^{2}<10^{-18} \longrightarrow \epsilon<7.7 \times 10^{-24} \mathrm{eV}$

Neutrons in nuclei: $\omega_{B} \rightarrow V_{\bar{n}}-V_{n} \sim 100 \mathrm{MeV}$

Can neutron be transformed into antineutron ... more effectively?

Neutron - Dark Matter Connection: astrophysical consequences

Sympho fantastique en cinq parties

Zurab Berezhiani

Summary

Small Majorana mass of neutron $\frac{\epsilon}{2}\left(n^{T} C n+\bar{n} C \bar{n}^{T}\right)=\frac{\epsilon}{2}\left(\overline{n_{c}} n+\bar{n} n_{c}\right)$
$\equiv n-\bar{n}$ oscillation $(\Delta B=2)$
Oscillation probability for free flight time t
$P_{n \bar{n}}(t)=(\epsilon t)^{2}=\left(t / \tau_{n \bar{n}}\right)^{2} \quad$ in quasi-free regime $\quad \omega_{B} t<1$
Present bounds on oscillation time $\tau_{n \bar{n}}=\epsilon^{-1}$ are severe:
$\tau_{n \bar{n}}>0.86 \times 10^{8} \mathrm{~s} \quad$ direct limit (free n) ILL, 1994
$\tau_{n \bar{n}}>2.7 \times 10^{8} \mathrm{~s} \quad$ nuclear stability (bound n) \quad SK, 2020 (this conf.)
$P_{n \bar{n}}(t)=\frac{t^{2}}{\tau_{n \bar{n}}^{2}}=\left(\frac{10^{8} \mathrm{~s}}{\tau_{n \bar{n}}}\right)^{2}\left(\frac{t}{0.1 \mathrm{~s}}\right)^{2} \times 10^{-18}$
Shortcult through mirror world: $n \rightarrow n^{\prime} \rightarrow \bar{n}$:
Experimental search to be tuned against (dark) environmental conditions
$P_{n \bar{n}}(t)=P_{n n^{\prime}}(t) P_{n \bar{n}^{\prime}}(t)=\frac{t^{4}}{\tau_{n n^{\prime}}^{2} \tau_{n \bar{n}^{\prime}}^{2}}=\left(\frac{1 \mathrm{~s}^{2}}{\tau_{n n^{\prime}} \tau_{n \bar{n}^{\prime}}}\right)^{2}\left(\frac{t}{0.1 \mathrm{~s}}\right)^{4} \times 10^{-4}$
No danger for nuclear stability !
If discovered, a potential source of enormous free energy !

$2 \times 2=4!$

Z.B., Eur.Phys.J C81:33 (2021), arXiv:2002.05609

Neutron - Dark Matter
Connection:
astrophysical consequences
Sympho fantastique en cinq parties

4 states: $n, \bar{n}: n^{\prime}, \bar{n}^{\prime}$ and mixing combinations:
$n \longleftrightarrow \bar{n} \quad(\Delta B=2) \quad \& \quad n^{\prime} \longleftrightarrow \bar{n}^{\prime}\left(\Delta B^{\prime}=2\right)$
$n \longleftrightarrow n^{\prime}+\bar{n}^{\prime} \longleftrightarrow \bar{n} \quad \Delta\left(B-B^{\prime}\right)=0$
$n \longleftrightarrow \bar{n}^{\prime}+n^{\prime} \longleftrightarrow \bar{n} \quad \Delta\left(B+B^{\prime}\right)=0$
Full Hamiltonian is 8×8 :

