





#### LUND UNIVERSITY

## Speeding up SM Scattering Amplitudes Using Chirality Flow

#### DOKTORANDDAG 7 DECEMBER 2022 - ANDREW LIFSON BASED ON HEP-PH:2003.05877 (EPJC), HEP-PH:2011.10075 (EPJC), AND HEP-PH:2203.13618 (EPJC) IN COLLABORATION WITH JOAKIM ALNEFJORD, SIMON PLÄTZER, CHRISTIAN REUSCHLE, MALIN SJÖDAHL, AND ZENNY WETTERSTEN



## A Quick Introduction to Me

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

#### Calculation Methods Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Detail

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



- Australian living in Sweden
- Final-year PhD student (defend April 26th)
- Into running, football (both Australian and world types), cycling, golf, travelling
- Pre-covid: organised joint theory/experimental drinks
  - Who will organise them again now?





## Interesting, Cool, or Useful Things in my PhD

#### ntroduction

- Scattering Amplitudes Recap Symmetries in Physics
- Calculation Methods
- Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Detai

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



- Strong involvement in unions including chair of NDR
- Friends outside department
- Leadership and organisational skills (both real and for CV)
- Better understanding of university organisation
- Five month stay in UC Louvain
  - Learned new skills (Python, Fortran, MadGraph)
  - New contacts for future collaboration, referee letters etc.
- Took several personal development courses at university
  - How to finish on time workshop
  - Career outside academia
  - Career control for researchers
  - List of options available at

https://www.staff.lu.se/employment/professional-and-careers-development/career-development-academic-staff/career-development-doctoral-students

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

## Calculation Methods

Standard Calculation Method Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

Conclusions

# And now onto the physics...

#### ntroduction

Scattering Amplitudes Recap Symmetries in Physics

#### **Calculation Methods**

Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and metho Results

#### Conclusions

## 1 Introduction

- Scattering Amplitudes Recap
- Symmetries in Physics

## Calculation Methods

- Standard Calculation Methods
- Chirality Flow

## 3 Our Chirality Flow Method: Some Details

- Flow Rules
- Massless QED Examples
- Massless QCD
- 4 Automation
  - Aim and method
  - Results
- 5 Conclusions

## Scattering Amplitudes Recap

#### ntroduction

#### Scattering Amplitudes Recap

Calculation Methods Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



In any detector we count events,  $N_{events} = \sigma I$ 

- $\sigma$  = Cross section, defined by the type of interaction
- I = Intensity, parameter of experiment

## Cross-section is:

$$\sigma(a+b\to x) = \underbrace{d\phi_n}_{i} \times \underbrace{\left|\mathcal{M}(a+b\to x)\right|^2}_{i}$$

kinematics so

squared scattering amplitude

How to Calculate Scattering Amplitude  $\mathcal{M}(a+b \rightarrow x)$ ?

## (Usually) use Feynman diagrams Use and exploit symmetries in theory

Andrew Lifson

## Factoring out Symmetries

#### ntroduction

Scattering Amplitudes Recap Symmetries in Physics

#### Calculation Methods Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and metho Results

#### Conclusions



In general: {incoming particles} → {outgoing particles}
 Use crossing symmetry to work with {0} → {outgoing particles}
 Symmetry groups and kinematics (Lorentz symmetry) factorise



## Figure: By Mattias Sjö and Ewa Kwasniewicz

Andrew Lifson

Chirality Flow

## Symmetries in Physics

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

#### Calculation Methods Standard Calculation Methods

Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and metho Results

#### Conclusions



## Always on the lookout for **symmetries**

- $\rightarrow$  conserved quantities: quantum numbers
- The most important symmetry groups: Lorentz (Poincaré) group, SU(n)

## Crash course in Lorentz group

- Particles transform in different ways when boosted or rotated
- Algebra of Lorentz group  $\equiv so(3,1)_{\mathbb{C}} \cong su(2) \oplus su(2)$
- Representations of Lorentz group
- (0,0) scalar particles
- ( $\frac{1}{2}$ , 0) left-chiral and (0,  $\frac{1}{2}$ ) right-chiral Weyl (2-component) spinors.
- ( $\frac{1}{2}$ , 0)  $\oplus$  (0,  $\frac{1}{2}$ ), Dirac (4-component) spinors.
- $\left(\frac{1}{2},\frac{1}{2}\right)$  vectors, e.g. photons, gluons

