Integrating container-based virtualization technologies into **ARC-powered** grid infrastructure

<u>Oleksandr Boretskyi</u>, Oleksandr Bohomaz, Andrii Salnikov

Taras Schevchenko National University of Kyiv e-mail: <u>grid@grid.org.ua</u> Košice 2016

Software challenges in grid

- Hetergenous systems
 - different OS distributives (SL5.X, SL6.X, SL7.X)
 - a lot of computing clusters
- A lot of application project
 - each project require own software
 - own configuraton per researche
- Existing solutions:
 - cvmfs
 - build software in runtime

Rainbow ARC in the Cloud framework

- Using prepared VM images
- Putting user data inside VM
- Hardware
 - accelerated VM
- Interactive
 access

Rainbow Apliance in medical researches

194.	44.249.12:3389	Удаленный рабочи	нй стол																			
Ragierer	u Aareae Baa	Инструменты Проток	ion Censu Cry	Valena V 🔊 🛵 Paseept	nka SK	• П • Чув	ствите	В С	10	400	79						Manage and		0	1	10	1
I		Анплитудно - врем Частота сердечны Электрическая ось Синусовый рити Отрицательные Т- С	енные характер к сокращении / сердца 53 град зубцье III (до -0	истики 9 уд/мин. 4, норнальное 3.09 нВ), двужф ¥	P m	P+ sB	P- sß	Q #	Q gi	R m	R sß	R1 se	R1 sB	S 382	S sß	S1 **	S1 #8	T+ sB	T- sB	ST ±B		M -0.(
п		(A	60.0	0.11				65.0	0.88			55.0	-0.29			0.17		-0.01		-0.0
ш					100.0	0.15		28.0	-0.13	45.0	1.23			15.0	-0.11			0.20	-0.10	-0.06	inne	
AVR			┉┽╌┊∧┊		52.5	0.09		28.0	-0.13	53.0	0.48	53.0		35.0	-0.06			0.07	-0.09	-0.03		0.0
		aVR			97.5		-0.12			18.0	0.09	50.0	0.19	53.0	-1.04			0.05	-0.17	0.03		
AVL		aVL	┉┼╢┾╸		75.0	0.06				38.0	0.45			55.0	-0.29			0.08		-0.01		-0.0
AVF		aVF			97.5	0.11		30.0	-0.11	55.0	0.80	()						0.12	-0.08	-0.06		0.0
		V1			55.0		-0.07			25.0	0.17	-		83.0	-0.84			0.16		0.05		
VI		V2	{i		+					33.0	0.45	-		65.0	-1.00			0.54	-	0.09		0.8
V2		V3								38.0	0.46			53.0	-0.91			0.55		0.06		-0.(
V3		∨4	_+;∦ ; _		82.5	0.06				53.0	1 27			35.0	-0.48	-		0.89	-0.05	-0.64	\wedge	0.
		V5			80.0	0.06		15.0	-0.03	40.0	1.34			33.0	-0.50			0.21	-0.06	-004		
V4		₩6			85.0	0.07		13.0	-0.09	45.0	1.23	-		28.0	-0.19			0.17	-0.06	-0.04	~	-0.3
V5							Корр	екция	Kor	мпонен	nu	Заключ	101610	7	0K	×	Закры	m			~	0.0
								A				A										

4

Downsides of full virtualization in Rainbow

- VM images are inconvenient
 - hard to update software
 - hard to maintain software
 - take a lot of space
- Perfomance drop

Container-based virtualization in Rainbow

- Use docker to run containers
- Advantages:
 - ~0 overhead
 - Images are lightweight easy to modify
- Docker supports numerous platforms
 - SL 6, 7
 - Fedora 20 and higher
 - Debian wheezy and higher
 - Ubuntu 12.04 and higher

BYOWN - Bring Your Own Work Node

- Container
 virtualization
- Image downloading from centralized VO registry
 Job session directory
 - mounting direct inside container

Features

- Centralized image management
- High density
- Reproducible environment
- Unified runtime environment
- Global ARC registry / per VO
- Fine grained resource control(QOS)

LRMS for Containers

- Using popular HPC LRMS is imperfect:
 - Extra layer of complexity
 - Could not leverage container capabilities
 - Hardware may only be used for HPC
- Solution use LRMS designed with containers in mind

ARC and Kubernetes Container Cloud

- Kubernetes is a viable option for a mature LRMS
- In a nutshell:
 - Used by Google, eBay, Wikipedia, RedHat
 - Maintains desired state of an application
 - Primarily runs stateless scale-out web applications
 - Rapidly developing
- Use A-REX as a front-end for Kubernetes

Proposed Architecture

Job's Lifecycle

- 1. A-REX parses Job Description and fetches input files
- 2. LRMS script forwards request to ARKd
- 3. ARKd launches a job in Kubernetes pod
- 4. Status updates are provided to A-REX by ARKd

Advantages of Kubernetes

- Converged cloud with applications and HPC jobs
- Container-aware LRMS
- Scales to large number of nodes
- Automated deployment with SaltStack provided
- Possibility to run ARC CE inside the cloud

State of development

- Work in Progress:
 - Architecture design complete
 - Kubernetes cluster deployed and operational
 - ARKd in early stages
- Proof of Concept to come by the fall
- Testdrive cern alice job`s

Thank you for attention