LUND

UNIVERSITY

Speeding up SM Scattering Amplitudes Using Chirality Flow

DOKTORANDDAG 7 DECEMBER 2022 - ANDREW LIFSON

BASED ON HEP-PH:2003.05877 (EPJC), HEP-PH:2011.10075 (EPJC), AND HEP-PH:2203.13618 (EPJC)
IN COLLABORATION WITH JOAKIM ALNEFJORD, SIMON PLÄTZER, CHRISTIAN REUSCHLE, MALIN SJÖDAHL, AND ZENNY WETTERSTEN

A Quick Introduction to Me

Introduction

■ Australian living in Sweden

- Final-year PhD student (defend April 26th)
- Into running, football (both Australian and
 world types), cycling, golf, travelling
■ Pre-covid: organised joint theory/experimental drinks
■ Who will organise them again now?

UNIVERSITY

Interesting, Cool, or Useful Things in my PhD

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow
Method: Some Details
Flow Rules
Massless QED Examples
Massless QCD
Automation
Aim and method
Results
Conclusions

- Strong involvement in unions including chair of NDR
- Friends outside department
- Leadership and organisational skills (both real and for CV)
- Better understanding of university organisation

■ Five month stay in UC Louvain
■ Learned new skills (Python, Fortran, MadGraph)

- New contacts for future collaboration, referee letters etc.

■ Took several personal development courses at university

- How to finish on time workshop
- Career outside academia
- Career control for researchers
- List of options available at
https://www.staff.lu.se/employment/professional-and-careers-development/career-development-academic-staff/career-development-doctoral-students

And now onto the physics...

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods
Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details Flow Rules Massless QED Examples Massless QCD

Automation

1 Introduction
■ Scattering Amplitudes Recap

- Symmetries in Physics

2 Calculation Methods
■ Standard Calculation Methods

- Chirality Flow

3 Our Chirality Flow Method: Some Details
■ Flow Rules

- Massless QED Examples

■ Massless QCD
4 Automation

- Aim and method
- Results

5 Conclusions

Scattering Amplitudes Recap

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow
Method: Some Details
Flow Rules
Massless QED Examples Massless QCD

Automation
Aim and method
Results
Conclusions

LUND
UNIVERSITY

■ In any detector we count events, $N_{\text {events }}=\sigma I$
■ $\sigma=$ Cross section, defined by the type of interaction

- I = Intensity, parameter of experiment
- Cross-section is:

$$
\sigma(a+b \rightarrow x)=\underbrace{d \phi_{n}}_{\text {kinematics }} \times \underbrace{\overline{\mathcal{M}(a+b \rightarrow x) \mid}^{2}}_{\text {squared scattering amplitude }}
$$

How to Calculate Scattering Amplitude $\mathcal{M}(a+b \rightarrow x)$?
(Usually) use Feynman diagrams Use and exploit symmetries in theory

Factoring out Symmetries

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details Flow Rules Massless QED Examples Massless QCD

Automation

Aim and method

Results
Conclusions

LUND

■ In general: \{incoming particles $\} \rightarrow$ \{outgoing particles $\}$
■ Use crossing symmetry to work with $\{0\} \rightarrow$ \{outgoing particles $\}$
■ Symmetry groups and kinematics (Lorentz symmetry) factorise

Figure: By Mattias Sjö and Ewa Kwasniewicz

Symmetries in Physics

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow
Method: Some Details
Flow Rules
Massless QED Examples
Massless QCD
Automation
Aim and method
Results
Conclusions

LUND

- Always on the lookout for symmetries
\rightarrow conserved quantities: quantum numbers
- The most important symmetry groups: Lorentz (Poincaré) group, SU(n)

Crash course in Lorentz group

- Particles transform in different ways when boosted or rotated
- Algebra of Lorentz group $\equiv s o(3,1)_{\mathbb{C}} \cong s u(2) \oplus s u(2)$
- Representations of Lorentz group
- $(0,0)$ scalar particles
- $\left(\frac{1}{2}, 0\right)$ left-chiral and ($0, \frac{1}{2}$) right-chiral Weyl (2-component) spinors.
- $\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$, Dirac (4-component) spinors.
- $\left(\frac{1}{2}, \frac{1}{2}\right)$ vectors, e.g. photons, gluons

Connecting Lorentz Group to an Amplitude

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details

Flow Rules

Massless QED Examples
Massless QCD
Automation
Aim and method
Results
Conclusions

LUND
UNIVERSITY

How to Calculate a Process

Feynman diagrams are a proxy of a real scattering process
Each leg, vertex, etc. \equiv a mathematical expression
Different Lorentz reps \equiv different line-types \equiv different expressions

