Sub-GeV Dark Matter Searches: Extending the Theoretical Landscape and Performing Global Fits

Work partly based on, arXiv:2307.02207

Taylor R. Gray Supervisor: Riccardo Catena Supported by a research grant from the Wallenberg foundation

- Was once in thermal equilibrium w SM
- mass: ~ MeV GeV
- interacts w SM via a new hypothetical dark mediator particle

Dark Matter Candidates

Nuclear Recoil Direct Detection Status

- Sensitive to GeV-TeV scale DM masses
- Approaching neutrino "fog"

- Sub-GeV DM is largely experimentally **unexplored.**
 - Out of reach of nuclear recoil direct detection exps
 - Electron recoils and accelerator exps

- DM produced through freeze-out near weak scale
- GeV-TeV scale thermal DM already widely tested

Accelerator Based DM Experiments

- Complementarity with direct detection experiments
- Types
 - I. beam dump
 - II. missing momentum/energy
 - III. missing mass
 - IV. direct dark photon search (visible dark photon decay)

Beam Dumps (Electron and Proton)

Beam Dumps (Electron and Proton) Dark Photon/DM Production

- i. Mesons from proton beam nucleon target interactions *i.* $\pi^0, \eta \rightarrow \gamma A', A' \rightarrow \chi \chi$
- ii. Proton/electron dark bremsstrahlung
 - *i.* $pN \rightarrow pNA'$
 - ii. resonant vector meson mixing
- iii. Direct production through parton level processes
 - i. relevant for $m_{A'} > 1 \text{ GeV}$

Beam Dumps (Electron and Proton)

arXiv:1107.4580

arXiv:1406.2698

E137

- DM produced from electron-target collisions
- 20 GeV beam incident on a set of aluminum plates interlaced with cooling water.

LSND arXiv:hep-ex/0101039

- pions produced by impacting an 800 MeV proton beam onto a water or metal target
- $\pi^0 \to A' \gamma, A' \to XX$

MiniBooNE arXiv:1807.06137

- Designed to study short-baseline neutrino oscillations
- 8 GeV proton beam incident on a steel target
- Peak ~ 770 MeV (*ρ* mass)

Missing Momentum/Energy Experiments

• LDMX [Light Dark Matter eXperiment] (arXiv:1808.05219)

- In final design stage
 - Phase 1: Low-multiplicity beam at SLAC 4×10¹⁴ EOT
 - Phase 2: 10¹⁶ EOT
- *e*⁻ incident on a thin tungsten target
- charged particle tracker and calorimeters to measure DM signature
- recoil electron pT accompanied by absence of other particle activity
- **NA64** (arXiv:1906.00176)
 - 100 GeV electron beam incident on a lead target
 - Event: single electron produced and missing energy

Other Experiments

Monophoton Searches $e^+e^- \rightarrow \gamma A', A' \rightarrow XX$

- BaBar (arXiv:1702.03327)
- Belle II
 - Future experiment

Direct Detection (arXiv:2210.07305)

- Edelweiss
- Sensei
- Xenon1T
- Xenon10

Cosmological limits

Energy Injection

CMB

 anisotropies measurements by Planck constrain the annihilation parameter, *P_{ann}*

$$P_{ann} \equiv f(z) \frac{\langle \sigma v \rangle_{\chi\chi \to f\bar{f}}}{m_{\chi}}$$

$$P_{ann} \lesssim 3.2 \times 10^{-28} cm^3 s^{-1} GeV^{-1}$$
 (Planck 2018)

IGM temperature

 Lyman-α forest measurements, we require that the energy injected into the IGM does not overheat it at late times

Sub-GeV Dark Matter Landscape

- Future fixed target experiments such as LDMX will reach new sensitivities in the sub-GeV mass range.
- How about **spin-1** DM?

The Goal of arXiv:2307.02207

- Broaden the existing studies on sub-GeV DM at fixed target experiments
- We consider,
 - 1. a set of simplified spin-1 DM candidates which have a dark photon mediator
 - 2. a renormalizable, UV complete extended Higgs sector spin-1 DM
 - Dark SU(2) × $U(1)' \rightarrow X_3$, Z' mediators and SIMP DM
 - Dark SU(2) $\rightarrow Z'$ mediator
 - where $m_{Z'} < 2m_X$, leading to off-shell DP production and visible signatures

ongoing work at Chalmers!

