Vultidimensional measurements using multivariate techniques

The future of particle physics precision measurements?

Dag Gillberg, Carleton & Lund University

- Measurements in particle physics
 - Standard approach at the LHC
 - Public data, hypothesis testing ullet
 - Limitations with current approach
- New possibilities following development in machine learning
 - Underlying mechanism
 - New opportunities
 - Challenges and open questions lacksquare

Particle physics measurements

- Two main classes of experimental analyses
 - Searches
 - Measurements

Particle physics measurements

- Two main classes of experimental analyses
 - Searches
 - Measurements

Early Higgs boson transverse momentum measurement

Example of a measurement

- Analysis close to heart
- Measurement of electroweak *Zjj* production
 - Probes gauge boson self-interaction via triple gauge vertex
 - Sensitive to CP asymmetry
- Final state: *Z* boson and two forward jets

Example of a measurement

- Analysis close to heart
- Measurement of electroweak Zjj production
 - Probes gauge boson self-interaction via triple gauge vertex
 - Sensitive to CP asymmetry
- Final state: *Z* boson and two forward jets

Precision measurements

- For a measurement to be useful, it needs a **precise definition**
- We define measurement at the particle level
 - Real particles with life time $c \tau_0 > 10 \text{ mm} (\pi^{\pm}, p, n, K, e^{-}, e^{+} ...)$

calorimeter level jet

Reconstructed level

What we measure *in the detector*

5

- For a measurement to be useful, it needs a **precise definition**
- We define measurement at the particle level
 - Real particles with life time $c \tau_0 > 10 \text{ mm} (\pi^{\pm}, p, n, K, e^{-}, e^{+} ...)$

-	$p_{\rm T} > 25$ GeV and $ \eta < 2.4$	Dressed muons
	$p_{\rm T} > 25 \text{ GeV}$ and $ \eta < 2.37$ (excluding $1.37 < \eta < 1.52$)	Dressed electrons
	$p_{\rm T} > 25 \text{ GeV and } y < 4.4$	Jets
71	$N_{\ell} = 2$ (same flavour, opposite charge), $m_{\ell\ell} \in (81, 101)$ GeV	VBF topology
	$\Delta R_{\min}(\ell_1, j) > 0.4, \ \Delta R_{\min}(\ell_2, j) > 0.4$	
	$N_{\text{jets}} \ge 2, \ p_{\text{T}}^{j1} > 85 \text{ GeV}, \ p_{\text{T}}^{j2} > 80 \text{ GeV}$	
	$p_{\rm T,\ell\ell} > 20 \text{ GeV}, \ p_{\rm T}^{\rm bal} < 0.15$	
	$m_{jj} > 1000 \text{ GeV}, \ \Delta y_{jj} > 2, \ \xi_Z < 1$	
part		
ŀ		
Ohsern		
Obsert		
"W		
detec		

Precision measurements

icle level jet

⁷inal state! vable in **nature**

That a perfect ctor would see"

5

Science at work

Theorists

Experimentalists

Example workflow

- 1. UFO module \rightarrow MadGraph5
- 2. Generte events with parton shower and hadronization (e.g. MG5+Py8)
- 3. Feed to Rivet

Theorists

Example workflow

- **O.** (Build detector, operate, calibrate)
- Event reconstruction+analysis
- 2. Correct for detector effects
- 3. Make data public