## Connecting Lorentz Group to an Amplitude

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

#### Calculation Methods Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



## How to Calculate a Process

Feynman diagrams are a proxy of a real scattering process Each leg, vertex, etc.  $\equiv$  a mathematical expression Different Lorentz reps  $\equiv$  different line-types  $\equiv$  different expressions

e.g. 
$$e^+ \xrightarrow{p_2} p_3 \xrightarrow{\gamma_3} \gamma_3$$
  
 $e^- \xrightarrow{p_1} p_4 \xrightarrow{\gamma_4} \gamma_4$ 

$$\sim \left[ar{u}(m{
ho}_1)\gamma^\mu\left(m{
ho}_1^
u+m{
ho}_4^
u
ight)\gamma_
u\gamma^
hom{v}(m{
ho}_2)
ight]\epsilon_
ho(m{
ho}_3)\epsilon_\mu(m{
ho}_2)
ight]$$

A mathematical expression we have simplify and square

#### Andrew Lifson

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

#### Calculation Methods

Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



## Square $4 \times 4$ matrix, take trace Very slow, not computer efficient

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

#### Calculation Methods Standard Calculation Methods

Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



Square 4  $\times$  4 matrix, take trace Very slow, not computer efficient

Keep all particles unpolarisedObtain amplitude as matrix



## $\sim [ar{v}_r(p_2)\gamma^\mu u_s(p_1)][ar{u}_t(p_4)\gamma_\mu v_w(p_3)]$

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

#### Calculation Methods Standard Calculation Methods

Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



# Square 4 $\times$ 4 matrix, take trace Very slow, not computer efficient

- Keep all particles unpolarisedObtain amplitude as matrix
- Square the matrix amplitude
  - Spin states are orthogonal



 $\sim \sum_{r,s,t,w} [\bar{v}_r(\rho_2)\gamma^{\mu}u_s(\rho_1)][\bar{u}_t(\rho_4)\gamma_{\mu}v_w(\rho_3)]$  $\times [\bar{u}_s(\rho_1)\gamma^{\nu}v_r(\rho_2)][\bar{v}_w(\rho_3)\gamma_{\nu}u_t(\rho_4)]$ 

#### ntroduction

Scattering Amplitudes Recap Symmetries in Physics

#### Calculation Methods Standard Calculation Methods

Chirality Flow

#### Our Chirality Flow Method: Some Detail

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



# Square 4 $\times$ 4 matrix, take trace Very slow, not computer efficient

- Keep all particles unpolarised
- Obtain amplitude as matrix
- Square the matrix amplitude
  - Spin states are orthogonal
- Move components around

Andrew Lifson

- $\sim \sum_{r,s,t,w} [\bar{v}_r(\rho_2)\gamma^{\mu}u_s(\rho_1)][\bar{u}_t(\rho_4)\gamma_{\mu}v_w(\rho_3)]$ 
  - $\times [\bar{u}_s(p_1)\gamma^{\nu}v_r(p_2)][\bar{v}_w(p_3)\gamma_{\nu}u_t(p_4)]$

$$\sim \sum_{r,s,t,w} [\gamma^{\nu} v_r(p_2) \bar{v}_r(p_2) \gamma^{\mu} u_s(p_1) \bar{u}_s(p_1)]$$

$$\times \left[\gamma_{\nu} u_{t}(p_{4}) \bar{u}_{t}(p_{4}) \gamma_{\mu} v_{w}(p_{3}) \bar{v}_{w}(p_{3})\right]$$

#### ntroduction

Scattering Amplitudes Recap Symmetries in Physics

#### Calculation Methods Standard Calculation Methods

Chirality Flow

#### Our Chirality Flow Method: Some Detail

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



# Square 4 $\times$ 4 matrix, take trace Very slow, not computer efficient

- Keep all particles unpolarised
- Obtain amplitude as matrix
- Square the matrix amplitude
  - Spin states are orthogonal
- Move components around
- Use spin sums
- Take trace of fermionic structure
- Requires identities of  $\gamma^{\mu}$
- Simplify