$\sim \underbrace{\left[\bar{u}\left(p_{1}\right) \gamma^{\mu}\left(p_{1}^{\nu}+p_{4}^{\nu}\right) \gamma_{\nu} \gamma^{\rho} v\left(p_{2}\right)\right] \epsilon_{\rho}\left(p_{3}\right) \epsilon_{\mu}\left(p_{2}\right)}$
A mathematical expression we have simplify and square

How to Calculate? The Original Method

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods
Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details Flow Rules
Massless QED Examples Massless QCD

Automation
Aim and method
Results
Conclusions

UNIVERSITY

Square 4×4 matrix, take trace Very slow, not computer efficient

How to Calculate? The Original Method

Introduction

Scattering Amplitudes Recap
Symmetries in Physics
Calculation Methods
Standard Calculation Methods
Chirality Flow
Our Chirality Flow
Method: Some Details
Flow Rules
Massless QED Examples
Massless QCD
Automation
Aim and method
Results
Conclusions

LUND
UNIVERSITY

Square 4×4 matrix, take trace Very slow, not computer efficient

- Keep all particles unpolarised
- Obtain amplitude as matrix

$\sim\left[\bar{v}_{r}\left(p_{2}\right) \gamma^{\mu} u_{s}\left(p_{1}\right)\right]\left[\bar{u}_{t}\left(p_{4}\right) \gamma_{\mu} v_{w}\left(p_{3}\right)\right]$

How to Calculate? The Original Method

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods
Standard Calculation Methods Chirality Flow

Our Chirality Flow
Method: Some Details
Flow Rules
Massless QED Examples
Massless QCD
Automation
Aim and method
Results
Conclusions

LUND
UNIVERSITY

Square 4×4 matrix, take trace Very slow, not computer efficient

- Keep all particles unpolarised
- Obtain amplitude as matrix
- Square the matrix amplitude
- Spin states are orthogonal

$$
\begin{aligned}
\sim & \sum_{r, s, t, w}\left[\bar{v}_{r}\left(p_{2}\right) \gamma^{\mu} u_{s}\left(p_{1}\right)\right]\left[\bar{u}_{t}\left(p_{4}\right) \gamma_{\mu} v_{w}\left(p_{3}\right)\right] \\
& \times\left[\bar{u}_{s}\left(p_{1}\right) \gamma^{\nu} v_{r}\left(p_{2}\right)\right]\left[\bar{v}_{w}\left(p_{3}\right) \gamma_{\nu} u_{t}\left(p_{4}\right)\right]
\end{aligned}
$$

How to Calculate? The Original Method

Introduction
Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details Flow Rules Massless QED Examples Massless QCD

Automation

Aim and method

Results
Conclusions

Square 4×4 matrix, take trace Very slow, not computer efficient

- Keep all particles unpolarised
- Obtain amplitude as matrix
- Square the matrix amplitude
- Spin states are orthogonal
- Move components around

$$
\begin{aligned}
& \sim \sum_{r, s, t, w}\left[\bar{v}_{r}\left(p_{2}\right) \gamma^{\mu} u_{s}\left(p_{1}\right)\right]\left[\bar{u}_{t}\left(p_{4}\right) \gamma_{\mu} v_{w}\left(p_{3}\right)\right] \\
& \quad \times\left[\bar{u}_{s}\left(p_{1}\right) \gamma^{\nu} v_{r}\left(p_{2}\right)\right]\left[\bar{v}_{w}\left(p_{3}\right) \gamma_{\nu} u_{t}\left(p_{4}\right)\right] \\
& \sim \sum_{r, s, t, w}\left[\gamma^{\nu} v_{r}\left(p_{2}\right) \bar{v}_{r}\left(p_{2}\right) \gamma^{\mu} u_{s}\left(p_{1}\right) \bar{u}_{s}\left(p_{1}\right)\right] \\
& \quad \times\left[\gamma_{\nu} u_{t}\left(p_{4}\right) \bar{u}_{t}\left(p_{4}\right) \gamma_{\mu} v_{w}\left(p_{3}\right) \bar{v}_{w}\left(p_{3}\right)\right] \\
& \text { Fith December 2022 }
\end{aligned}
$$

How to Calculate? The Original Method

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details Flow Rules Massless QED Examples Massless QCD

Automation
Aim and method
Results
Conclusions

UNIVERSITY

Square 4×4 matrix, take trace
Very slow, not computer efficient

- Keep all particles unpolarised
- Obtain amplitude as matrix
- Square the matrix amplitude

- Spin states are orthogonal
- Move components around
- Use spin sums

$$
\begin{aligned}
& \sim \operatorname{Tr}\left[\gamma^{\nu}\left(\not p_{2}-m_{e}\right) \gamma^{\mu}\left(\not p_{1}+m_{e}\right)\right] \\
& \quad \times \operatorname{Tr}\left[\gamma_{\nu}\left(\nmid_{4}+m_{\mu}\right) \gamma_{\mu}\left(\nmid_{3}+m_{\mu}\right)\right]
\end{aligned}
$$