Experimentalists

3. Feed to Rivet

Theorists

- 3. Make data public

Experimentalists

3. Feed to Rivet

Theorists

Science at work

EW Zjj

 $\leq \sim \sim z$

HEPData

Repository for publication-related High-Energy Physics data

Measurement

Particle

Distribution	Data	Powheg + Py8	Herwig7 + VBFNLO
SQRT(S)	13000 GeV		ł
LUMINOSITY	139 fb ⁻¹ Differential cross-section [fb/GeV]		
$m_{ m jj}$ [GeV]			
1000 - 1500	0.040673 ±0.00536 stat	0.044867	0.03775
	∓0.00044	+0.00404 -0.00278	∓0.000295 JER_EffectiveNP
	<pre>∓0.000691 JES_EffectiveNP_Modelling1</pre>		∓4.79e-05 JER_EffectiveNP_6 ±7.6e-05 JER_EffectiveNP_6 T0 000115 JEP EffectiveNP
	+ 32 more errors Show all	,	∓0.000276 JER_EffectiveNP
1500 - 2250	0.014316 ±0.00179 stat	0.020374	<pre>∓0.000641 JER_EffectiveNP (∓0.000128 JER_EffectiveNP</pre>
1000 1200	∓0.00021 JES_EtaIntercalibration_Modelling	+0.00234 -0.00173	∓0.000234 JER_EffectiveNP ∓0.000125
	∓0.000232		±0.000778 JER_DataVsMC
	+ 32 more errors <u>Show all</u>		±4.18e-05 MUON_SAGITTA_
		1	

3. Make data public

Experiment

±0.00463 strongZjj_gen_choice

±0.00137 ewStrong_interference

∓0.000575 strongZjj_pdf

±0.00277 strongZjj_qcd

∓2.33e-06 ewZjj_pdf

±0.00105 ewZjj_qcd

∓0.000924 unf_MCger

±0.000187 unf_DataRev

±0.000701 Lum

Useful tools at hand

- HepData stores the measurements with associated uncertainties \bullet
 - hepdata.net
- Rivet is synchronized with the HepData entry
 - Ensures predictions defined in accordance with the data ullet
- Fast and effective

Contact: ATLAS Standard Model conveners

Content

Differential cross-section measurements for the electroweak production of dijets in association with a Z boson in proton-proton collisions at ATLAS

Eur. Phys. J. C 81 (2021) 163

27 June 2020

	Preview
e-print arXiv:2006.15458 - internal	pdf from arXiv
Inspire record	-
Data points	-
Rivet analysis routine	-
Figures Tables Auxiliary Material	-

Useful tools at hand

- HepData stores the measurements with associated uncertainties
 - <u>hepdata.net</u>
- Rivet is synchronized with the HepData entry
 - Ensures predictions defined in accordance with the data
- Fast and effective

Impact from BSM modifications on the measured EW Zjj differential cross sections

Useful tools at hand

- HepData stores the measurements with associated uncertainties
 - <u>hepdata.net</u> •
- Rivet is synchronized with the HepData entry
 - Ensures predictions defined in accordance with the data
- Fast and effective

Top, Higgs, Diboson and Electroweak Fit to th Standard Model Effective Field Theory	e •r		$ \begin{array}{c} \bullet \\ \bullet $
John Ellis, a,b,c Maeve Madigan, d Ken Mimasu, a Veronica Sanz e,f and Tevong	You ^{b,d,g}	qq	
<u>arXiv:2012.02779</u> , JHEP 04 (2021) 279	Contact: <u>ATLA</u> Content	<u>S (</u>	1 - SHEBPA 2.2.1
tiFBY + h.c.			
Ki Yij Ks\$ +hc.		o data	
$+\left \mathcal{D}_{\mathcal{M}}g\right ^{2}-V(G)$		Ratio t	0.5
			$\Delta \phi_{jj} = \phi_{j1} - q$

Impact from BSM modifications on the measured EW Zjj differential cross sections

Limitations with current approach

- As we have seen, current approach for precision measurements is quite nice
- However there are a few short-comings
- When designing our measurement, we need to a-priori settle on
 - A. Exact list of observables to measure
 - Bin-boundaries for each measurement B.
 - C. We are limited to measure one (or a few) observables at the time

Recent developments in machine learning opens up new possibilities

Limitations with current approach

- As we have seen, current approach for precision measurements is quite nice
- However there are a few short-comings
- When designing our measurement, we need to a-priori settle on
 - A. Exact list of observables to measure
 - Bin-boundaries for each measurement B.

