

H. Herde (Lund)

Tools for deepening our understanding of the Universe

Answering these questions requires constant innovation

- 2 main ways to increase search power
- 1. Increase collision energy
 - LHC Run 1 (2010-2012): 7-8 TeV
 - LHC Run 2 (2015-2018): 13 TeV
 - LHC Run 3 (2022-): 13.6 TeV

2. Collide more particles faster to sample more of the Universe's distribution

https://cds.cern.ch/record/2156246

LUND

UNIVERSITY

LHC / HL-LHC Plan

We need a new detector.

LHC

Designed for **~20-30 collisions** each time we cross proton beams

High Luminosity LHC, HL-LHC Designed for ~200 collisions each time we cross proton beams

First stable beams at 13 TeV, https://cds.cern.ch/record/2022598; HL-LHC pileup simulation in ATLAS ITk, https://twiki.cern.ch/twiki/pub/AtlasPublic/UpgradeEventDisplays/HL-LHC-tt.png

Detector occupancy

Low occupancy: Particles clearly distinguishable

High occupancy: Particle signals overlap

H. Herde (Lund)

Detector occupancy

ALLAN SIGIL

Solution: Increase detector density in given area

H. Herde (Lund)

Radiation damage

An everyday menace

Left: GJ Caulkins, <u>https://www.mightywombat.com/2006</u> Center: <u>M. Huhtinen (CERN). Nucl. Instrum. Meth. A 491 (2002) 194-215</u> Right: Based on <u>https://cerncourier.com/a/raising-the-dead-detectors/</u>

Simulated distribution of vacancies created by a 50 keV silicon ion in silicon (typical recoil energy for 1 MeV neutrons)

H. Herde (Lund)

ATLAS Inner Tracker for HL-LHC

All Si: 5 layers of pixels, 4 layers of microstrip detectors Radiation hardness > 1 GRad at innermost layers

H. Herde (Lund)

Expected single muon resolution

2 GeV

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/

H. Herde (Lund)

Expected at 3000 fb^{-1} :

Statistical uncertainty projection

- Projecting based on 2D template method measurement at 13 TeV with 36.1 fb⁻¹ (Phys. Lett. B 784 (2018) 345)
- Systematically limited midway through HL-LHC run

H. Herde (Lund)

Example: Higgs mass with ATLAS at HL-LHC

	$\Delta_{\rm tot} ({\rm MeV})$	$\Delta_{\rm stat}$ (MeV)	$\Delta_{\rm syst}$ (MeV)
Current Detector	52	39	35
μ momentum resolution improvement by 30% or similar	47	30	37
μ momentum resolution/scale improvement of 30% / 50%	38	30	24
μ momentum resolution/scale improvement 30% / 80%	33	30	14

★ Using muon resolution improvements estimated at 45 GeV

- ★ Full Run 2 expected uncertainty ~180 MeV → 30-40 MeV at HL-LHC
 - First stage projected resolution improvements achievable with ITk
 - Additional improvement with analysis choices, improved detector understanding

Tracking efficiency with pileup in tt events

Over 5 times more pileup in HL-LHC conditions • Tracking efficiency within 5% of current detector

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/

H. Herde (Lund)

b-tagging efficiency

Another example

- ★ DiHiggs search, hh→bbbb
 - ~8% b-tagging efficiency gain at same light jet rejection level wrt current analysis

Vertexing

More active area for less material

📷 ID material budget, fig. 9 https://cds.cern.ch/record/2257755; ITk material budget, fig. 4 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/

H. Herde (Lund)

Inner Tracker design & construction

Inner Tracker layout

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/

H. Herde (Lund)

Strips local supports: Staves and petals

Smallest fully independent structure: Mechanical support, data handling, powering, cooling

Mechanical stability, cooling, data handling, power

CONNECTOR TO GLOBAL STRUCTURE

Me escorting a stave from Yale to BNL, 2017

Loaded stave prototype, courtesy of BNL

H. Herde (Lund)

Modules: Sensor + electronics

Short strip barrel module, 2021

Exploded view

Barrel photo: J. Steentoft ICHEP 2022; Exploded view, fig. 58: https://cds.cern.ch/record/2257755

H. Herde (Lund)

8 geometries in ITk Strips

S. Diéz, ICHEP2022

Aside: pn-junction

Definition

pn-junction

Bring p-type & n-type into contact

- ★ Concentration(Holes) and Concentration(Electrons) must be constant throughout material
 - → Diffusion gradients across material!

pn-junction

Charge carriers drift

★ Holes & electrons move towards junction to balance material

• But they are charged themselves!

