
ARC integration in aCT and 
Python library for ARC CE 

REST 
ARC7 technical workshop in Umeå

25-26 May 2023
Jakob Merljak



ARC REST integration in aCT

● ATLAS aCT setups switched from ARC Python bindings to ARC REST in April 
2022

● speedup of operations across the board especially due to bulk requests
● support for multiple API versions; API 1.1 support in upcoming ARC7 is 

already used on the aCT test site using clusters

arctestcluster-slurm-el{7,8,9}-arc7-ce1.cern-test.uiocloud.no



pyarcrest python library

● standalone python library for interaction with ARC REST extracted from and 
used by aCT and aCT client

● depends on ARC python bindings only for job description processing
● should be broadly applicable for integrations of ARC CE over REST using 

python



pyarcrest file structure

● errors module
● http module
● x509 module
● arc module
● arcrest cli program



pyarcrest design

● ARCRest base class defining API interface and common functionality among 
API versions

○ one method for each operation exposed by ARC REST
○ higher-level methods for typical compound operations (e. g. job submission, creation and 

renewal of delegations)
○ “private” methods for internal reuse and organization

● Concrete class for every API version (e. g. ARCRest_1_0, ARCRest_1_1) 
overriding methods with version-specific behaviour



pyarcrest design



pyarcrest design



pyarcrest extension

● different potential ways to extend are available
○ if working with a single API version, the concrete API version class can be inherited from and 

instantiated for use
○ if working with multiple API versions, each concrete API version class can be inherited from

■ getClient method is used to pick the latest API version; it will be modified to reuse the 
functionality for inherited classes

■ one of the inherited classes needs to either reuse the API selection mechanism or come 
up with its own (based on requirements of integration)



pyarcrest extension example (Galaxy)

ARCRest

ARCRest_1_1ARCRest_1_0

GalaxyARC_1_0 GalaxyARC_1_1

overrides submitJobs() overrides submitJobs()
overrides getClient()

GalaxyARC_1_1.getClient(...)

ARCRest

ARCRest_1_1ARCRest_1_0

GalaxyARC_1_0 GalaxyARC_1_1

overrides submitJobs() overrides submitJobs()

GalaxyARC.getClient(...)

GalaxyARC

overrides getClient()

other inheritance graphs are possible



API showcase



Two alternative approaches to API



Two alternative approaches to API



Two alternative approaches to API



Two alternative approaches to API

● use of ARCJob objects
● call operation on objects, pick up the 

values from them

● tradeoffs:
○ imposes a particular data structure

● use of individual values
● call operation on values and process the 

returned results

● tradeoffs:
○ requires handling proper alignment 

of results to parameters and 
parameters to other parameters

Personal note: the base API is probably cleaner without ARCJob objects. Structuring data 
becomes more beneficial for higher level methods, like submitJobs, uploadJobFiles, 
downloadJobFiles. Also, the library user might want to structure data more specifically to their 
context which can make dealing with imposed structure more awkward.



Matchmaking API

● REST client is supposed to do matchmaking
● the REST specification does not mention this
● the matchmaking that the REST client is supposed to do has to be 

systematically documented
○ what has to be matched (e. g. runtime environment)
○ how does it have to be matched (for e. g. runtime: string matching? Specific versioning 

scheme(s)?)
● personal note: legacy or obscure functionality should be omitted to improve 

usability
● currently implemented: walltime, runtime environment (string match), queue



Token auth

● currently, proxy certs assumed for delegations functionality and token based 
delegations is not implemented; this should not be difficult to add, though

● token support was worked/experimented with for Galaxy integration?
● curious: is it possible to use token delegations without authenticated HTTPS 

connection using proxy cert?



Job description processing

● required to properly support xRSL (user-side to server-side xRSL conversion 
has to be done by client)

● currently, this is done using ARC python bindings
● supporting all xRSL is difficult, so it will probably never be implemented in 

pure Python
● ADL is better but would still require duplicating the effort

● a standalone, portable, low dependency library available on all platforms 
implementing both xRSL and ADL would be nice :)

● even more preferably, a more convenient job description language (YAML 
schema?)



Proxy certificates

● ARC client required for generating proxy certificate from user cert
● we experimented with python implementation of proxy certificate generation 

but the difficult part is to implement VOMS attributes (no obvious libraries or 
documentation)



Links

https://github.com/jakobmerljak/pyarcrest

Will be moved at least to ARCControlTower Github organization.

pip install git+https://github.com/jakobmerljak/pyarcrest@dev

pip install git+https://github.com/jakobmerljak/pyarcrest@altapi

https://github.com/jakobmerljak/pyarcrest
https://github.com/jakobmerljak/pyarcrest@dev
https://github.com/jakobmerljak/pyarcrest@altapi