Recent developments in machine learning opens up new possibilities

User can combine measured variables Unbinned

C. We are limited to measure one (or a few) observables at the time High dimensionality

Classification

- Most common application of machine learning in particle physics is classification
- Goal: discriminate 'signal' from 'background'
 - Example: Detector signals from real electrons vs hadrons/photons PDF: $p(x) \, dx = 1$ Probability 0.2 PDF for signal 0.18 $p_s(x)$ 0.16 (signal) 0.14 0.12 Background 0.1F $p_b(x)$ 0.08 0.06 0.04 0.02 2 з 5 Mean shower depth

Classification

- Most common application of machine learning in particle physics is classification • Goal: discriminate 'signal' from 'background'
 - Example: Detector signals from real electrons vs hadrons/photons PDF: $p(x) \, dx = 1$ Probability 0.2 PDF for signal 0.18 $p_s(x)$ 0.16 (signal) 0.14 0.12 Background 0.1F $p_b(x)$ 0.08 0.06 0.04 0.02 2 з 5 Mean shower depth Likelihood-ratio $\lambda_{
 m LR}$ 2.5 Likelihood ratio: $p_s(x)$ 1.5 $\lambda_{LR} =$ $p_b(x)$ 0.5

2

3

4

Mean shower depth

The Neyman-Pearson lemma

likelihood ratio λ_{LR} (or any monotonic function of it)

• The Neyman-Pearson lemma states that the best achievable discriminant will be the

The Neyman-Pearson lemma

likelihood ratio λ_{LR} (or any monotonic function of it)

• The Neyman-Pearson lemma states that the best achievable discriminant will be the

The Neyman-Pearson lemma

likelihood ratio $\lambda_{I,R}$ (or any monotonic function of it)

• The Neyman-Pearson lemma states that the best achievable discriminant will be the

It is closely related to the likelihood ratio

10

- Previous example only dealt with one input variable (the shower depth)
- (input variables): $x \rightarrow \vec{x}$

We can perform much better if we use more information, i.e. more distinguish features

Neyman-Pearson lemma still holds, but quickly challenging to estimate $p_s(\vec{x})$ and $p_b(\vec{x})$

- Previous example only dealt with one input variable (the shower depth)
- (input variables): $x \rightarrow \vec{x}$

• We can perform much better if we use more information, i.e. more distinguish features

Neyman-Pearson lemma still holds, but quickly challenging to estimate $p_s(\vec{x})$ and $p_b(\vec{x})$

Multivariate techniques to the rescue

ML used for classification: features \vec{x} as input, returns $f(\vec{x})$ $f(\vec{x})$ separates signal from background

For many implementations $f(\vec{x})$ will be an estimate of the purity

True for traditional BDTs, and NNs trained with the cross entropy as loss function

- Previous example only dealt with one input variable (the shower depth)
- (input variables): $x \rightarrow \vec{x}$

• We can perform much better if we use more information, i.e. more distinguish features

• Neyman-Pearson lemma still holds, but quickly challenging to estimate $p_s(\vec{x})$ and $p_b(\vec{x})$

Multivariate techniques to the rescue

ML used for classification: features \vec{x} as input, returns $f(\vec{x})$ $f(\vec{x})$ separates signal from background

For many implementations $f(\vec{x})$ will be an estimate of the purity

True for traditional BDTs, and NNs trained with the cross entropy as loss function

- Previous example only dealt with one input va
- We can perform much better if we use more in (input variables): $x \rightarrow \vec{x}$
- Neyman-Pearson lemma still holds, but quick

ut va Using **cross entropy** as loss function, ore in finds $f(\vec{x})$ that maximizes: atures

$$\sum_{ig} w_i \ln(f(\vec{x}_i)) + \sum_{bkg} w_i \ln(1 - f(\vec{x}_i))$$

Multivariate techniques to the rescue

ML used for classification: features \vec{x} as input, returns $f(\vec{x})$ $f(\vec{x})$ separates signal from background

For many implementations $f(\vec{x})$ will be an estimate of the purity

True for traditional BDTs, and NNs trained with the cross entropy as loss function

 $p_b(\vec{x})$

Using ML to reweight event samples

- Consider two MC samples of the same process
 - One fancy MC that takes a lot of computer resources ('signal')
 - One simple MC, that is very fast to generate 'background'
- Next, we train a ML to separate the two using, say 8 input variables $\vec{x} = (x_1, \dots, x_8)$ \bullet