$$
\left(\begin{array}{cccc}
m_{n}+\mu \vec{B} \vec{\sigma} & \epsilon_{n \bar{n}} & \epsilon_{n n^{\prime}} & \epsilon_{n \bar{n}^{\prime}} \\
\epsilon_{n \bar{n}} & m_{n}-\mu \vec{B} \vec{\sigma} & \epsilon_{n \bar{n}^{\prime}} & \epsilon_{n n^{\prime}} \\
\epsilon_{n n^{\prime}} & \epsilon_{n \bar{n}^{\prime}} & m_{n}^{\prime}+V_{n}^{\prime}+\mu^{\prime} \vec{B}^{\prime} \vec{\sigma} & \epsilon_{n \bar{n}} \\
\epsilon_{n \bar{n}^{\prime}} & \epsilon_{n n^{\prime}} & \epsilon_{n \bar{n}} & m_{n}^{\prime}+V_{n}^{\prime}-\mu^{\prime} \vec{B}^{\prime} \vec{\sigma}
\end{array}\right)
$$

Present bounds on oscillation time $\tau_{n \bar{n}}=\epsilon^{-1}$:
$\tau_{n \bar{n}}>0.86 \times 10^{8} \mathrm{~s} \quad($ free $n), \quad \tau_{n \bar{n}}>4.7 \times 10^{8} \mathrm{~s} \quad$ (bound n)
$P_{n \bar{n}}(t)=\frac{t^{2}}{\tau_{n \bar{n}}^{2}}=\left(\frac{10^{8} \mathrm{~s}}{\tau_{n \bar{n}}}\right)^{2}\left(\frac{t}{0.1 \mathrm{~s}}\right)^{2} \times 10^{-18}$

Shortcut for $n \rightarrow \bar{n}$ via $n \rightarrow n^{\prime} \rightarrow \bar{n}$

Consider case when direct $n-\bar{n}$ mixing simply absent: $\quad \epsilon_{n \bar{n}}=0$
Anyway, $n \rightarrow \bar{n}$ emerges as second order effect via $n \rightarrow n^{\prime} \bar{n}^{\prime} \rightarrow \bar{n}$

$$
\bar{P}_{n \bar{n}}=\bar{P}_{n n^{\prime}} \bar{P}_{n \bar{n}^{\prime}}
$$

$$
\bar{P}_{n n^{\prime}}=\frac{2 \epsilon_{n n^{\prime}}^{2} \cos ^{2}(\beta / 2)}{\left(\Omega-\Omega^{\prime}\right)^{2}}+\frac{2 \epsilon_{n n^{\prime}}^{2} \sin ^{2}(\beta / 2)}{\left(\Omega+\Omega^{\prime}\right)^{2}}, \bar{P}_{n \bar{n}^{\prime}}=\frac{2 \epsilon_{n \bar{n}^{\prime}}^{2} \sin ^{2}(\beta / 2)}{\left(\Omega-\Omega^{\prime}\right)^{2}}+\frac{2 \epsilon_{n \bar{n}^{\prime}}^{2} \cos ^{2}(\beta / 2)}{\left(\Omega+\Omega^{\prime}\right)^{2}}
$$

where β is the (unknown) angle between the vectors \vec{B} and \vec{B}^{\prime}
Disappearance experiments measure the sum $P_{n n^{\prime}}+P_{n \bar{n}^{\prime}} \propto \epsilon_{n n^{\prime}}^{2}+\epsilon_{n \bar{n}^{\prime}}^{2}$
$n-\bar{n}$ transition measures the product $P_{n \bar{n}}=P_{n n^{\prime}} P_{n \bar{n}^{\prime}} \propto \epsilon_{n n^{\prime}}^{2} \epsilon_{n \bar{n}^{\prime}}^{2}$ From the ILL'94 limit $P_{n \bar{n}}<10^{-18}$ (measured at $B=0$) we get

$$
\tau_{n n^{\prime}} \tau_{n \bar{n}^{\prime}}>\frac{2 \times 10^{9}}{\Omega^{\prime 2}} \approx\left(\frac{0.5 \mathrm{G}}{B^{\prime}}\right)^{2} \times 100 \mathrm{~s}^{2}
$$

E.g. $\tau_{n n^{\prime}} \tau_{n \bar{n}^{\prime}} \sim 1$ second is possible if $B^{\prime} \sim 5 \mathrm{G}$ Limits become even weaker if $\Delta m>0.1 \mathrm{neV}$

How good the shortcut can be?

