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Motivation

▶ Thermal history of the electroweak symmetry breaking is
interesting! (baryogenesis) → Standard Model has a
crossover transition.

▶ First order Electroweak phase transition: playground for
beyond the SM physics near the EW scale, with relatively
light fields and strong enough couplings to Higgs →
collider probes, gravitational wave signals?

▶ Our understanding of cosmological phase transitions and
their GW signatures are impaired by theoretical
uncertainties, due to insufficiencies in the computation of
thermodynamics.
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1st order cosmological phase transition (fig. from David J. Weir)

Cosmological GW background: huge discovery potential, to be probed by
future space-based GW observatories.
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Pipeline: EWPT in BSM theories.
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Thermodynamics in perturbation theory: effective
potential

φ

V
(φ
,T

)

T > Tc
T = Tc
T < Tc

Veff ≃
1
2
(−m2 +#g2T 2)ϕ2 +

1
4!

g2ϕ4 +#Tϕ3 + . . .

▶ Symmetric minimum at high T , broken minimum at T = 0,
degenerate at Tc , barrier → 1st order phase transition.

▶ Formal power counting: m2 ∼ (gT )2, g2/4π ≪ 1 (weak
coupling).
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Perturbative expansion at T = 0
The coupling expansion of the effective potential

V T=0
eff = A2g2︸ ︷︷ ︸

tree-level

+A4g4︸ ︷︷ ︸
1-loop

+A6g6︸ ︷︷ ︸
2-loop

+ . . . . (1)

The running of couplings takes the form

dg2

d logµ
= B4g4︸ ︷︷ ︸

1-loop

+B6g6︸ ︷︷ ︸
2-loop

+ . . . , (2)

The one-loop running of A2g2 is an O(g4) effect and is
cancelled exactly by explicit logarithms in A4g4, i.e. at one-loop
level

dV T=0
eff

d logµ
=

(
A2B4 +

dA4

d logµ

)
︸ ︷︷ ︸

cancels

g4 +O(g6). (3)

Renormalisation scale invariance: RG improved effective
potential.
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Expansion parameter at high-T
At high T loop expansion and coupling expansion misalign,
quadratic term: 1

2(−m2 +#g2T 2)ϕ2

and perturbation theory requires resummations near critical
temperature: −m2 → m2

eff = −m2 +#g2T 2.

The effective expansion parameter for light bosons is

g2

eE/T − 1
≈ g2T

E
≤ g2T

meff
∼ g

for meff ∼ gT . Physically: Bose enhancement, or high
occupancy of infrared bosonic modes.

For "ultrasoft" meff ≲ g2T , the perturbative expansion breaks
down:
Light bosons are nonperturbative at finite temperature (Linde’s
IR problem): lattice simulations required.
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Leftover scale dependence at one-loop at high-T

V 1-loop
eff (ϕ,T , µ̄) = Vtree + VCW + VT + Vdaisy (4)

= Vtree︸︷︷︸
O(g2)

+V resummed
soft︸ ︷︷ ︸
O(g3)

+ Vhard︸︷︷︸
O(ϕ2g2)+O(ϕ4g4)

, (5)

Quadratic piece (that determines Tc !) is strongly scale
dependent at one-loop

Veff ≃
1
2
( −µ2︸︷︷︸
tree-level

+#λT 2︸ ︷︷ ︸
1-loop

)

︸ ︷︷ ︸
O(g2), runs at O(g4)

ϕ2 + (2-loop)︸ ︷︷ ︸
O(g4) T 2 log-terms

ϕ2 . . .

Full O(g4) – and cancellation of RG-scale – requires 2-loop
thermal masses!
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Perturbative expansion at high-T
At high temperature, the enhancement of IR bosonic modes
modifies the coupling expansion of the effective potential,

V high-T
eff = a2g2︸︷︷︸

tree-level and 1-loop

+ a3g3︸︷︷︸
resummed 1-loop

+ a4g4︸︷︷︸
1-loop, (resummed) 2-loop

+ a5g5︸︷︷︸
resummed 3-loop

+ . . . . (6)

Odd powers of g arise, and loop orders are mixed in the
expansion coefficients.
One-loop running links the coefficients ai with ai+2 (and higher
loop running with ai+4 and so forth),

dV high-T
eff

d logµ
=

(
a2B4 +

da4

d logµ

)
︸ ︷︷ ︸

cancels

g4 +

(
3
2

a3B4 +
da5

d logµ

)
︸ ︷︷ ︸

cancels

g5 +O(g6).