φ,

A neural network trained with cross entropy as loss function will return $f_{NN}(\vec{x})$, that estimates the purity. An estimate of the likelihood ratio is given by $\frac{f_{\rm NN}(\vec{x})}{1 + f_{\rm NN}(\vec{x})}$

Using ML to reweight event samples

- Consider two MC samples of the same process
 - One fancy MC that takes a lot of computer resources ('signal')
 - One simple MC, that is very fast to generate 'background'
- Next, we train a ML to separate the two using, say 8 input variables $\vec{x} = (x_1, \dots, x_8)$

φ,

A neural network trained with cross entropy as loss function will return $f_{NN}(\vec{x})$, that estimates the purity. An estimate of the likelihood ratio is given by $\frac{f_{\rm NN}(\vec{x})}{1 + f_{\rm NN}(\vec{x})}$

We can use this quantity as a per-event weight to the cheap MC to make it agree with the fancy one! $w(\vec{x}) = f_{NN}(\vec{x}) / (1 - f_{NN}(\vec{x}))$ The NN \rightarrow an 8-dimensional reweighing function

Using ML to weight events

- Using ML classification to estimate the likelihood ratio, and use this as a weighting function has many relevant applications
- Early use/adoption were done by researchers at LHCb in 2015
 - In other fields 'density ratio estimation' has been used earlier.
- A few examples of applications in particle physics:
 - Neural networks for full phase-space reweighing and parameter tuning https://arxiv.org/abs/1907.08209
 - Neural resample for MC reweighing and uncertainty preservation https://arxiv.org/abs/2007.11586
 - Omnifold method to perform unfolded precision measurments ...

- This includes unfolding to the particle-level

• The Omnifold method uses ML to perform unbinned, high-dimensional measurements

Interaction with the detector, two major effects

- This includes unfolding to the particle-level

• The Omnifold method uses ML to perform unbinned, high-dimensional measurements

Interaction with the detector, two major effects

- This includes unfolding to the particle-level

• The Omnifold method uses ML to perform unbinned, high-dimensional measurements

OmniFold: A Method to Simultaneously Unfold All Observables

Anders Andreassen, Patrick T. Komiske, Eric M. Metodiev, Benjamin Nachman, and Jesse Thaler Phys. Rev. Lett. 124, 182001 - Published 7 May 2020

- This includes unfolding to the particle-level

• The Omnifold method uses ML to perform unbinned, high-dimensional measurements

OmniFold: A Method to Simultaneously Unfold All Observables

Anders Andreassen, Patrick T. Komiske, Eric M. Metodiev, Benjamin Nachman, and Jesse Thaler Phys. Rev. Lett. 124, 182001 - Published 7 May 2020

2. Each simulated event has obtained a weight. Propagate this to the partilcle level distribution

- This includes unfolding to the particle-level

• The Omnifold method uses ML to perform unbinned, high-dimensional measurements

OmniFold: A Method to Simultaneously Unfold All Observables

Anders Andreassen, Patrick T. Komiske, Eric M. Metodiev, Benjamin Nachman, and Jesse Thaler Phys. Rev. Lett. 124, 182001 – Published 7 May 2020

2. Each simulated event has obtained a weight. Propagate this to the partilcle level distribution

- This includes unfolding to the particle-level

• The Omnifold method uses ML to perform unbinned, high-dimensional measurements

OmniFold: A Method to Simultaneously Unfold All Observables

Anders Andreassen, Patrick T. Komiske, Eric M. Metodiev, Benjamin Nachman, and Jesse Thaler Phys. Rev. Lett. 124, 182001 - Published 7 May 2020

2. Each simulated event has obtained a weight. Propagate this to the partilcle level distribution

- This method interactively reweighs distributions:
 - Match data, then update prior (particle-level distribution)
- Stable solution found after a few iterations (typically 2-5)
- Identical to Iterative Bayesian Unfolding when binned input is used

