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In this talk:

* Galaxy formation and the cosmological context .

* Galaxy formation simulations
- Historical problems and solutions

e Small scale challenges to the standard ACDM model




A few key problems -

e Physics behind galaxy formation: role of gravity, gas
in-and outflows, radiative processes, stellar .

-evolutionary processes etc. _

e Origins of galactic diversity, from tiny dwart galaxies .
with little star formation, to large rapidly star G - |
forming discs, to dead ellipticals. '

e Origins of disc galaxies |i
‘ .

Credit:
g ESA/Hubble & NASA

. Acknowledgement: Judy Schmidt


http://www.spacetelescope.org/
http://www.nasa.gov/

The galactic inventory - density of galaxies vs. stellar mass vs. galaxy types
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The galactic inventory - density of galaxies vs. stellar mass vs. galaxy types

This paper (GAMA z<0.08) All E D
Baldry et al (2012) (GAMA z<0.06)
Wright et al (2017) (GAMA + zCOSMOS z<0.1)
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.. " Phoenix Dwarf " - ~Starfomifg discM101 - Elliptical NGC 2787
(ESO) A - (Hubblelmage: NASA, ESA) .- (NASA and The Hubble Heritage Team)
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The cosmic energy budget

Decompose the signal into spherical harmonics
and compute the power spectrum.

* The baryonic acoustic oscillations depend on
cosmological paramters (curvature, dark energy,
total matter contents vs. baryon contents

(e.g. review by Hu & Dodelson 2002)
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Ordinary matter

- Dark energy

¢

. ', 6 8 %

- No Dark Matter
- TeVeS (Skordis et al. 2006)
Planck 2015

Large scales 10° Small scales

Planck 2015; Skordis et al. 2006:; Dodelson et al. 2011



Growth of cosmological perturbations - the need for dark matter

Density/temperature anisotropies Hubble drag Pressure term
on the order of A ~ 107 Suppresses growth due to the Due to the spatial
expansion of the Universe variations in density.

Gravity term

- Perturbation growth via

gravitational instability

= expansion factor

of the Universe Solution for an Einstein-de Sitter Universe: A, = A0t2/3 X a

(Qmo=1,Q.,0=0,k=0)



Growth ot cosmological perturbations - the need for dark matter
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Growth ot cosmological perturbations - the need for dark matter
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Gravity driven clustering of dark matter on large scales:
The origin of the ¢
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servations .

galaxies

Large scale

4

structure
Vv )
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r[ Mpc/h]
Simulations

The Millennium simulation
Springel (Nature, 2006)




Horizon-scale dark matter simulations

~ 4 billion parsecs
2 trillion dark matter “particles”

J. Stadel 2017, University of Zirich
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Formation of galactic discs - a simple model Mo, Mao & White (1998)

JDM

JpM

O

* A dark matter halo forms and * (as with the same angular momentum
acquires angular momentum due accretes onto the halo
to tidal torques
* The gas shock heats but loses pressure ~ ® Angular momentum conservation leads to
support due to radiative cooling spin-up and at the halo center and an

angular momentum-supported disc forms

* At high enough gas densities, stars form



Historical issues in simulations of galaxy formation:

Angular momentum

Angular momentum
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Courteau (1997)

Sb-Sc galaxies
(i.,e. "discy’ galaxies)

Numerical simulations
(Navarro & Steinmetz, 2000)

Not clear where angular
momentum is lost (halo,
disc-halo interface, disc?)

Log V,, [km s7'] Rotational velocity



Historical issues in simulations of galaxy formation:

The low efticiency of galaxy formation

Dark matter halo mass function (theory) Stellar mass function (observed)
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By matching abundances of galaxies and dark matter haloes, we can find a one-to-one

mapping between galaxy and dark matter halo masses.
(e.g. Kravtsov, Berlind, Wechsler, et al 2004; Conroy, Wechsler & Kravtsov 2006, Conroy & Wechsler 2008)



Historical issues in simulations of galaxy formation:

The low efticiency of galaxy formation
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Historical issues in simulations of galaxy formation:

The low efticiency of galaxy formation
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Numerical resolution Feedback physics

e Star exploding as supernovae
i e Stellar winds from massive and low mass stars

e Radiative transfer (multi-frequency, radiation
pressure in dust etc)

* Magnetohydrodynamics + cosmic ray physics
e Black hole feedback

Density Temperature




Feedback regulates star formation and promotes high
angular momentum systems.

Angular momentum problem: gonel
Overcooling/efficiency problem: gone!

Cosmological simulations may now be of high enough
fidelity to study internal structures of galaxies.

For a review, see Naab & Ostriker (2017)

Feedback physics

Star exploding as supernovae

Stellar winds from massive and low mass stars

Radiative transter (multi-frequency, radiation
pressure in dust etc)

Magnetohydrodynamics + cosmic ray physics
Black hole feedback

Density Temperature

1 Kpc
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Examples of recent progress: The VINTERGATAN project

(Agertz et al. 2021, Renaud et al. 2021a,b, Segovia Otero et al. 2022...) .

» Cosmological zoom simulations of galaxies forming in 10 M, dark

matter halos (adaptive mesh retinement, RAMSES, Teyssier 2002).
e Origins of stellar discs

* Also, cosmic phases of star formation, role of environment/assembly

history for disc formation, etc.