Andrew Lifson



$$\begin{split} & \sim & \mathrm{Tr} \big[ \gamma^{\nu} ( \not\!\!p_2 - m_e) \gamma^{\mu} ( \not\!\!p_1 + m_e) \big] \\ & \times & \mathrm{Tr} \big[ \gamma_{\nu} ( \not\!\!p_4 + m_{\mu}) \gamma_{\mu} ( \not\!\!p_3 + m_{\mu}) \big] \end{split}$$

$$\begin{split} & \operatorname{Tr} \left[ \gamma^{\mu_1} \gamma^{\mu_2} \right] = 4 g^{\mu_1 \mu_2} \\ & \operatorname{Tr} \left[ \gamma^{\mu_1} \dots \gamma^{\mu_4} \right] = \\ & 4 (g^{\mu_1 \mu_2} g^{\mu_3 \mu_4} - g^{\mu_1 \mu_3} g^{\mu_2 \mu_4} + g^{\mu_1 \mu_4} g^{\mu_3 \mu_2}) \\ & \operatorname{Tr} \left[ \gamma^{\mu_1} \dots \gamma^{\mu_{2n+1}} \right] = 0 \end{split}$$

Chirality Flow

7th December 2022 10/21

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

#### Calculation Methods

Standard Calculation Methods

#### Our Chirality Flow Method: Some Detail

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



Give each particle a defined helicity  $\Rightarrow$  amplitude now a number!

Spinors, polarisation vectors in terms of left-chiral |p|, |p| and right-chiral  $|p\rangle$ ,  $\langle p|$ 

 $au^{\mu}\equiv$  Pauli matrices



 $\sim \langle \boldsymbol{p}_{2} | \bar{\tau}^{\mu} | \boldsymbol{p}_{1} ] \langle \boldsymbol{p}_{4} | \bar{\tau}_{\mu} | \boldsymbol{p}_{3} ]$  $= [\boldsymbol{p}_{1} | \tau^{\mu} | \boldsymbol{p}_{2} \rangle \langle \boldsymbol{p}_{4} | \bar{\tau}_{\mu} | \boldsymbol{p}_{3} ]$  $= \langle \boldsymbol{p}_{4} \boldsymbol{p}_{2} \rangle [\boldsymbol{p}_{1} \boldsymbol{p}_{3} ]$ 

## **Spinor Inner Products**

Do maths to get spinor inner products  $\langle ij \rangle$ ,  $[ij] \sim \sqrt{2p_i \cdot p_j}$ Easy to square, computer efficient

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

#### Calculation Methods

Standard Calculation Methods

#### Our Chirality Flow Method: Some Detail

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



Give each particle a defined helicity  $\Rightarrow$  amplitude now a number!

Spinors, polarisation vectors in terms of left-chiral |p|, |p| and right-chiral  $|p\rangle$ ,  $\langle p|$ 

•  $\tau^{\mu} \equiv$  Pauli matrices



## **Spinor Inner Products**

Do maths to get spinor inner products  $\langle ij \rangle$ ,  $[ij] \sim \sqrt{2p_i \cdot p_j}$ Easy to square, computer efficient

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

#### Calculation Methods

Standard Calculation Methods

#### Our Chirality Flow Method: Some Detail

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



Give each particle a defined helicity  $\Rightarrow$  amplitude now a number!

Spinors, polarisation vectors in terms of left-chiral |p], [p] and right-chiral  $|p\rangle$ ,  $\langle p|$ 

•  $\tau^{\mu} \equiv$  Pauli matrices



## **Spinor Inner Products**

Do maths to get spinor inner products  $\langle ij \rangle$ ,  $[ij] \sim \sqrt{2p_i \cdot p_j}$ Easy to square, computer efficient

## How to Calculate: Chirality-Flow

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



## Chirality-Flow: Our New Method

Assign flow lines instead of |p|, |p|,  $|p\rangle$ ,  $\langle p|$  etc. Join lines consistently, then read off numbers  $\langle ij\rangle$ ,  $[ij] \sim \sqrt{2p_i \cdot p_i}$  to square



