Improving the Standard Model predictions for V+jet decay coefficients

Timea Vitos Supervisor: Rikkert Frederix¹

Lund University Theoretical Physics and Astronomy

> Lund PhD student day December 7, 2022

¹and collaboration with: M. Pellen, R. Poncelet, A. Popescu

LHC on the computer

- Proton-proton collision simulations
- My focus area during my PhD: hard scattering
- High-precision phenomenology

Today's talk

Precision (LHC) SM phenomenology

Decay coefficients for V+jet

Electroweak corrections to the angular coefficients in finite-pT Z-boson production and dilepton decay

arXiv:2007.08867

Angular coefficients in W+j production at the LHC with high precision

arXlv:2204.12394

Decay coefficients for V+jet (Drell-Yan process)

• Differential cross section (5-dimensional) in V-boson kinematics expanded in real spherical harmonics

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\rho_{T,V}\mathrm{d}y_{V}\mathrm{d}m_{ll}\mathrm{d}\Omega} \propto \left((1+\cos^{2}\theta) + A_{0}\frac{1}{2}(1-3\cos^{2}\theta) + A_{1}\sin 2\theta\cos\phi + A_{2}\frac{1}{2}\sin^{2}\theta\cos2\phi + A_{3}\sin\theta\cos\phi + A_{4}\cos\theta + A_{5}\sin^{2}\theta\sin2\phi + A_{6}\sin2\theta\sin\phi + A_{7}\sin\theta\sin\phi \right)$$
(1)

with eight angular/decay coefficients $A_i(p_{T,V}, y_V, m_{II})$ • Angles (θ, ϕ) are angles of I^{\pm} in the Collins-Soper frame

Decay coefficients for V+jet (Drell-Yan process)

• Differential cross section (5-dimensional) in V-boson kinematics expanded in real spherical harmonics

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\rho_{T,V}\mathrm{d}y_{V}\mathrm{d}m_{ll}\mathrm{d}\Omega} \propto \left((1+\cos^{2}\theta) + A_{0}\frac{1}{2}(1-3\cos^{2}\theta) + A_{1}\sin 2\theta\cos\phi + A_{2}\frac{1}{2}\sin^{2}\theta\cos2\phi + A_{3}\sin\theta\cos\phi + A_{4}\cos\theta + A_{5}\sin^{2}\theta\sin2\phi + A_{6}\sin2\theta\sin\phi + A_{7}\sin\theta\sin\phi \right)$$
(1)

with eight angular/decay coefficients $A_i(p_{T,V}, y_V, m_{II})$

- Angles $(heta, \phi)$ are angles of l^{\pm} in the **Collins-Soper frame**
- · This decomposition separates production mechanism and decay part

Decay coefficients for V+jet (Drell-Yan process)

• Differential cross section (5-dimensional) in V-boson kinematics expanded in real spherical harmonics

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{T,V}\mathrm{d}y_V\mathrm{d}m_{ll}\mathrm{d}\Omega} \propto \left((1+\cos^2\theta) + A_0 \frac{1}{2} (1-3\cos^2\theta) + A_1 \sin 2\theta \cos\phi + A_2 \frac{1}{2} \sin^2\theta \cos 2\phi + A_3 \sin\theta \cos\phi + A_4 \cos\theta + A_5 \sin^2\theta \sin 2\phi + A_6 \sin 2\theta \sin\phi + A_7 \sin\theta \sin\phi \right)$$
(2)

with eight angular/decay coefficients $A_i(p_{T,V}, y_V, m_{II})$

- Angles (θ, ϕ) are angles of l^{\pm} in the **Collins-Soper frame**
- This decomposition separates production mechanism and decay part

Decay coefficients for Z+jet: Lam-Tung relation

- Up to LO: Lam-Tung relation $A_0 A_2 = 0$
- Predictions for Z+jet available at NNLO QCD²
- ATLAS and CMS (and runs at Tevatron) all measured **higher violation** of Lam-Tung than predicted by NNLO QCD at $p_{T,Z} > 20$ GeV

²R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, et al. High Energ. Phys. 2017, 3 (2017)

Angular coefficients for Z+jet: results

 $\circ\,$ Lam-Tung violation A_0-A_2 (differentially in the Z-boson $p_T)$ at LO and NLO QCD (left) and NLO QCD+EW (right) 3

