Distributed Computing
as a Service with ARC

Barbara Krasovec

Arnes
,‘
/

® Slovenian NREN, Member of Sling
(Slovenian NGlI, part of EGI)

® |[nfrastructure:

e HPC cluster,
grid cluster (~4000 cores)

® ARC, glLite middleware
® SLURM batch system

® OpenStack cloud testbed (~100 cores)

Current grid infrastructure

®

ARC client

submit JDL/JDSL/xRSL job

HIEH[E

\

\ submit direct JDL/JDSL job

submit job to ¢compute element
I

submit JDL/JOSL job

> WMS .

Motivation

® Customization of execution
environments (flexibility).

® Additional resources in peak times -
cloud bursting (scalability).

® Extension of grid resources with cloud
resources without any modifications on
users’ side

Integration difficulties

VM provisioning (vCycle, Cloudscheduler, Libcloud,
Terraform, condor_rooster)

authz and authn (VOMS plugin),
data management (data intensive tasks),

instance types (proprietary image formats and resource
sizes),

registration of resources (infosys),
nonstandardized API-s,

performance penalty.

Integration benefits

portability of applications,

optimal resource utilization,
customized execution environments,
cloud bursting,

high availability and reliability,

scalability.

Integration models

Unified access to grid and cloud.
Grid and private cloud integration.
Grid virtualization.

Grid and public cloud integration.

Unified access to grid and
cloud

Request for resources
in grid

® Common interface X
to submit to f
Request or resources

Job submitted

diffe rent M in Dublic;piivate cloud
infrastructures

Software sent to VM

USER INTERFACE »| Virtual machine created
. S I ° . RGSU/I‘S , v
olutions:
qdf Job execution

- DIRAC, EMI-ES, ;

Swarm, XtremVVeb, Job completed

HTCondor client Y

Virtual machine
destroyed

Grid and private cloud

Integration
® Solutions: Job subrisson
- WNoDeS, O
- ARC Rainbow.

® Goal: hybrid LRMS and l
VM-aware ARC cluster cloud resources

Grid and public/hybrid

cloud integration

Extending grid cluster
to the hybrid cloud

Interoperable LRMS

Similar implementation
at University

of Goettingen:
integration of Unicore
grid cluser, Eucalyptus
and Amazon cloud

VOMS
! |
>
-
: |
g
:
g' |
4
Y RSLiod _»| ARC
 PLjpe——
JOSL job gLITE

INFOSYS

Publish/query information
about resources/jobs/users

Private or public cloud

---/i\ B /_/"

Cloud federation - grid

virtualization
® Multiple academic

clouds: e

StratusLab
Federated Cloud | | =~ sevicelo
Venus-C e s e
Aneka Tools (i, iy
Helix Nebula

Nimbus

Integration possibilities ()

® Elasticluster:

cluster of VMs
on EC2/OpenStac

+ SG E/PBS/S LU R Heag[\ggiﬁwith / :o:e
. . CONTROLLER V\Q —
. Slmllar: OpenStack
STARCluster: |
C I u Ste r Of VM S Elasticluster

on EC2

Integration possibilities (2)
¢ ARC +SLUR ==

prolog script

+ OpenStack |

® |imited to a o
single cloud
provider

® when public cloud, implementation of
billing required

Integration possibilities (3)

e ARC + SLURM
cloud plugin + Amazon EC2
(Slurm Elastic Computing)

ARC/gLITE

3
® Suspend/ResumeProgram R —
SLURM_NODE_ALIASES env requir . —
New cloud partition

NodeName=cloud[001-100] Weight=8 Feature=cloud State=cloud

Add |IP-address and hosthname

scontrol update nodename=cloud001 nodeaddr=<IP
>nodehostname=cloudwn

=

® Some manual work required each time

Integration possibilities (4)

® Other possibilities:

® |nteroperable ARC client to submit
jobs to grid and public cloud(s)

® Cloudscheduler + HTCondor + ARC
+ OpenStack -> Arc cluster
virtualization

ARC Cluster in the Cloud
(ARC-CCQC)

KEYSTONE
A
" ;P ARC cluster’
: : :
' Y Storage Element :
: VOMS Session directory| |
E External files i
E X509/arcproxy L Local cache |
' files Metadata i
: > A-REX <———»|Control directory|
| Client tooN / i
INFORMATION SYSTEM
; PUBLIC/PRIVATE
i 4
E LOCAL BATCH SYSTEM
l : VIRTUAL MACHINES
: WORKER NODES :
VIRTUAL
JSON TEMPLATE | PACKER IMAGE
Kickstart
Provisioners
Postinstall
scripts

ARC-CC basic setup

® VM provisioning done manually via API/

AWS/Horizon.. Security rules pre-
defined.

® Built with Packer and post-install scripts.

® Headnode installed, then worker nodes
added.

® RTE-s included in the VM image,

ARC-CC authz and
authn

® OpenStack:VOMS Keystone plugin
https://github.com/IFC A/keystone-voms

® problem with expired credentials

® Amazon EC2: self-sighed CA or

EUgridPMA certificate + VOMS support
(post-install script)

https://github.com/IFCA/keystone-voms

ARC-CC performance
evaluation

® TJested on compute instances of Amazon
EC2 (instance c4-xlarge Xeon E5-2680 v2 lvy
Bridge, 4 CPU, 7.5GB RAM, SSD storage) and

OpenStack cloud (Xeon E5-2650 v2
processor and same resources sizes)

® ARC-CC compared to bare metal:

® Memory overhead only |%

® CPU overhead 7-8%

CPU and memory (Sysbench)

Sysbench memory benchmark

(more is better)

Amazon EC2 M3 - [

Amazon EC2C3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

memory writes MB/s

Sysbench CPU benchmark

(less is better)

Amazon 23 [

0 5 10 15 20 25 30 35 40

Building ARC-CC in the cloud

40
35
30
25
20
15
10

® VM provisioning
is fast

e virtual ARC-CE _
built within

350

5-6 minutes

250

w

0

200
150
100
50
0

OpenStack KVM

Amazon EC2

OpenStack LXC

OpenStack KVM

Amazon EC2

OpenStack LXC

W Create and start senes of 10
instances (in s)

® |nstall ARC-CE (in s)

NAMD simulations

NAMD - scalable molecular dynamics (using
apoal benchmark, 500 steps of simulation)

testing scalability over 4 nodes

inconsistent results (up to |5% performance
differencies) - warm-up phase, noisy neighbors?

overall performance |15% lower on ARC-CC
compared to bare metal ARC cluster

scalability efficient in all environments

ns/days

Overall NAMD performance

Performance (lower is better)

~= bare metal ARC cluster - single
node

==& ARC-CC single node
bare metal ARC cluster -
multinode

st ARC-CC multinode

0
4 CPU 12 CPU

® Days of computation time required per
nanosecond of simulation

Conclusion

Simulations on ARC-CC: 15% performance penalty
compared to a physical cluster. Almost no memory
overhead. Some high latency problems.

Data-intensive tasks should be tested.

Performance depends also on noisy neighbors,
type of instance etc.

Usable solution for peak times and legacy code
execution.

Work to be done:VM images for VO-s,VYM
provisioning

® Thanks. Questions!?