Inner products now represented by connected lines

$$|\mathbf{ij}\rangle = -\langle \mathbf{ji}\rangle = i \_ j \qquad [\mathbf{ij}] = -[\mathbf{ji}] = i ...., j$$

Andrew Lifson

## How to Calculate: Chirality-Flow

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



## Chirality-Flow: Our New Method

Assign flow lines instead of |p|, |p|,  $|p\rangle$ ,  $\langle p|$  etc. Join lines consistently, then read off numbers  $\langle ij\rangle$ ,  $[ij] \sim \sqrt{2p_i \cdot p_i}$  to square



Inner products now represented by connected lines

$$\langle ij \rangle = -\langle ji \rangle = i \_ j$$
  $[ij] = -[ji] = i .... j$ 

Andrew Lifson

## The Massless QED Flow Rules: External Particles



Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules

Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions





Left-chiral  $\equiv$  dotted lines

right-chiral  $\equiv$  solid lines

Andrew Lifson

Chirality Flow

## The QED Flow Rules: Vertices and Propagators

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

#### Calculation Methods Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Details

#### Flow Rules

Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions





Left-chiral  $\equiv$  dotted lines

right-chiral  $\equiv$  solid lines

Andrew Lifson

Chirality Flow

7th December 2022 14/21

## An Illuminating Example: $e^+e^- \rightarrow \gamma\gamma$

#### Introduction

- Scattering Amplitudes Recap Symmetries in Physics
- Calculation Methods Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Details

- Flow Rules
- Massless QED Examples
- Massiess QCD

#### Automation

Aim and method Results

#### Conclusions





## An Illuminating Example: $e^+e^- \rightarrow \gamma\gamma$

#### Introduction

| Scattering | Amplitudes R | eca |
|------------|--------------|-----|
| Symmetrie  | s in Physics |     |

Calculation Methods Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Detai

Flow Rules

#### Massless QED Examples

Massless QCD

#### Automation

Aim and method Results

#### Conclusions





Andrew Lifson

**Chirality flow:** 

 $r_4$ 

## An Illuminating Example: $e^+e^- \rightarrow \gamma\gamma$

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Detai

Flow Rules

#### Massless QED Examples

Massless QCD

#### Automation

Aim and method Results

#### Conclusions





## **Chirality flow:**



Andrew Lifson

# A complicated QED Example $\begin{array}{c} 1^{+} & 2^{-} & 3^{+} & 4^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 4^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 4^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 4^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 4^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{-} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{+} & 1^{-} & 1^{-} & 1^{-} \\ 1^{+} & 1^{+} & 1^{+} & 1^{-} & 1^{-} \\ 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{-} & 1^{-} \\ 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} \\ 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} \\ 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} \\ 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+} & 1^{+$

Massless QED Examples

Massless QCD

#### Automation

Aim and metho Results

#### Conclusions







## Arrow directions only consistently set within full diagram

Andrew Lifson

Results

UNIVERSITY

Chirality Flow

## QCD Example: $q_1\bar{q}_1 \rightarrow q_2\bar{q}_2g$

#### Introduction

- Scattering Amplitudes Recap Symmetries in Physics
- Calculation Methods Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules Massless QED Examples

#### Massless QCD

#### Automation

Aim and method Results

#### Conclusions





## Automation of Chirality Flow: Why and How?

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

#### Calculation Methods Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



## Why automate?

- Real calculations (almost) never done by pen and paper anymore
- Further validation
- Most codes (e.g. MadGraph5\_aMC@NLO) brute force matrix multiplication, we remove the need for it
- Can we make faster simulations?