Angular coefficients for Z+jet: results

• Lam-Tung violation $A_0 - A_2$ at NNLO QCD with ATLAS data (left) ⁴ and NLO QCD+EW (right)

- Electroweak effects move violation towards the data for the low-p_T region
- In high- p_T region, electroweak effects are negligible

 ⁴R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, et al, High Energ. Phys. 2017, 3 (2017) Timea Vitos
 9 / 1

Angular coefficients for W+jet: motivation

- $\circ~W^{\pm}\text{+jet}$ more difficult to measure due to the neutrino
- $\,\circ\,$ (partly) Direct decay coefficient measurements by CDF (1.8 TeV)^5
- ATLAS: template fits of distributions to measure W-boson mass
- $\,\circ\,$ Improve fluctuations by an unfolding to Z+jet 6

⁵CDF Collaboration arXiv:hep-ex/0504020 ⁶ATLAS Collaboration arXiv:1701.07240

Angular coefficients for W+jet: results, inclusive rapidity

 $\,\circ\,$ The coefficients A_0 (left) and A_4 (right) for W^- signature, inclusive in rapidity 7

⁷M. Pellen, R. Poncelet, A. Popescu, T. Vitos. arXiv:2204.12394

Timea Vitos

11 / 1

Angular coefficients for W+jet: EW non-closure effect⁸

• The expansion to spherical harmonics is no longer valid when EW splittings are allowed $(1 \rightarrow 3 \text{ kinematics})$

⁸M. A. Ebert, et al.. arXiv:2006.11382

Angular coefficients for W+jet: EW non-closure effect⁸

- The expansion to spherical harmonics is no longer valid when EW splittings are allowed $(1 \rightarrow 3 \text{ kinematics})$
- NLO EW (off-shell) versus reweighted with A_i show good agreement (except first few beins)

⁸M. A. Ebert, et al.. arXiv:2006.11382

Probing the spin correlation of tt production at NLO QCD+EW arXiv:2105.11478

• Spin correlation for top-anti-top pair production

Probing the spin correlation of tt production at NLO QCD+EW arX0y:2105.11478

The colour matrix at next-to-leading-colour accuracy for tree-level multi-parton processes arXiv:2109.10377 • Spin correlation for top-anti-top pair production

• More efficient way of treating colour: truncating the colour expansion

Probing the spin correlation of tt production at NLO QCD+EW arX0y:2105.11478

The colour matrix at next-to-leading-colour accuracy for tree-level multi-parton processes arXiv:2109.10377

Implementing the NLC-approximation into MadGraph5_aMC@NLO • Spin correlation for top-anti-top pair production

• More efficient way of treating colour: truncating the colour expansion

 Implementing the colour treatment into MG5 aMC@NLO

Probing the spin correlation of tt production at NLO QCD+EW arXiv:2105.11478

The colour matrix at next-to-leading-colour accuracy for tree-level multi-parton processes arXiv:2109.10377

Implementing the NLC-approximation into MadGraph5_aMC@NLO

Combining the EW Sudakov approximation with NLO QCD + parton shower via reweighting

• Spin correlation for top-anti-top pair production

 More efficient way of treating colour: truncating the colour expansion

 Implementing the colour treatment into MG5 aMC@NLO

 Combine the implemented EW Sudakov in MG5_aMC@NLO with NLO QCD+parton shower

Conclusions and outlook

V+jet decay coefficients

- $\circ\,$ Negligible electroweak effects for high- p_{T} region of the Z-boson Lam-Tung relation
- $\circ\,$ Presented for the first time high-precision predictions for W+jet decay coefficients

Conclusions and outlook

V+jet decay coefficients

- $\circ\,$ Negligible electroweak effects for high- p_{T} region of the Z-boson Lam-Tung relation
- $\circ\,$ Presented for the first time high-precision predictions for W+jet decay coefficients

Outlook:

• Open platform for questions: meetings? slack?

Thank you for listening!

Decay coefficients for Z+jet: setup

- This project: Calculate electroweak corrections to the dominant angular coefficients and Lam-Tung relation
- Fixed-order: $pp \rightarrow \{e^+e^-, \mu^+\mu^-\} + j$ at 8 TeV with MadGraph5_aMC@NLO at

NLO QCD+EW := $LO_1 + LO_2 + NLO_1 + NLO_2$

• Introduce single lepton p_T cut to avoid double IR (2-loop) singularity \rightarrow vary cut to extrapolate to the full phase space of the dilepton pair

• Use moments method for each coefficient in $A_i f(\theta, \Phi)$

$$A_i \propto \frac{\int \mathrm{d}\Omega \mathrm{d}\sigma f(\theta, \Phi)}{\int \mathrm{d}\Omega \mathrm{d}\sigma}$$

(3)

 Note! Due to the ratio-nature of the ocefficients, EW Sudakovs are not necessarily expected to show up!