Detector-level

Particle-level

Step 2: Propagate to MC truth

$$\nu_{n-1} \xrightarrow{\omega_n} \nu_n$$

MC truth

Adjust MC reco to match data $\rightarrow \omega_{\rm NN}(\vec{x}_{\rm reco})$ Propagate to particle-level Adjust particle-level to match this change $\rightarrow \nu_{NN}(\vec{x})$ Propagate to reco level Repeat

• Method announced 2020 with proof-of-principle results based on simulation

OmniFold: A Method to Simultaneously Unfold All Observables

Anders Andreassen, Patrick T. Komiske, Eric M. Metodiev, Benjamin Nachman, and Jesse Thaler Phys. Rev. Lett. 124, 182001 - Published 7 May 2020

- The output is a weighing function that applies to simulated events (e.g. Powheg+Pythia)
- The function takes only particle-level quantities as input (no need for detector simulation)
- Weighing MC events makes them 'become unfolded data'

Output of unbinned measurements

- The measured data needs to be made public
- In principle, one could publish just the reweighing functions
- however, requires that MC events are generated **exactly** in the same way as analysis • Safer to provide MC events, with the associated weights
- Each event needs to contain
 - All features used in measurement \vec{x}
 - Nominal weight that adjust it (to become unfolded data) ν • A long list of additional weights corresponding to uncertainties Statistical uncertainties • Data statistical uncertainty (we propose ~50) evaluated using bootstrapping • MC statistics uncertainty (we propose ~25) Systematic uncertainties evaluated • Systematic uncertainties ($\mathcal{O}(100)$) using established methods (perturbation of input sample)

- Alternative MC sample with all variables and MC stat weights

Publishing unbinned differential cross section results Miguel Arratia^{1,2}, Anja Butter³, Mario Campanelli⁴, Vincent Croft⁵, Dag Gillberg⁶, Aishik Ghosh^{7,8}, Kristin Lohwasser⁹, Bogdan Malaescu¹⁰, Vinicius Mikuni¹¹, Benjamin Nachman^{8,12}

Output of unbinned measurements

- Plan: produce large n-tuple (several GB) with all weights and variables
 - Need to make it **public** on some site. Zendo is an option.
 - Should keep link from HepData (best if HepData would have capability) • Also need to keep providing associated Rivet routine
- Further need to provide **user guide**
 - Idea is to provide a Python notebook that shows how to produce results • E.g. how to loop over events to create histograms with all associated uncertainties
 - \rightarrow unfolded measurements
 - Basic stat. guidelines, e.g. choice of binning (not too narrow, can get empty bins) Caveats and validity: need to be clear with which observables and applications have been
 - validated

Publishing unbinned differential cross section results Miguel Arratia^{1,2}, Anja Butter³, Mario Campanelli⁴, Vincent Croft⁵, Dag Gillberg⁶, Aishik Ghosh^{7,8}, Kristin Lohwasser⁹, Bogdan Malaescu¹⁰, Vinicius Mikuni¹¹, Benjamin Nachman^{8,12}

- UNIFOLD
 - Measure only one variable at the time.
 - Unbinned version of Iterative Bayesian Unfolding
- MULTIFOLD lacksquare
 - Measure a fixed set of variables simultaneously and unbinned
 - E.g. $p_{\mathrm{T}}^{\ell 1}, p_{\mathrm{T}}^{\ell 2}, \eta^{\ell 2}, \eta^{\ell 1}, p_{\mathrm{T}}^{j 1}, p_{\mathrm{T}}^{j 2}$
 - Note that you can construct measurements of other observables afterwards. E.g. $\Delta \eta_{\ell\ell} = \eta^{\ell 1} - \eta^{\ell 2}$
- (Full) OMNIFOLD
 - Measure a variable-length set of variables (simultaneously and unbinned) •
 - For example, the momenta (p_T, η, ϕ) of all charged particles in an event (One event might have 50 charged particles, another 150)

Flavours of Omnifold

Full Omnifold

- event to event
- Possible with particle flow networks

• Procedure is the same, i.e. reweight by $f(\vec{x})/(1-f(\vec{x}))$, just the length of \vec{x} varies from