- Take trace of fermionic structure

■ Requires identities of γ^{μ}

- Simplify

$$
\begin{aligned}
& \operatorname{Tr}\left[\gamma^{\mu_{1}} \gamma^{\mu_{2}}\right]=4 g^{\mu_{1} \mu_{2}} \\
& \operatorname{Tr}\left[\gamma^{\mu_{1}} \ldots \gamma^{\mu_{4}}\right]= \\
& 4\left(g^{\mu_{1} \mu_{2}} g^{\mu_{3} \mu_{4}}-g^{\mu_{1} \mu_{3}} g^{\mu_{2} \mu_{4}}+g^{\mu_{1} \mu_{4}} g^{\mu_{3} \mu_{2}}\right) \\
& \operatorname{Tr}\left[\gamma^{\mu_{1}} \ldots \gamma^{\mu_{2 n+1}}\right]=0
\end{aligned}
$$

How to Calculate? Spinor-Helicity

Introduction
Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods
Standard Calculation Methods Chirality Flow

Our Chirality Flow
Method: Some Details
Flow Rules
Massless QED Examples
Massless QCD
Automation
Aim and method
Results
Conclusions

- Spinors, polarisation vectors in terms of left-chiral $\mid p],[p \mid$ and right-chiral $|p\rangle,\langle p|$
- $\tau^{\mu} \equiv$ Pauli matrices

$$
\begin{aligned}
& \left.\left.\sim\left\langle p_{2}\right| \bar{\tau}^{\mu} \mid p_{1}\right]\left\langle p_{4}\right| \bar{\tau}_{\mu} \mid p_{3}\right] \\
& \left.=\left[p_{1}\left|\tau^{\mu}\right| p_{2}\right\rangle\left\langle p_{4}\right| \bar{\tau}_{\mu} \mid p_{3}\right] \\
& =\left\langle p_{4} p_{2}\right\rangle\left[p_{1} p_{3}\right]
\end{aligned}
$$

Spinor Inner Products

Do maths to get spinor inner products $\langle i j\rangle,[i j] \sim \sqrt{2 p_{i} \cdot p_{j}}$ Easy to square, computer efficient

How to Calculate? Spinor-Helicity

Introduction
Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods
Standard Calculation Methods Chirality Flow

Our Chirality Flow
Method: Some Details
Flow Rules
Massless QED Examples
Massless QCD
Automation
Aim and method
Results
Conclusions

LUND

Give each particle a defined helicity \Rightarrow amplitude now a number!

- Spinors, polarisation vectors in terms of left-chiral $\mid p],[p \mid$ and right-chiral $|p\rangle,\langle p|$
- $\tau^{\mu} \equiv$ Pauli matrices

$$
\begin{aligned}
& \left.\sim\left[p_{2}\left|\tau^{\mu}\right| p_{1}\right\rangle\left\langle p_{4}\right| \bar{\tau}_{\mu} \mid p_{3}\right] \\
& =\left\langle p_{4} p_{1}\right\rangle\left[p_{2} p_{3}\right]
\end{aligned}
$$

Spinor Inner Products

Do maths to get spinor inner products $\langle i j\rangle,[i j] \sim \sqrt{2 p_{i} \cdot p_{j}}$
Easy to square, computer efficient

How to Calculate? Spinor-Helicity

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods
Standard Calculation Methods Chirality Flow

Our Chirality Flow
Method: Some Details
Flow Rules
Massless QED Examples
Massless QCD
Automation
Aim and method
Results
Conclusions

- Spinors, polarisation vectors in terms of left-chiral $\mid p],[p \mid$ and right-chiral $|p\rangle,\langle p|$
■ $\tau^{\mu} \equiv$ Pauli matrices

Spinor Inner Products

Do maths to get spinor inner products $\langle i j\rangle,[i j] \sim \sqrt{2 p_{i} \cdot p_{j}}$ Easy to square, computer efficient

How to Calculate: Chirality-Flow

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details Flow Rules
Massless QED Examples Massless QCD

Automation
Aim and method
Results
Conclusions

UNIVERSITY

Chirality-Flow: Our New Method

Assign flow lines instead of $\mid p],[p|| p\rangle,,\langle p|$ etc.
Join lines consistently, then read off numbers $\langle i j\rangle,[i j] \sim \sqrt{2 p_{i} \cdot p_{j}}$ to square

Inner products now represented by connected lines

$\langle i j\rangle=-\langle j i\rangle=i$
 j

$$
[i j]=-[j i]=i \ldots \ldots \ldots, \ldots
$$

How to Calculate: Chirality-Flow

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details Flow Rules
Massless QED Examples Massless QCD