Inflows, the last major merger

and rapid disc growth at z~1
(Agertz et al. 2021, Renaud et al. 2021a,b)
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Inflows, the last major merger

and rapid disc growth at z~1
(Agertz et al. 2021, Renaud et al. 2021a,b)
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* Rapid disc formati
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* Physics: optimal conditions for gas accretion + rich

tum + no more disc “spin flips”

e.g. Dekel et al (2020)
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NASA & White House, press conference, Monday 11 July, 2022
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James Webb Telescope (NASA)

is already revolutionizing our
understanding of galactic structure,
star formation, and the most distant
galaxies ever observed
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Stress testing ACDM with high-redshift galaxy candidates

more stellar mass than

Michael Boylan-Kolchin*
Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205, USA av ail ablc b arvons

Draft version, 2 August 2022

Stellar mass density
[solar masses Mpc-3] Fraction of cosmic "\
: Do baryons converted
contained within Y€
Into stars

galaxies more e 5 = 1 ()
massive than M4
e=0.1

Labbe 2022

M4, stellar mass [solar masses]



Dwarf galaxies Milky Way neighbourhood Pt S

Carina Draco
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Digitial surveys have revolutionized the dwarf galaxy census

] 1 I 1 I Ll 1 1 l 1 1 Ll l

I Photographic " Digital I

surveys surveys

The Faintest Dwarf
Galaxies
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The missing satellites problem

e Dark matter substructure mass functions are almost universal
e Substructure in galaxy clusters is accounted for
* Most satellites appear to be missing in galactic haloes!
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Galaxy cluster; Hald.
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III

Possible solution 1: Dark matter is not “cold

Cold Dark Matter (Mass of ~100 GeVs) Warm Dark Matter (Mass of ~2 keV)
Lovell et al. (2012




Possible solution 1: Dark matter is not “cold”!

— CDM
— WDM m=1.0 keV

— WDM m=2.0 keV Schneider et al. (2016)
— WDM m=4.0 keV

Number -
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dark g
>E
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©
haloes =
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Peak circular velocity —> mass



Possible solution 2: supernova explosions and “baryon physics” make
star formation inefficient in small dark matter halos

Dark matter (CDM)

-
-
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100 O

200

Wetzel et al.
(2016)

* Substructure mass functions seem compatible with observations (Milky Way and Andromeda)




nature REVIEW ARTICLE
aStr Onomy https://doi.org/10.1038/s41550-022-§1:689-w

") Check for updates

Baryonic solutions and challenges for
cosmological models of dwarf galaxies

2022

Laura V. Sales ©'™ Andrew Wetzel ©? and Azadeh Fattahi®?

ACDM tensions with dwarf galaxies

No tension Uncertain Weak tension Strong tension
Missing satellites M.—M, ,,, relation Too big to fail Diversity of rotation curves
Core—cusp Diversity of dwarf sizes Satellite planes

Quiescent fractions




THE PLANES OF SATELLITE GALAXIES PROBLEM,
SUGGESTED SOLUTIONS, AND OPEN QUESTIONS

2018
MARCEL S. PAWLOWSKITI*

Department of Physics and Astronomy, University of California,
Irvine, CA 92697, USA
marcel.pawlowski@Qucz.edu
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Problem: ACDM predicts a close to isotropic
distribution of dwarf galaxy-hosting sub-halos.
In the Milky Way, dwart galaxies are

disitrbuted in a plane. This is a very rare

constellation in ACDM!

Vast Polar Structure (VPOS) of the Milky Way
T T i | 1 T T

A\ X
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To make progress, we need a census of dwarf galaxies around
MANY more hosts than just the Milky Way (and Andromeda)!

Analysis of Resolved Remnants of Accreted
galaxies as a Key Instrument for Halo Surveys

ESA Science & e |
@esascience '

Eesa

| MExcited to announce Arrakihs as the latest member
of the @esascience fleet!

| Set to launch in the early 2030s, this fast-class mission
| will image faint nearby galaxies, providing important
| measurements to test open questions in #cosmology. |

More info cosmos.esa.int/web/call-for-m...

& IFCA and ESA

UNIVERSITY

11:23 AM - Nov 4, 2022 - Twitter Web App




Figure 2: Luminance filter images of nearby galaxies from the Stellar Tidal Stream Survey showing large, diffuse light structures in thei
outskirts (Martinez-Delgado et al., 2010, 2012, 2015)

ARRAKIHS will observe 3-4 magnitudes deeper than this in close to 100 massive galaxiesl!




— CDM

= WDM m=1.0 keV
WDM m=2.0 keV

— WDM m=4.0 keV

ARRARIH

The Nature of dark matter can be probed by:

- - Abundance and masses of the faintest
satellite galaxies. What is the “edge” of
galaxy formation? (caveats: baryonic physics)
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- Parturbations to stellar streams. Dark matter
nalos are lumpy, with the level of ‘lumpiness’

depending on the dark matter particles
mass/energy.
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The Nature of dark matter can be probed by:

- Abundance and masses of the faintest
satellite galaxies. What is the “edge” of \ \
galaxy formation? (caveats: baryonic physics) —————Gaps Wiggle
- Perturbations to stellar streams. Dark matter
nalos are lumpy, with the level of ‘lumpiness’ Stream in presence of
depending on the dark matter particles LCDM subhaloes
mass/energy.

Erkal et al.