(7)
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Perturbative expansion: summary

▶ The one-loop approximation to the thermal effective
potential is incomplete at O(g4). This causes residual
µ-dependence, and leads to numerical inaccuracies.

▶ At high-T , first possible cancellation of µ requires 2-loop
computation (and accuracy that matches that of T = 0,
requires 3-loop computation of resummed, IR
contributions).

▶ This detail is overlooked by almost all recent literature on
gravitational waves from cosmic phase transition (that
resort to one-loop level computation)!
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Numerical example: SM plus singlet

▶ Couple real scalar S to the SM with the Higgs portal
1
2a2H†H S2 and singlet self-interaction 1

4b4S4.

▶ Fix (A): mS = 160 GeV, a2 = 1.1 and b4 = 0.45

▶ and (B): mS = 160 GeV, a2 = 1.4 and b4 = 1.4.

▶ These two benchmark points have strong two-step phase
transitions.
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Critical temperature as function of RG scale µ

Left: BM-(A), right: BM-(B).
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▶ Conclusion: equilibrium quantities such as Tc are in control, only
if computed consistently up to O(g4).
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Multiple orders-of-magnitude uncertainty in the peak
GW amplitude
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Green: one-loop.
Blue: O(g4) for equilibrium thermodynamics.
Yellow (estimate!): O(g4) for bubble nucleation rate.
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How do I resum thee? (weak coupling g: O(gn))

L4d

Physical
parameters

V 4d
eff

L3d

V 3d
eff

Llattice
3d

Monte Carlo
simulation

Thermodynamics

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

▶ "4d approach" or 1-loop Veff with daisy resummation: (a)-(b)-(c): O(g3)

▶ Perturbative (dimensionally reduced) 3d EFT approach: (a)-(d)-(e)-(f): O(g4)
(2-loop) or O(g5) (3-loop).

▶ Non-perturbative 3d EFT approach: (a)-(d)-(g)-(h)-(i): O(g6) and captures
non-perturbative IR physics.
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Generic models: 3d EFT in Mathematica within
seconds

[2205.08815]: https://github.com/DR-algo/DRalgo
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Pushing perturbation theory to its limits

The pressure (p) admits a schematic expansion

p ≃ T 4
(

a + bg2 + cg3 + dg4 + eg5
)
+O(g6T 4), (8)

where a-e represent constants. Higher orders require
non-perturbative lattice simulations, so the O(g5T 4) piece is
the final order computable in perturbation theory. Its
computation involves the 3-loop effective potential within the 3d
EFT.

Challenge: compute all thermodynamic quantities to maximal
order in perturbation theory.
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Low order bubble nucleation rate is the most dominant
source of uncertainty.

Recent developments in [2104.11804], [2108.04377],
[2112.05472], [2112.08912].

Also the bubble wall speed should be derived as a function of
BSM model parameters.
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Summary

▶ Reliable theoretical predictions for LISA inevitably require
bringing the study of cosmological phase transitions into
the domain of precision cosmology.

▶ Dimensional reduction and use of 3d EFT is systematic
way to organise thermal resummations and attack the IR
problem and slow convergence at high-T .

▶ Challenge: determination of cosmological phase transition
thermodynamics up to the maximal order in perturbation
theory → sets a gold-standard which cannot be exceeded
without non-perturbative lattice simulations.

▶ Lattice simulations cannot replace perturbation theory in
scans over large parameter spaces of BSM theories.
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Thanks!
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SM + triplet scalar Σa: collider phenomenology

▶ Portal to Higgs by coupling a2: LSM + LΣ + 1
2a2H†H(ΣaΣa)

▶ Possible pheno targets for future colliders: triplet mass,
deviation to Higgs to digamma decay rate, branching
fraction Σ0 → ZZ .

Envision a future measurement:

mΣ = (. . .)± (. . .)

δγγ = (. . .)± (. . .)

BR(Σ0 → ZZ ) = (. . .)± (. . .)

Relate to a2 (usual T = 0 QFT).
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pheno → (mΣ,a2) → (T∗, α, β/H∗, vw) → LISA SNR
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Key points

▶ Need to go beyond 1-loop approximations in perturbation
theory.

▶ A first order transition during the second step could
generate a signal accessible to LISA generation detectors.

▶ Possible GW signal displays a strong sensitivity to the
portal coupling between the new scalar and the Higgs
boson.
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