## How to automate?

- First test case: make minimal changes to massless QED in MadGraph5\_aMC@NLO
- Any difference in speed from our changes ⇒ sound conclusions

## Our Main Result (hep-ph:2203.13618)

#### Introduction

Scattering Amplitudes Recap Symmetries in Physics

Calculation Methods Standard Calculation Methods Chirality Flow

#### Our Chirality Flow Method: Some Details

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method

Results

#### Conclusions





## **Conclusions and Outlook**

#### ntroduction

Scattering Amplitudes Reca Symmetries in Physics

Calculation Methods Standard Calculation Methods

#### Our Chirality Flow Method: Some Detail

Flow Rules Massless QED Examples Massless QCD

#### Automation

Aim and method Results

#### Conclusions



## Shown today:

- Chirality flow is shortest route from Feynman diagram to complex number
  - Further simplifies the spinor helicity formalism
  - Calculations often performed in a single step, particularly for massless diagrams
- Fully simplifies tree-level, massless-QED and QCD Feynman diagrams
- Can be automised for faster massless QED calculations

## Not shown today but still valid:

Full standard model at tree level understood (see backup slides, papers)

## Some examples of ongoing work:

- Automise for rest of standard model (so far QCD implemented, with Emil Boman, Malin Sjödahl, and Adam Warnebring)
- Use to calculate loops (with Simon Plätzer and Malin Sjödahl)

## Other work in this direction

 Simon Plätzer and Malin Sjödahl used chirality flow as basis for resummation (hep-ph:2204.03258)

## The Non-abelian Massless QCD Flow Vertices

Backup Slides Massless QCD

Massive Chirality Flow Massive Examples

SM recap

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation





Arrow directions only consistently set within full diagram Double line  $\equiv g_{\mu\nu}$ , momentum dot  $\equiv \rho_{\mu}$ 

Andrew Lifson

Chirality Flow

7th December 2022 1/11

## QCD Example: $q_1\bar{q}_1 \rightarrow q_2\bar{q}_2g$

#### Backup Slides Massless QCD

| Massivo          | e Chirality | Flow |
|------------------|-------------|------|
| Massive Examples |             |      |

SM recap

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation





Andrew Lifson

Chirality Flow

7th December 2022 2/11

## **Incoming Massive Spinors in Chirality Flow**

**Backup Slides** Massless QCD

Massive Chirality Flow Massive Examples

SM recap

**Spinor-hel details** 

**Chirality-Flow** Motivation



$$p^{\mu} = p^{\flat,\mu} + \alpha q^{\mu} , \quad (p^{\flat})^2 = q^2 = 0 , \quad e^{i\varphi}\sqrt{\alpha} = \frac{m}{\langle p^{\flat}q \rangle} , \qquad e^{-i\varphi}\sqrt{\alpha} = \frac{m}{[qp^{\flat}]}$$
Spin operator  $-\frac{\Sigma^{\mu}s_{\mu}}{2} = \frac{\gamma^5 s^{\mu}\gamma_{\mu}}{2}, \quad s^{\mu} = \frac{1}{m}(p^{\flat,\mu} - \alpha q^{\mu})$ 



7th December 2022 3/11

## Some Fermion Flow Rules

Backup Slides Massless QCD

#### Massive Chirality Flow Massive Examples

SM recap

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation



$$oldsymbol{p}^\mu = oldsymbol{p}^{lat,\mu} + lpha oldsymbol{q}^\mu \;, \quad (oldsymbol{p}^lat)^2 = oldsymbol{q}^2 = oldsymbol{0} \;, \quad lpha = rac{oldsymbol{p}^2}{2oldsymbol{p}\cdotoldsymbol{q}} 
eq 0 \;,$$

## Fermion-vector vertex

$$\gamma^{\mu}$$
 = ie(P<sub>L</sub>C<sub>L</sub> + P<sub>R</sub>C<sub>R</sub>) $\gamma^{\mu}$  = ie $\sqrt{2}$ 

$$\begin{pmatrix} 0 & C_{R} & \frac{\dot{\alpha}}{\beta} \\ C_{L} & 0 \end{pmatrix}$$

Fermion propagator

Left and right chiral couplings may differ

Andrew Lifson

1

Chirality Flow

7th December 2022 4/11

## A Massive Illuminating Example





SM recap

- Lorentz Group Details
- Spinor-hel details
- Chirality-Flow Motivation



Consider the same diagram of  $f_1^+ \bar{f}_2^- \to \gamma_3^+ \gamma_4^-$  as before but include mass  $m_f$ 