Sympho fantastique en cinq parties

Zurab Berezhiani

Summary

Assuming e.g. $\tau_{n n^{\prime}} \tau_{n \bar{n}^{\prime}}=100 \mathrm{~s}$ and $B^{\prime}=0.5 \mathrm{G}$, we see that
ILL94-like measurement at $B=0.45 \mathrm{G}$ (or $B=0.49 \mathrm{G}$) would give
$P_{n \bar{n}} \simeq \sin ^{2} \beta \times 10^{-15} \quad\left(\right.$ or $\left.\quad P_{n \bar{n}} \simeq \sin ^{2} \beta \times 10^{-12}\right)$
To maximalize $n-\bar{n}$ probability, one has to match resonance with about 1 mG precision: we get
$P_{n n^{\prime}}(t)=\left(\frac{t}{\tau_{n n^{\prime}}}\right)^{2} \cos ^{2} \frac{\beta}{2}, \quad P_{n \bar{n}^{\prime}}(t)=\left(\frac{t}{\tau_{n \bar{n}^{\prime}}}\right)^{2} \sin ^{2} \frac{\beta}{2}$
and
$P_{n \bar{n}}(t)=P_{n n^{\prime}}(t) P_{n \bar{n}^{\prime}}(t)=\frac{\sin ^{2} \beta}{4}\left(\frac{t}{0.1 \mathrm{~s}}\right)^{4}\left(\frac{100 \mathrm{~s}^{2}}{\tau_{n n^{\prime}} \tau_{n \bar{n}^{\prime}}}\right)^{2} \times 10^{-8}$
Practically no limit from nuclear stability
E.g. ${ }^{16} \mathrm{O}$ decay time predicted $\sim 10^{60} \mathrm{yr}$ vs. present limit $\sim 10^{32} \mathrm{yr}$!

How effective $n \rightarrow \bar{n}$ can be?

Neutron - Dark Matter Connection: astrophysical consequences
Sympho fantastique en cinq parties

Zurab Berezhiani

Summary
simulations for $n-\bar{n}$ experiment with $t=0.1 \mathrm{~s}(\ell=100 \mathrm{~m}$ as ILL $)$ and $t=0.02 \mathrm{~s}(\ell=20 \mathrm{~m})$

- and perhaps a chance for free energy ?

Anthrophic

Is the Universe Anthropic? multiverse...

or Anthropomorphic? has basic instincts ...

Neutron, proton, electron mass conspiracy: $m_{e}<m_{n}-m_{p}$ etc. - free neutron decays but it becomes stable when bound in nuclei

Taken Standard Model with all coupling constants fixed in UV, sort of "explanation" why $M_{W} \sim 10^{2} \mathrm{GeV}$
$M_{W}<10 \mathrm{GeV} \longrightarrow m_{e}>m_{n}-m_{p} \quad$ hydrogen atom decays $p e \rightarrow n \nu$
$M_{W}>10^{3} \mathrm{GeV} \longrightarrow m_{n}>m_{p}+m_{e}+E_{b}$ only hydrogen, no nuclei