Automation
Aim and method
Results
Conclusions

UNIVERSITY

Chirality-Flow: Our New Method

Assign flow lines instead of $\mid p],[p|| p\rangle,,\langle p|$ etc.
Join lines consistently, then read off numbers $\langle i j\rangle,[i j] \sim \sqrt{2 p_{i} \cdot p_{j}}$ to square

Inner products now represented by connected lines

$\langle i j\rangle=-\langle j i\rangle=i$

The Massless QED Flow Rules: External Particles

Introduction
Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details Flow Rules
Massless QED Examples Massless QCD

Automation

Aim and method

Results
Conclusions

LUND
UNIVERSITY

Species	Feynman	Flow
$\bar{u}^{-}\left(p_{i}\right)$		$\bigcirc \longleftarrow i$
$v^{-}\left(p_{j}\right)$	$\bigcirc \longleftarrow \frac{i}{-}$	$\bigcirc{ }^{j}$
$v^{+}\left(p_{j}\right)$	$\bigcirc \longleftarrow \stackrel{i}{+}$	$\bigcirc \ldots \ldots j$
$\bar{u}^{+}\left(p_{i}\right)$	$\longrightarrow \quad{ }_{+}^{i}$	$\bigcirc-----i$
$\epsilon_{-}^{\mu}\left(p_{i}, r\right)$	Onnmi	
$\epsilon_{+}^{\mu}\left(p_{i}, r\right)$	Oسnni	$\frac{1}{\langle r i\rangle} \bigcirc \cdots \cdots-\cdots-\cdots-\cdots \quad \begin{aligned} & i \\ & r \end{aligned} \quad \text { or } \quad \frac{1}{\langle r i\rangle} \bigcirc \cdots$

$$
\text { Left-chiral } \equiv \text { dotted lines } \quad \text { right-chiral } \equiv \text { solid lines }
$$

The QED Flow Rules: Vertices and Propagators

Introduction
Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details

Flow Rules

Massless QED Examples
Massless QCD
Automation
Aim and method
Results
Conclusions

LUND
UNIVERSITY

Left-chiral \equiv dotted lines
right-chiral \equiv solid lines

An Illuminating Example: $\boldsymbol{e}^{+} e^{-} \rightarrow \gamma \gamma$

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details Flow Rules
Massless QED Examples
Massless QCD
Automation
Aim and method
Results
Conclusions

$$
\begin{aligned}
& \text { Spinor helicity: } \\
& \sim\left\langle p_{1}\right| \bar{\tau}^{\mu} \underbrace{\left.\left.\left(\mid p_{1}\right]\left\langle p_{1}\right|+\mid p_{4}\right]\left\langle p_{4}\right|\right)}_{p_{1}+p_{4}} \bar{\tau}^{\nu} \mid p_{2}] \underbrace{\frac{\left.\left\langle r_{3}\right| \bar{\tau}_{\nu} \mid p_{3}\right]}{\left\langle r_{3} 3\right\rangle}}_{\epsilon_{3}^{-}} \underbrace{\frac{\left[r_{4}\left|\tau_{\mu}\right| p_{4}\right\rangle}{\left[4 r_{4}\right]}}_{\epsilon_{4}^{+}} \\
& =\frac{\left.\left.\left.\left.\left(\left\langle p_{1}\right| \bar{\tau}^{\mu} \mid p_{1}\right]+\left\langle p_{1}\right| \bar{\tau}^{\mu} \mid p_{4}\right]\right)\left[r_{4}\left|\tau_{\mu}\right| p_{4}\right\rangle\left(\left\langle p_{1}\right| \bar{\tau}^{\nu} \mid p_{2}\right]+\left\langle p_{4}\right| \bar{\tau}^{\nu} \mid p_{2}\right]\right)\left[p_{3}\left|\tau_{\nu}\right| r_{3}\right\rangle}{\left\langle r_{3} 3\right\rangle\left[4 r_{4}\right]} \\
& =\underbrace{\frac{\left\langle 1 r_{4}\right\rangle([41]\langle 13\rangle+[44]\langle 43\rangle)\left[r_{3} 2\right]}{\left\langle r_{3} 3\right\rangle\left[4 r_{4}\right]}}_{\text {Fierz identities like } \left.\langle i| \bar{\tau}^{\mu} \mid j\right]\left[k\left|\tau_{\mu}\right|| \rangle=\langle i\rangle\right\rangle[k j]}=\underbrace{\frac{\left\langle 1 r_{4}\right\rangle[41]\langle 13\rangle\left[r_{3} 2\right]}{\left\langle r_{3} 3\right\rangle\left[4 r_{4}\right]}}_{[i i]=0}
\end{aligned}
$$

An Illuminating Example: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \gamma \gamma$

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details Flow Rules
Massless QED Examples Massless QCD

Automation
Aim and method
Results
Conclusions

UNIVERSITY

Chirality flow:

An Illuminating Example: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \gamma \gamma$