Andrew Lifson

7th December 2022 5/11

## A Second Massive Example: $f_1 \overline{f}_2 \rightarrow W \rightarrow f_3 \overline{f}_4 h_5$

Massless QCD

Massive Chirality Flow Massive Examples

SM recap

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation



• W bosons simplifies ( $C_R = 0$ ) W Simplify with choices of  $a_1, \dots, a_5$  $\bullet e^{i\varphi_i}\sqrt{\alpha_i} = \frac{m_i}{\langle p_i^{\flat} q_i \rangle}, \quad e^{-i\varphi_i}\sqrt{\alpha_i} = \frac{m_i}{[q_i p_i^{\flat}]}$ Scalar has no flow line  $q_2$ Step 1: Draw fermion lines:  $\sim C_{L,12} \sqrt{\alpha_2} e^{i\varphi_2}$  $\times C_{L,34} \sqrt{\alpha_3} (-e^{i\varphi_3}) \left| \sqrt{\alpha_4} (-e^{i\varphi_4}) - 5 \right| \sqrt{\alpha_4} (-e^{i\varphi_4}) - 5 \right| \sqrt{\alpha_4} (-e^{i\varphi_4}) - 5$ 

Andrew Lifson

Chirality Flow

7th December 2022 6/11

## A Second Massive Example: $f_1 \overline{f}_2 \rightarrow W \rightarrow f_3 \overline{f}_4 h_5$

#### Backup Slides

Massless QCD

#### Massive Chirality Flow Massive Examples

SM recap

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation



• W bosons simplifies ( $C_R = 0$ )

- Simplify with choices of  $q_1, \dots q_5$   $e^{i\varphi_i}\sqrt{\alpha_i} = \frac{m_i}{\langle p_i^{\flat}q_i \rangle}, \quad e^{-i\varphi_i}\sqrt{\alpha_i} = \frac{m_i}{[q_i p_i^{\flat}]}$ 
  - Scalar has no flow line



Step 2: Flip arrows and connect:  $C_{L,12}C_{L,34}\sqrt{\alpha_2\alpha_3}e^{i(\varphi_2+\varphi_3)}$ 



Andrew Lifson

## The Standard Model and its Fundamental Particles

#### Backup Slides

Massless QCD

Massive Chirality Flow Massive Examples

#### SM recap

- Lorentz Group Details
- Spinor-hel details
- Chirality-Flow Motivation



#### Standard Model of Elementary Particles



Figure from en.wikipedia.org/wiki/Standard\_Model

Slide layout adapted from Marius Utheim's 2018 talk

## Fermions (spin 1/2, Pauli exclusion)

- Leptons (EM and weakly charged)
- Quarks (EW and colour charged)

## Gauge Bosons (spin 1, B-E statistics)

- Mediate forces
- Photon = EM
- W, Z = Weak
- Gluon = Strong (QCD)

## Scalar Boson (spin 0, B-E statistics)

Higgs (gives mass)

## Lorentz Group Representations

## Backup Slides

#### Massive Chirality Flow Massive Examples

SM recap

#### Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation



Lorentz group elements:  $e^{i(\theta_i J_i + \eta_i K_i)}$   $J_i \equiv$  rotations,  $K_i \equiv$  boosts

# Lorentz group generators ≃ 2 copies of su(2) generators so(3,1)<sub>C</sub> ≃ su(2) ⊕ su(2)

Group algebra defined by commutator relations

$$[J_i, J_j] = i\epsilon_{ijk}J_k, \quad [J_i, K_j] = i\epsilon_{ijk}K_k, \quad [K_i, K_j] = -i\epsilon_{ijk}J_k$$
$$N_i^{\pm} = \frac{1}{2}(J_i \pm iK_i), \quad [N_i^-, N_j^+] = 0,$$
$$[N_i^-, N_j^-] = i\epsilon_{ijk}N_k^-, \quad [N_j^+, N_j^+] = i\epsilon_{ijk}N_k^+$$

- **Representations** (i.e. realisations of  $N_i^{\perp}$ )
  - (0,0) scalar particles
  - ( $\frac{1}{2}$ , 0) left-chiral and (0,  $\frac{1}{2}$ ) right-chiral Weyl (2-component) spinors.
  - ( $\frac{1}{2}$ , 0)  $\oplus$  (0,  $\frac{1}{2}$ ), Dirac (4-component) spinors.
  - $\left(\frac{1}{2},\frac{1}{2}\right)$  vectors, e.g. gauge bosons

Andrew Lifson

Give each particle a defined helicity  $\Rightarrow$  amplitude now a number!