Anthropic limit on $n-\bar{n}$ mixing

Nuclear instability against
$(A, Z) \rightarrow(A-1, \bar{n}, Z) \rightarrow(A-2, Z / Z-1)+\pi$'s scales as
Scale of new physics unknown - but $\tau_{\text {nucl }} \propto \epsilon^{2} \propto 1 / M^{10}\left(\epsilon \propto 1 / M^{5}\right)$
Present limit $\tau_{\text {nucl }}>10^{32} \mathrm{yr}$ implies
$\epsilon<2.5 \times 10^{-24} \mathrm{eV} \longrightarrow M>500 \mathrm{TeV}$ or so
$M \rightarrow M / 3$ (just 3 times less) would give $\tau_{\text {nucl }} \rightarrow \tau_{\text {nucl }} / 3^{10} \approx 10^{27} \mathrm{yr}$
$\bar{n} n(\bar{n} p)$ annihilation releases energy $E_{\text {ann }}=2 m_{n} c^{2} \approx 3 \times 10^{-10} \mathrm{~J}$
Then the Earth power $=E_{\text {ann }} N_{\oplus} / \tau_{\text {nucl }} \simeq 10$ TW
.. the Earth radioactivity turns dangerous for the Life!
And (happily) the neutron is not elementary particle - in which case it could have unsuppressed Majorana mass $\varepsilon n^{T} C n$ It is composite $n=(u d d)$ of three quarks - Majorana mass can be induced only by $\mathrm{D}=9$ operator $\frac{1}{\mathrm{M}^{5}}(u d d)^{2}$ Life is permitted due to the structure of the SM

Anthropic θ-term in QCD

QCD forms quark condensate $\langle\bar{q} q\rangle \sim \Lambda_{\mathrm{QCD}}^{3}$ breaking chiral symmetry (and probably 4-quark condensates $\langle\bar{q} q \bar{q} q\rangle$ not reducible to $\langle\bar{q} q\rangle^{2}$)
Can six-quark condensates $\langle q q q q q q\rangle$ be formed? B-violating namely $\left\langle(u d d)^{2}\right\rangle$ or $\left\langle(u d s)^{2}\right\rangle$ causing $n-\bar{n}, \quad \Lambda-\bar{\Lambda}$ mixings

Vafa-Witten theorem: QCD cannot break vector symmetries ...
.. the prove relies on the absence of θ-term (i.e. valid for $\theta=0$) Imagine world $\theta \sim 1$ where $\langle q q q q q q\rangle \sim \Lambda_{\mathrm{QCD}}^{9}$ - bad for Life - large $n-\bar{n}$, Goldstone β inducing $n \rightarrow \bar{n}+\beta$ in nuclei ...

Let us assume $\langle q q q q q q\rangle_{\theta} \sim F(\theta) \Lambda_{Q \mathrm{CD}}^{9} \quad$ with
$F(\theta)$ smooth periodic even function: $F(\theta) \simeq \cos \theta \simeq \theta^{2}+\ldots$ Then for $\theta \sim 10^{-10}, \quad\langle q q q q q q\rangle_{\theta}=\theta^{2} \wedge_{\mathrm{QCD}}^{9} \sim(1 \mathrm{MeV})^{9}$

- can such a fuzzy condensate be OK? Maybe in dense matter?

Back to trap-beam problem: τ_{n} vs. β-asymmetry

 Updated Fig. 7 from Belfatto, Beradze and Z.B, EPJ C 80, 149 (2020)Neutron - Dark Matter Connection: astrophysical consequences Sympho fantastique en cinq parties

Zurab Berezhiani

Summary

$$
\begin{aligned}
& g_{A}=1.27625(50) \\
& \tau_{\text {beam }}=888.0 \pm 2.0 \mathrm{~s}
\end{aligned}
$$

$$
\tau_{\text {trap }}=878.5 \pm 0.5 \mathrm{~s}
$$

Free neutron decay:

$$
0^{+}-0^{+} \text {decays: }
$$

$$
\begin{array}{cc}
G_{V}^{2}=\frac{K / \ln 2}{\mathcal{F}_{n} \tau_{n}\left(1+3 g_{A}^{2}\right)\left(1+\Delta_{R}\right)} \quad G_{V}^{2}=\frac{K}{2 \mathcal{F} t\left(1+\Delta_{R}\right)} \\
\tau_{n}=\frac{2 \mathcal{F} t}{\mathcal{F}_{n}\left(1+3 g_{A}^{2}\right)}=\frac{5172.1(1.1 \rightarrow 2.8)}{1+3 g_{A}^{2}} \mathrm{~s} \quad & \text { Czarnecki et al. } 2018
\end{array}
$$