Introduction

Scattering Amplitudes Recap
Symmetries in Physics
Calculation Methods
Standard Calculation Methods
Chirality Flow
Our Chirality Flow
Method: Some Details

Flow Rules

Massless QED Examples Massless QCD

Automation
Aim and method
Results
Conclusions

UNIVERSITY

Chirality flow:

A complicated QED Example

Introduction
Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details Flow Rules
Massless QED Examples
Massless QCD
Automation
Aim and method
Results
Conclusions

LUND

Compare to:

- Standard QFT:
$2 \times \operatorname{Tr}\left(\gamma^{\mu_{1}} \cdots \gamma^{\mu_{12}}\right)$,
$2 \times \operatorname{Tr}\left(\gamma^{\mu_{1}} \cdots \gamma^{\mu_{4}}\right)$,
$2 \times$ photon spin sum
- Standard spinor-helicity: 5 charge conjugation/Fierz
+ rearranging

$$
=\underbrace{(\sqrt{2} e i)^{8}}_{\text {vertices }} \underbrace{\frac{(-i)^{3}}{s_{12} S_{34} S_{89} 10}}_{\text {photon propagators }} \underbrace{\frac{(i)^{4}}{s_{125} S_{346} S_{8910} S_{910}}}_{\text {fermion propagators }} \underbrace{\frac{1}{\left[8 r_{8}\right]\left\langle r_{9} 9\right\rangle}}_{\text {polarization vectors }} \quad[15]\langle 64\rangle[109]
$$

$$
\times\left(\left\langle r_{9} 9\right\rangle\left[9 r_{8}\right]+\left\langle r_{9} 10\right\rangle\left[10 r_{8}\right]\right)(\underbrace{[33]}_{0}\langle 37\rangle+[34]\langle 47\rangle+[36]\langle 67\rangle)
$$

$$
\times(-\langle 89\rangle[91]\langle 12\rangle-\langle 89\rangle[95]\langle 52\rangle-\langle 810\rangle[101]\langle 12\rangle-\langle 810\rangle[105]\langle 52\rangle)
$$

Introduction
Scattering Amplitudes Recap
Symmetries in Physics
Calculation Methods
Standard Calculation Methods
Chirality Flow
Our Chirality Flow
Method: Some Details
Flow Rules
Massless QED Examples
Massless QCD
Automation
Aim and method
Results
Conclusions

The Non-abelian Massless QCD Flow Vertices

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details

Flow Rules

Massless QCD
Automation
Aim and method
Results
Conclusions
Feynman
Flow

Arrow directions only consistently set within full diagram

QCD Example: $q_{1} \bar{q}_{1} \rightarrow q_{2} \bar{q}_{2} g$

Introduction

$$
[\cdots] \equiv\left\{2\left[q_{1} \bar{q}_{2}\right]\left\langle q_{2} \bar{q}_{1}\right\rangle\left(\left[1 q_{1}\right]\left\langle q_{1} r\right\rangle+\left[1 \bar{q}_{1}\right]\langle 1 r\rangle\right)\right.
$$

$$
\left.-2\left[q_{1} 1\right]\left\langle 1 \bar{q}_{1}\right\rangle\left\langle q_{2} r\right\rangle\left[1 \bar{q}_{2}\right]+2\left[q_{1} 1\right]\left\langle r \bar{q}_{1}\right\rangle\left\langle q_{2} 1\right\rangle\left[1 q_{2}\right]\right\}
$$

Automation of Chirality Flow: Why and How?

Introduction

Why automate?

■ Real calculations (almost) never done by pen and paper anymore

- Further validation

■ Most codes (e.g. MadGraph5_aMC@NLO) brute force matrix multiplication, we remove the need for it

■ Can we make faster simulations?

How to automate?

■ First test case: make minimal changes to massless QED in MadGraph5_aMC@NLO

■ Any difference in speed from our changes \Rightarrow sound conclusions

Our Main Result (hep-ph:2203.13618)

Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow Method: Some Details Flow Rules
Massless QED Examples Massless QCD

Automation

Aim and method

Results
Conclusions

LUND
UNIVERSITY

Evaluation time for 100000 matrix elements for $e^{+} e^{-}$to n photons

Conclusions and Outlook

Introduction
Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

Our Chirality Flow
Method: Some Details

Flow Rules

Massless QED Examples
Massless QCD
Automation
Aim and method
Results
Conclusions

UNIVERSITY

Shown today:

- Chirality flow is shortest route from Feynman diagram to complex number
- Further simplifies the spinor helicity formalism
- Calculations often performed in a single step, particularly for massless diagrams

■ Fully simplifies tree-level, massless-QED and QCD Feynman diagrams

- Can be automised for faster massless QED calculations

Not shown today but still valid:

■ Full standard model at tree level understood (see backup slides, papers)

Some examples of ongoing work:

- Automise for rest of standard model (so far QCD implemented, with Emil Boman, Malin Sjödahl, and Adam Warnebring)
■ Use to calculate loops (with Simon Plätzer and Malin Sjödahl)