Energy Flow Networks: Deep Sets for Particle Jets

Patrick T. Komiske, Eric M. Metodiev, Jesse Thaler

Shortcomings and challenges

- Wrap-around effect
 - Network gets confused by discontinuity in ϕ . It assumes smooth functions. Solved by letting network used $\sin(\phi)$ and $\cos(\phi)$.
- Insufficient support across full phase space
 - If we have reigns of phase space with too few initial MC events, the reweight will be too large (purity $f(\vec{x})$ too low, therefore $w(\vec{x}) = f/(1-f)$ unstable
- Instabilities of the network
 - Networks (Keras Tensorflow) initialized with random seed. Quickly finds solution. But different dep. on seed →per-event instabilities
 - Hyperparameter otimization, and ensembling

Fractional

-10

Fractional

-10

Leading track jet n_{ch}

Summary

- lacksquare
- spectrum as we have now
 - Significant more information provided
- A lot of potential and rapid development
- Challenges and details around validation and guidelines still being worked out
- Exciting times ahead lacksquare

• Rapid development in machine learning opens up for new possibilities in particle physics One such development presented here: simultaneous unfolding of many variables at once • This means output of measurement will be a large set of events rather than a binned

• Clear applications to e.g. MC tuning, searches for BSM effects, anomaly detection

Backup

Particle flow networks

	Symbol	Name	Short Description
	PFN-ID	Particle Flow Network w. ID	PFN with full particle ID
	PFN-Ex	Particle Flow Network w. PF ID	PFN with realistic particle ID
	PFN-Ch	Particle Flow Network w. charge	PFN with charge information
	PFN	Particle Flow Network	Using three-momentum informa
	EFN	Energy Flow Network	Using IRC-safe information
	RNN-ID	Recurrent Neural Network w. ID	RNN with full particle ID
	RNN	Recurrent Neural Network	Using three-momentum informa
	EFP	Energy Flow Polynomials	A linear basis for IRC-safe info
	DNN	Dense Neural Network	Trained on an N -subjettiness b
	CNN	Convolutional Neural Network	Trained on 33×33 grayscale je
	M	Constituent Multiplicity	Number of particles in the jet
	$n_{ m SD}$	Soft Drop Multiplicity	Probes number of perturbative
	m	Jet Mass	Mass of the jet
- 4			

Detector-level

Particle-level

Differential cross section measurement overview

- a) Spit dataset into bins of variable of interest (here $4 N_{\text{jets}}$ bins)
- b) For each bin, extract *s* from a *s*+*b* fit to the $m_{\gamma\gamma}$ spectra
- c) Large statistical uncertainty due to small s/b

2. Unfold to particle level and divide by integrated luminosity and bin-width

- a) correction for detector effects with bin-by-bin unfolding b) convert to ("differential") cross section by dividing by int. lumi (and bin-width)

3. Plot and compare with theory

- a) compare to **particle level** prediction - i.e. no need for detector simulation
- b) Can also compare with analytical calculations (parton level) but then need small parton→particle level (NP) correction

Likelihood fit for EW Zjj signal extraction

$$\ln \mathcal{L} = -\sum_{r,i} v_{ri}(\boldsymbol{\theta}) + \sum_{r,i} N_{ri}^{\text{data}} \ln v_{ri}(\boldsymbol{\theta}) - \sum_{s} \frac{\theta_s^2}{2},$$

$$v_{ri} = \mu_i v_{ri}^{\text{EW,MC}} + v_{ri}^{\text{strong}} + v_{ri}^{\text{other,MC}},$$

$$v_{\text{CRa},i}^{\text{strong}} = b_{\text{L},i} v_{\text{CRa},i}^{\text{strong},\text{MC}}, \qquad v_{\text{CRb},i}^{\text{strong}} = b_{\text{H},i} v_{\text{CRb},i}^{\text{strong},\text{MC}}, \\ v_{\text{SR}i}^{\text{strong}} = b_{\text{L},i} f(x_i) v_{\text{SR},i}^{\text{strong},\text{MC}}, \qquad v_{\text{CRc},i}^{\text{strong}} = b_{\text{H},i} f(x_i) v_{\text{CR}}^{\text{strong},\text{MC}},$$