G_{V} and Δ_{R} cancel out even in BSM $G_{V} \neq G_{F}\left|V_{u d}\right|: \quad g_{A}=-G_{A} / G_{V}$

$$
g_{A}=1.27625(50) \quad \longrightarrow \quad \tau_{n}^{\text {theor }}=878.7 \pm(0.6 \rightarrow 1.5) \mathrm{s} \underset{\tau_{\bar{\Xi}}}{ } \quad \tau_{\operatorname{trap}}
$$ en cinq parties

Zurab Berezhiani

Summary

$$
\begin{aligned}
\tau_{n}^{\text {theor }}=878.7 \pm 1.5 \mathrm{~s} \quad & \left.\tau_{\text {trap }}=878.5 \pm 0.5 \mathrm{~s} \quad \text { (compatible) }\right) \\
& \tau_{\text {beam }}=888.0 \pm 2.0 \mathrm{~s} \quad(4.5 \sigma)
\end{aligned}
$$

$$
\tau_{\mathrm{mat}}=880.1 \pm 0.7 \mathrm{~s} \quad \tau_{\mathrm{magn}}=877.8 \pm 0.3 \mathrm{~s} \quad(3.3 \sigma \text { discrepancy })
$$

So experimentally we have $\tau_{\text {magn }}<\tau_{n \rightarrow p}^{\text {theor }}<\tau_{\text {mat }}<\tau_{\text {beam }}$ which is possible in $n-n^{\prime}$ oscillation scenario So far so Good!

Dark matter Factory ?

Neutron - Dark Matter Connection: astrophysical consequences
Sympho fantastique en cinq parties

Zurab Berezhiani

If my hypothesis is correct, a simple solenoid (magn. field \sim Tesla) can be an effective machine transforming neutrons into DM neutrons

With good adiabatic conditions 50% transformation can be achieved

ORNL experiment via $n \rightarrow n^{\prime} \rightarrow n$ in strong magn, fields

Cabibbo Angle Anomaly

 stique en cinq partiesZurab Berezhiani

Summary

If CKM unitarity is assumed - strong discrepancy between
A: $\left|V_{u s}\right|=\sin \theta_{C}$
B: $\left|V_{u s} / V_{u d}\right|=\tan \theta_{C} \quad$ Unitarity excluded at $>3 \sigma$
$\mathrm{C}:\left|V_{u d}\right|=\cos \theta_{C}$

References

Neutron - Dark Matter Connection: astrophysical consequences
Sympho fantastique en cinq parties
Z.B., "Neutron lifetime puzzle and neutron-mirror neutron oscillation," Eur.Phys.J. C 79, 484 (2019), arXiv:1807.07906
Z.B., Biondi, Mannarelli and Tonelli, "Neutron-mirror neutron mixing and neutron stars," Eur.Phys.J. C 81, 1036 (2021), arXiv:2012.15233
Z.B., "Antistars or antimatter cores in mirror neutron stars?," arXiv:2106.11203 [astro-ph.HE]
Z.B., "A possible shortcut for neutron-antineutron oscillation through mirror world," Eur.Phys.J. C 81, 33 (2021), arXiv:2002.05609 Oldies ... but Goldies - Psychedelia or Serendipities of Artist?
Z.B. and Bento, "Neutron - mirror neutron oscillations: How fast might they be?," Phys.Rev.Lett. 96, 081801 (2006), hep-ph/0507031
Z.B., "Mirror world and its cosmological consequences," Int.J.Mod.Phys.

A 19, 3775-3806 (2004), hep-ph/0312335
Z.B., Comelli and Villante, "Early mirror universe: Inflation, baryogenesis, nucleosynthesis and dark matter," Phys.Lett. B 503, 362 (2001),
Z.B., Dolgov and Mohapatra, "Asymmetric inflationary reheating and the nature of mirror universe," Phys.Lett. B 375, 26 (1996)