Other work in this direction

- Simon Plätzer and Malin Sjödahl used chirality flow as basis for resummation (hep-ph:2204.03258)

The Non-abelian Massless QCD Flow Vertices

```
Backup Slides
```

Massless QCD
Massive Chirality Flow
Massive Examples
SM recap
Lorentz Group Details
Spinor-hel details
Chirality-Flow
Motivation

LUND

Arrow directions only consistently set within full diagram
Double line $\equiv g_{\mu \nu}$, momentum dot $\equiv p_{\mu}$

QCD Example: $q_{1} \bar{q}_{1} \rightarrow q_{2} \bar{q}_{2} g$

Backup Slides

Massless QCD

Massive Chirality Flow Massive Examples
SM recap
Lorentz Group Details
Spinor-hel details
Chirality-Flow Motivation

$$
\begin{aligned}
{[\cdots] } & \equiv\left\{2\left[q_{1} \bar{q}_{2}\right]\left\langle q_{2} \bar{q}_{1}\right\rangle\left(\left[1 q_{1}\right]\left\langle q_{1} r\right\rangle+\left[1 \bar{q}_{1}\right]\langle 1 r\rangle\right)\right. \\
& \left.-2\left[q_{1} 1\right]\left\langle 1 \bar{q}_{1}\right\rangle\left\langle q_{2} r\right\rangle\left[1 \bar{q}_{2}\right]+2\left[q_{1} 1\right]\left\langle r \bar{q}_{1}\right\rangle\left\langle q_{2} 1\right\rangle\left[1 q_{2}\right]\right\}
\end{aligned}
$$

Incoming Massive Spinors in Chirality Flow

Backup Slides

Massless QCD

Massive Chirality Flow Massive Examples
SM recap
Lorentz Group Details
Spinor-hel details
Chirality-Flow
Motivation
$p^{\mu}=p^{b, \mu}+\alpha q^{\mu}, \quad\left(p^{b}\right)^{2}=q^{2}=0, \quad e^{i \varphi} \sqrt{\alpha}=\frac{m}{\left\langle p^{b} q\right\rangle}$,

$$
e^{-i \varphi} \sqrt{\alpha}=\frac{m}{\left[q p^{b}\right]}
$$

Spin operator $-\frac{\Sigma^{\mu} s_{\mu}}{2}=\frac{\gamma^{5} s^{\mu} \gamma_{\mu}}{2}, \quad s^{\mu}=\frac{1}{m}\left(p^{b, \mu}-\alpha q^{\mu}\right)$

Spinor	Feynman	Flow
$\bar{v}^{-}(p)$		$\left(\bigcirc--<-\cdots p^{b} \quad, ~ \sqrt{\alpha} e^{i \varphi} \bigcirc \prec\right.$ ¢ $\left.q\right)$
$\bar{v}^{+}(p)$		$\left(-\sqrt{\alpha} e^{-i \varphi} \bigcirc---\longleftarrow----q \quad, \longleftarrow \longleftarrow p^{b}\right)$
$u^{-}(p)$		$\binom{\bigcirc \cdots \cdots-p^{b}}{\sqrt{\alpha} e^{i \varphi} \bigcirc \longrightarrow q}$
$u^{+}(p)$		
Andrew Lifson		$\begin{array}{lll}\text { Chirality Flow } & 7 \text { th December } 2022 & 3 / 1\end{array}$

Some Fermion Flow Rules

Backup Slides
Massless QCD
Massive Chirality Flow Massive Examples
SM recap
Lorentz Group Details
Spinor-hel details

Chirality-Flow

Motivation

$$
p^{\mu}=p^{b, \mu}+\alpha q^{\mu}, \quad\left(p^{b}\right)^{2}=q^{2}=0, \quad \alpha=\frac{p^{2}}{2 p \cdot q} \neq 0
$$

Fermion-vector vertex

Fermion propagator

$$
\frac{i}{p^{2}-m_{f}^{2}}\left(\begin{array}{cc}
m_{f} \delta^{\dot{\alpha}} & { }_{\dot{\beta}} \\
\sqrt{2} \bar{p}_{\alpha \dot{\beta}} p^{\dot{\alpha} \beta} & m_{f} \delta_{\alpha}{ }^{\beta}
\end{array}\right)=\frac{i}{p^{2}-m_{f}^{2}}\left(\begin{array}{c}
m_{f} \dot{\alpha} \ldots \ldots \\
\rightarrow p_{\dot{\beta}} \\
\rightarrow \cdots
\end{array}\right.
$$

Left and right chiral couplings may differ

A Massive Illuminating Example

Backup Slides
Massless QCD
Massive Chirality Flow Massive Examples
SM recap
Lorentz Group Details
Spinor-hel details
Chirality-Flow Motivation