Spinors (in chiral basis):  

$$u^+(p) = v^-(p) = \begin{pmatrix} 0 \\ |p \rangle \end{pmatrix}$$
 $u^-(p) = v^+(p) = \begin{pmatrix} |p| \\ 0 \end{pmatrix}$ 
 $\bar{u}^+(p) = \bar{v}^-(p) = ([p| \ 0) \qquad \bar{u}^-(p) = \bar{v}^+(p) = (0 \ \langle p|)$ 
 $\gamma^{\mu} = \begin{pmatrix} 0 & \sqrt{2}\tau^{\mu} \\ \sqrt{2}\bar{\tau}^{\mu} & 0 \end{pmatrix}$ 
 $\sqrt{2}\tau^{\mu} = (1, \vec{\sigma}), \ \sqrt{2}\bar{\tau}^{\mu} = (1, -\vec{\sigma}),$ 

Amplitude written in terms of Lorentz-invariant spinor inner products

$$\langle ij \rangle = -\langle ji \rangle \equiv \langle i||j \rangle$$
 and  $[ij] = -[ji] \equiv [i||j]$ 

- These are well known complex numbers,  $\langle ij \rangle \sim [ij] \sim \sqrt{2p_i \cdot p_j}$
- Remove  $\tau/\bar{\tau}$  matrices in amplitude with

 $\langle i|\bar{\tau}^{\mu}|j][k|\tau_{\mu}|l\rangle = \langle il\rangle[kj], \qquad \langle i|\bar{\tau}^{\mu}|j] = [j|\tau^{\mu}|i\rangle$ 

Andrew Lifson

UNIVERSITY

Spinor-hel details

## Define Problem

#### Backup Slides

Massless QCD

- Massive Chirality Flow Massive Examples
- SM recap
- Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation



Kinematic part of amplitude slowed by spin and vector structures

- Can we still improve on this?
  - Deriving spinor inner products  $\langle ij \rangle$ , [kl] requires at least 2 steps
    - Re-write every object as spinors
    - Use Fierz identity  $\bar{\tau}^{\mu}_{\alpha\dot{\beta}}\tau^{\dot{\alpha}\beta}_{\mu} = \delta^{\ \beta}_{\alpha}\delta^{\dot{\alpha}}_{\ \dot{\beta}}$
    - Not intuitive which inner products we obtain
- In SU(N) use graphical reps for calculations
  - E.g. using the colour-flow method
  - (Also birdtracks etc.)
- Spinor-helicity  $\equiv su(2) \oplus su(2)$ 
  - Can we use graphical reps?

## **Creating Chirality Flow: Building Blocks**

Massless QCD

Massive Chirality Flow Massive Examples

SM recap

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation



A flow is a directed line from one object to another su(2) objects have dotted indices and su(2) objects undotted indices

First step: Ansatz for spinor inner products (only possible Lorentz invariant)  $\langle i | \alpha | j \rangle_{\alpha} \equiv \langle i j \rangle = -\langle j i \rangle = i \_ j$ 

$$[i|_{\dot{\beta}}|j]^{\beta} \equiv [ij] = -[ji] = i \dots$$

Spinors and Kronecker deltas follow

$$\langle i | {}^{\alpha} = \bigoplus i , \qquad |j\rangle_{\alpha} = \bigoplus j$$

$$[i]_{\dot{\beta}} = \bigoplus \cdots i , \qquad |j]^{\dot{\beta}} = \bigoplus \cdots j$$

$$\equiv \mathbb{1}_{\alpha}^{\beta} = \stackrel{\alpha}{\longrightarrow} j , \qquad \delta^{\dot{\beta}}_{\dot{\alpha}} \equiv \mathbb{1}^{\dot{\beta}}_{\dot{\alpha}} = \stackrel{\dot{\beta}}{\longrightarrow} \cdots \stackrel{\dot{\alpha}}{\longrightarrow}$$

Andrew Lifson

 $\delta_{\alpha}^{\ \beta}$