Decay coefficients: Collins-Soper frame

• $pp \rightarrow Z/\gamma + X \rightarrow I^+I^- + X$ ⁷: in Collins-Soper frame

 $\circ~$ Introduce polar and azmuthal angles θ_1, Φ_1 of quark compared to the hadron plane

• Angles θ, Φ are the angles of the (negatively charged) lepton l^-

⁷J.-C. Peng et al., arXiv:1511.08932 Timea Vitos

• Distributions for A0

• Negligible electroweak corrections

• Distributions for A_1

Negligible electroweak corrections

• Distributions for A_2

- Distributions for A_3
- Same -10% electroweak corrections

- Distributions for A4
- $\circ~$ Same -10% electroweak corrections

Angular coefficients for W+jet: setup

- **This project**: Calculate and combine NNLO QCD and NLO EW corrections to the angular coefficients
- Fixed-order: $pp \rightarrow \{e^+v_e\} + j$ at 13 TeV at:

$$\label{eq:NLO_EW} \begin{split} \mathsf{NLO} \ \mathsf{EW} &:= \mathsf{LO}_1 + \mathsf{LO}_2 + \mathsf{NLO}_2 \\ \mathsf{NNLO} \ \mathsf{QCD} &:= \mathsf{LO}_1 + \mathsf{NLO}_1 + \mathsf{NNLO}_1 \end{split}$$

- MadGraph5 aMC@NLO (for NLO EW) and STRIPPER (for NNLO QCD) ⁸
- Combining NLO EW and NNLO QCD, default way (unexpanded):

$$A_i^{\text{default}} = \frac{N}{D}$$

Expansion in α_s:

$$A_i^{exp} = A + \alpha_s B + \alpha_s^2 C, \qquad (5)$$

• Inclusion of NLO EW through an overall K-factor (avoids $p_T(I)$ cut dependence)

$$A_{i,QCD+EW} = K_{NLO EW} \times A_i,$$
(6)

Timea Vitos

(4)

⁸M. Czakon arXiv:1005.0274

$\circ~$ The coefficients A_3 in various rapidity bins

$\circ~$ The coefficients A_4 in various rapidity bins

 \circ The coefficients A₀ in various rapidity bins • No rapidity dependence (same for A_2) • Mid: $|y| \le 0.5$, mid-central: $0.5 \le |y| \le 1.5$, forward: $|y| \ge 1.5$ Coefficient A_0 for W^- ($|y_{H^-}| \le 0.5$) Coefficient A_0 for W^- (0.5 < $|y_W^-| \le 1.5$) Coefficient A_0 for W^- ($|y_W-| > 1.5$) te 0.8 80.00 30.6 \$ 0.6 - NNLO + NLO EW (def NNLO + NLO EW (def) - NNLO + NLO EW (dof ---- NLO NLO + NLO EW ---- NNLO - LO - NLO NLO + NLO EW --- NNLO - LO -- NLO NLO + NLO EW --- NNLO 0.10 0.05 0.01 0.00 0.00 0.00 8-0.05 8-0.05 -0.10 -0.10 0.04 .0.05 0.04 0.02 0.04 0.03 0.00 0.02 0.00 -0.02 0.05 -0.0 -0.04 -0.04 à -0.06 8-0.04 NNLD + NLO EW (def) NNLO + NLO EW (exp) NNLO + NLO EW (def) - NNLO + NLO EW (exp) NNLO + NLO EW (exp) 400 50 Pt (W =) [GeV] 400 500 600 700 400 50 pt (W -) [GeV]

p₁(W⁻) [GeV]

100

- $\circ~$ The coefficients A_1 in various rapidity bins
- Note: different y-scales!
- Heavily rapidity-dependent (same for A_3 and A_4)
- Mid: $|y| \le 0.5$, mid-central: $0.5 \le |y| \le 1.5$,

$\circ~$ The coefficients A_2 in various rapidity bins