H. Herde (Lund)

ATLAS Inner Tracker Science Coffee

31

Establishing an electric field

pn-junction

• Eventually, E-field large enough $\rightarrow \bigoplus$ stops further migration

pn-junction

Built-in electrical potential established across the depletion region, V_D

★ Depletion region = zone covered by E-field, an insulator preventing hole/electron diffusion

• No more free carriers → **depleted**

 V_{D} in silicon ~0.7 V

H. Herde (Lund)

ATLAS Inner Tracker Science Coffee

 $V_{bias} > V_D$

E_{Ext} cancels E_{Int}

Depletion zone shrinks

 \rightarrow current flow

Direction current flows through diode

n-type

Cathode

p-type

Anode

pn-junction

Diodes

Silicon sensor: Heart of a module

Each silicon strip or pixel ~ diode, albeit reverse-biased \rightarrow fully depleted

★ Operation

- Charged particle transversing detector produces electron/hole pairs in bulk Si
 - V_{bias} = 300 V, rising to 550 V at end of life
- Holes drift towards applied E-field
 - Signal on strips!
- ★ n⁺-in-p type float zone strip sensors manufactured by HPK
 - Faster, more radiation-hard wrt p-in-n
 - Good signal, even when not fully depleted

H. Herde (Lund)

Readout electronics: Brain of a module

S. Diéz, ICHEP2022

Readout electronics: Brain of a module

Common chipset across all module flavours • 130-nm CMOS chipset

H. Herde (Lund)

Schematic: Module readout electronics

Quality control

H. Herde (Lund)

Importance of quality control

Goal: Consistent, understood, stable behaviour across full detector in operations

Method: Ensure **every single component** built to specifications + process controls, including storage & shipping

In practice, design quality control tests across 4 major areas, considering that stress over time may change performance as well:

Example: 10 976 barrel modules + 6 912 endcap modules \rightarrow all need to work the same and work together!

Example: Module thermal cycling

Modules experience changing temperatures when warming up or cooling down ATLAS

ATLAS ITk activity at Lund

ATLAS Inner Tracker

MULTINE * SIGIL

Key takeaways

- ★ Tracking upgrade for High-Luminosity LHC
 - Entering operation by end of decade
- \bigstar Si + gas tracking detectors \rightarrow Si only
 - Significant gain in radiation hardness, coping with occupancy
- ★ Lund thermal cycling new Si strip tracking detectors in basement of Astronomi Huset
 - Pre-production in progress
 - Production starts in ~year for modules!

102 institutes across 21 countries

SVE

NE . DE 1.7

AUSTRALIA CANADA CHINA COLOMBIA CZECH REPUBLIC **DENMARK FRANCE GERMANY ITALY JAPAN NETHERLANDS** NORWAY POLAND RUSSIA **SLOVENIA SOUTH AFRICA** SPAIN SWEDEN SWITZERLAND UNITED KINGDOM **UNITED STATES OF AMERICA ITK PIXELS: 61 INSTITUTES IN 12 COUNTRIES ITK STRIPS: 56 INSTITUTES IN 14 COUNTRIES**

32

hannah.herde@hep.lu.se • https://hherde.web.cern.ch/

ATLAS 🏅 ITk

Additional material

Components of ITk Strips

Barrel	Radius	$\# \mathbf{of}$	$\# \mathbf{of}$	$\# \mathbf{of}$	$\# \mathbf{of}$	$\# \mathbf{of}$	\mathbf{Area}
Layer:	$[\mathbf{m}\mathbf{m}]$	\mathbf{staves}	$\mathbf{modules}$	hybrids	of ABCStar	channels	$[\mathbf{m}^2]$
LO	405	28	784	1568	15680	4.01M	7.49
L1	562	40	1120	2240	22400	$5.73\mathrm{M}$	10.7
L2	762	56	1568	1568	15680	$4.01\mathrm{M}$	14.98
L3	1000	72	2016	2016	20160	$5.16\mathrm{M}$	19.26
Total half barrel		196	5488	7392	73920	$18.92 \mathrm{M}$	52.43
Total barrel		392	10976	14784	147840	$37.85 \mathrm{M}$	104.86
End-cap	z-pos.	# of	# of	# of	# of	# of	Area
Disk:	$[\mathbf{m}\mathbf{m}]$	\mathbf{petals}	modules	hybrids	of ABCStar	channels	$[\mathbf{m}^2]$
D0	1512	32	576	832	6336	$1.62 \mathrm{M}$	5.03
D1	1702	32	576	832	6336	$1.62 \mathrm{M}$	5.03
D2	1952	32	576	832	6336	$1.62 \mathrm{M}$	5.03
D3	2252	32	576	832	6336	$1.62 \mathrm{M}$	5.03
D4	2602	32	576	832	6336	$1.62 \mathrm{M}$	5.03
D5	3000	32	576	832	6336	$1.62 \mathrm{M}$	5.03
Total one EC		192	3456	4992	43008	$11.01 \mathrm{M}$	30.2
Total ECs		384	6912	9984	86016	22.02M	60.4
Total		776	17888	24768	233856	$59.87\mathrm{M}$	165.25

https://cds.cern.ch/record/2257755

ITk material budget

Radiation lengths

Nuclear interaction lengths

📷 Figures 4 & 5, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/

H. Herde (Lund)

Muon tracking efficiency (without pileup)

Single muons with $p_T = 10 \text{ GeV}$

Single muons with $p_T = 100 \text{ GeV}$

ttps://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/

H. Herde (Lund)

Tracking efficiency for different particle species

No pileup

Figures 9, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/

ITk keeps up the pace!

ITk track reconstruction reliable over wide <µ>

- Current detector → non-linear # of reconstructed tracks
- ★ ITk behaviour remains linear with # of interactions
 - Additional tracks in blue due to increased forward acceptance

Strips system ASICs

Module layouts in Endcap

https://cds.cern.ch/record/2257755

ATLAS Inner Tracker Science Coffee

50