Consider the same diagram of $f_{1}^{+} \bar{f}_{2}^{-} \rightarrow \gamma_{3}^{+} \gamma_{4}^{-}$as before but include mass m_{f}

- Obtain 3 new terms
- Simplify with choices of $q_{1}, q_{2}, r_{3}, r_{4}$
- $\quad e^{i \varphi_{i}} \sqrt{\alpha_{i}}=\frac{m_{i}}{\left\langle p_{i}^{i} i_{i}\right\rangle}, \quad e^{-i \varphi_{i}} \sqrt{\alpha_{i}}=\frac{m_{i}}{\left[q_{i} p_{i}^{i}\right]}$

A Second Massive Example: $f_{1} \bar{f}_{2} \rightarrow W \rightarrow f_{3} \bar{f}_{4} h_{5}$

Backup Slides Massless QCD

Massive Chirality Flow Massive Examples

SM recap
Lorentz Group Details
Spinor-hel details
Chirality-Flow Motivation

- W bosons simplifies ($C_{R}=0$)
- Simplify with choices of $q_{1}, \cdots q_{5}$
$\square e^{i \varphi_{i}} \sqrt{\alpha_{i}}=\frac{m_{i}}{\left\langle p_{i}^{p} q_{i}\right\rangle}, \quad e^{-i \varphi_{i}} \sqrt{\alpha_{i}}=\frac{m_{i}}{\left[q_{i} p_{i}^{p}\right]}$
- Scalar has no flow line

Step 1: Draw fermion lines: $\sim C_{L, 12} \sqrt{\alpha_{2}} e^{i \varphi_{2}}$

A Second Massive Example: $f_{1} \bar{f}_{2} \rightarrow W \rightarrow f_{3} \bar{f}_{4} h_{5}$

Backup Slides
Massless QCD
Massive Chirality Flow Massive Examples
SM recap
Lorentz Group Details
Spinor-hel details
Chirality-Flow Motivation

LUND
UNIVERSITY

- W bosons simplifies ($C_{R}=0$)
- Simplify with choices of $q_{1}, \cdots q_{5}$
$\square e^{i \varphi_{i}} \sqrt{\alpha_{i}}=\frac{m_{i}}{\left\langle p_{i}^{p} q_{i}\right\rangle}, \quad e^{-i \varphi_{i}} \sqrt{\alpha_{i}}=\frac{m_{i}}{\left[q_{i} p_{i}^{p}\right]}$
■ Scalar has no flow line

Step 2: Flip arrows and connect: $C_{L, 12} C_{L, 34} \sqrt{\alpha_{2} \alpha_{3}} e^{i\left(\varphi_{2}+\varphi_{3}\right)}$

The Standard Model and its Fundamental Particles

Backup Slides
Massless QCD
Massive Chirality Flow Massive Examples

SM recap
Lorentz Group Details
Spinor-hel details
Chirality-Flow
Motivation

LUND
UNIVERSITY

Standard Model of Elementary Particles

Figure from en.wikipedia.org/wiki/Standard_Model

Fermions (spin 1/2, Pauli exclusion)

- Leptons (EM and weakly charged)

■ Quarks (EW and colour charged)

Gauge Bosons (spin 1, B-E statistics)

- Mediate forces
- Photon = EM
- W, Z = Weak
- Gluon = Strong (QCD)

Scalar Boson (spin 0, B-E statistics)

■ Higgs (gives mass)

[^0]
Lorentz Group Representations

Backup Slides
Massless QCD
Massive Chirality Flow Massive Examples
SM recap
Lorentz Group Details

LUND
UNIVERSITY

Lorentz group elements: $e^{i\left(\theta_{i} J_{i}+\eta_{i} K_{i}\right)} \quad J_{i} \equiv$ rotations,$\quad K_{i} \equiv$ boosts
■ Lorentz group generators $\simeq 2$ copies of $\mathrm{su}(2)$ generators

- $s o(3,1)_{\mathbb{C}} \cong s u(2) \oplus s u(2)$

Group algebra defined by commutator relations

$$
\begin{gathered}
{\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k}, \quad\left[J_{i}, K_{j}\right]=i \epsilon_{i j k} K_{k}, \quad\left[K_{i}, K_{j}\right]=-i \epsilon_{i j k} J_{k}} \\
N_{i}^{ \pm}=\frac{1}{2}\left(J_{i} \pm i K_{i}\right), \quad\left[N_{i}^{-}, N_{j}^{+}\right]=0, \\
{\left[N_{i}^{-}, N_{j}^{-}\right]=i \epsilon_{i j k} N_{k}^{-}, \quad\left[N_{i}^{+}, N_{j}^{+}\right]=i \epsilon_{i j k} N_{k}^{+}}
\end{gathered}
$$

- Representations (i.e. realisations of $N_{i}^{ \pm}$)
- $(0,0)$ scalar particles
- ($\frac{1}{2}, 0$) left-chiral and ($0, \frac{1}{2}$) right-chiral Weyl (2-component) spinors.
- $\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$, Dirac (4-component) spinors.
- ($\frac{1}{2}, \frac{1}{2}$) vectors, e.g. gauge bosons

How to Calculate? Spinor-Helicity

Backup Slides
Massless QCD
Massive Chirality Flow
Massive Examples
SM recap
Lorentz Group Details
Spinor-hel details

LUND

Give each particle a defined helicity \Rightarrow amplitude now a number!
Spinors (in chiral basis):

$$
\left.\begin{array}{rlrl}
\text { rs (in chiral basis): : } \\
u^{+}(p) & =v^{-}(p)=\binom{0}{|p\rangle} & u^{-}(p)=v^{+}(p)=\binom{\mid p]}{0} \\
\bar{u}^{+}(p) & =\bar{v}^{-}(p)=([p \mid & 0
\end{array}\right) \quad \bar{u}^{-}(p)=\bar{v}^{+}(p)=\left(\begin{array}{cc}
0 & \langle p|) \\
\gamma^{\mu} & =\left(\begin{array}{cc}
0 & \sqrt{2} \tau^{\mu} \\
\sqrt{2} \bar{\tau}^{\mu} & 0
\end{array}\right)
\end{array}\right.
$$

- Amplitude written in terms of Lorentz-invariant spinor inner products

$$
\langle i j\rangle=-\langle j i\rangle \equiv\langle i \| j\rangle \text { and }[i j]=-[j i] \equiv[i \| j]
$$

■ These are well known complex numbers, $\langle i j\rangle \sim[i j] \sim \sqrt{2 p_{i} \cdot p_{j}}$
■ Remove $\tau / \bar{\tau}$ matrices in amplitude with

$$
\left.\left.\langle i| \bar{\tau}^{\mu} \mid j\right]\left[k\left|\tau_{\mu}\right| I\right\rangle=\langle i \mid\rangle[k j], \quad\langle i| \bar{\tau}^{\mu} \mid j\right]=\left[j\left|\tau^{\mu}\right| i\right\rangle
$$

Define Problem

Kinematic part of amplitude slowed by spin and vector structures

- Can we still improve on this?

■ Deriving spinor inner products $\langle i j\rangle,[k l]$ requires at least 2 steps

- Re-write every object as spinors

■ Use Fierz identity $\bar{\tau}_{\alpha \dot{\beta}}^{\mu} \tau_{\mu}^{\dot{\alpha} \beta}=\delta_{\alpha}^{\beta} \delta_{\dot{\beta}}^{\dot{\alpha}}$
■ Not intuitive which inner products we obtain

- In $\operatorname{SU}(\mathrm{N})$ use graphical reps for calculations

■ E.g. using the colour-flow method

- (Also birdtracks etc.)
- Spinor-helicity $\equiv s u(2) \oplus s u(2)$
- Can we use graphical reps?

Creating Chirality Flow: Building Blocks

Backup Slides
Massless QCD
Massive Chirality Flow Massive Examples

SM recap
Lorentz Group Details
Spinor-hel details
Chirality-Flow Motivation

LUND
UNIVERSITY

A flow is a directed line from one object to another $s u(2)$ objects have dotted indices and $s u(2)$ objects undotted indices

■ First step: Ansatz for spinor inner products (only possible Lorentz invariant)

$$
\begin{aligned}
\left\langle\left. i\right|^{\alpha} \mid j\right\rangle_{\alpha} & \equiv\langle i j\rangle=-\langle j i\rangle=i \longrightarrow \\
{\left[\left.i\right|_{\dot{\beta}} \mid j\right]^{\dot{\beta}} } & \equiv[i j]=-[j i]=i_{\ldots} \ldots \ldots
\end{aligned}
$$

- Spinors and Kronecker deltas follow

$$
\begin{aligned}
& \left\langle\left. i\right|^{\alpha}=\bigcirc \longleftarrow i\right. \\
& {\left[\left.i\right|_{\dot{\beta}}=\bigcirc \cdots \cdots i,\right.} \\
& \delta_{\alpha}^{\beta} \equiv \mathbb{1}_{\alpha}^{\beta}=\xrightarrow{\alpha} \quad{ }^{\beta}, \\
& |j\rangle_{\alpha}=\bigcirc \longrightarrow{ }^{j} \\
& \mid j]^{\dot{\beta}}=\bigcirc \ldots \ldots j \\
& \delta_{\dot{\alpha}}^{\dot{\beta}} \equiv \mathbb{1}_{\dot{\alpha}}^{\dot{\beta}}=\stackrel{\dot{\beta}}{\dot{\alpha}}
\end{aligned}
$$

[^0]: Slide layout adapted from Marius Utheim's 2018 talk