Simplified Spin-1 Dark Matter Models

with a Dark Photon Mediator

 $-\mathcal{L} \supset \left(ib_{5}X_{\nu}^{\dagger}\partial_{\mu}X^{\nu}A^{\prime\mu} + b_{6}X_{\mu}^{\dagger}\partial^{\mu}X_{\nu}A^{\prime\nu} + b_{7}\epsilon_{\mu\nu\rho\sigma}\left(X^{\dagger\mu}\partial^{\nu}X^{\rho}\right)A^{\prime\sigma} + h.c.\right) + h_{3}A_{\mu}^{\prime}\bar{f}\gamma^{\mu}f$

b₅: real b₆: complex b₇: complex h₃: real $h_3 \equiv \epsilon e$

f: SM leptons and quarks

DM Freeze-Out If $2m_X < m_{A_I}$ s-channel dominates DM annihilations.

Strong Limits on Spin-1 Relic Targets

Large MiniBooNE limits due to large $\sigma_{\chi e^- \rightarrow \chi e^-}$ while m_{χ} is small

Ruled out by current experiments and CMB respectively..

Spin-1 DM is the first to be probed by LDMX!

Unitarity Violation

$$|\mathrm{Im}(M_{ii}^J)|, 2|\mathrm{Re}(M_{ii}^J)| \le 1$$

If the matrix elements in the theory are too large at tree level, additional fields or higher order diagrams are needed to restore unitarity of the S matrix.

- Need to be careful of this for the simplified spin-1 DM models...
- But, the renormalizable and UV complete SIMP spin-1 DM model by construction does not violate unitarity!

arXiv:1510.02110: simplified *DM* arXiv:2303.08351: spin-1 *DM* self scattering

Dominant since $g_{X_2} \gg e\epsilon$

arXiv:1904.04109

Taylor R. Gray | Science Coffee at Lund 2023

Weaker beam dump limits since $DM - e^{-}$ scattering cross section is suppressed

 Ωh^2 independent of ϵ , entire region (excluding TD region) consistent w Planck!

Taylor R. Gray | Science Coffee at Lund 2023

Global Fit of Sub-GeV Dark Matter with GAMBIT

In collaboration with: Sowmiya Balan, Csaba Balazs, Torsten Bringmann, Riccardo Catena, Timon Emken, Quan Huynh, Tomas Gonzalo, and Felix Kahlhoefer

Global Fits of sub-GeV DM

Many experiments with their own exclusion bounds.

If you approximate the combined exclusion bound as the intersection..

Error rate = $1 - 0.95^{n}$

Ex. 5 experiments,

- error rate = $1 0.95^5 = 23\%$
- falsely reporting 95% C.L.

Global Fits of sub-GeV DM

Likelihoods we consider:

- Cosmological
 - Relic density
 - BBN
 - Exotic energy injection (CMB)
- Astrophysical
 - X-ray
 - Bullet cluster

X-ray

X-rays from DM annihilations $DM DM \rightarrow e^+e^-,$ $DM DM \rightarrow \mu^+\mu^-,$ $DM DM \rightarrow \pi^+\pi^-,$ Measured by INTEGRAL telescope

arXiv: 2007.11493

Relic density

Gaussian likelihood centred at calculated value by **DarkSUSY**, evaluated at $\Omega_{\rm DM,obs}h^2 = 0.120 \pm 0.001$

arXiv: 1705.07920

BBN

DM can give a contribution to the total energy density, altering *H*. **AlterBBN** package for calculating effects of DM annihilations

arXiv: 2009.03286

Bullet cluster

 $DM DM \rightarrow DM DM$ interactions constrainted by colliding cluster

arXiv: 1605.04307

Global Fits of sub-GeV DM

Likelihoods we consider:

- Beam dump / Fixed targets
- Direct detection
- Colliders

Poisson likelihood: $\mathcal{L} = \frac{e^{-(s+b)}(s+b)^n}{n!}.$

Fixed targets

of signal events simulated w **BdNMC** for,

- LSND
- Mini-BooNE

And # events calculated for,

• NA64 (from recent NA64 results)

FUTURE:

• LDMX

arXiv:1609.01770

AM

G

Summary *

- Extending the current landscape of sub-GeV DM models considered in the context of fixed target experiments
- Spin-1 sub-GeV DM
 - where $m_{A'} > 2m_X$
- Global fits for sub-GeV DM including fixed target experiments

Future

- Ongoing work with
 - additional Vector DM models
 - sub-GeV GAMBIT scans including LDMX likelihood
- Spin-1 DM models with dark dipole dark photons

Backup Slides

SIMP spin-1 DM $SU_X(2) \times U_{Z'}(1)$

$$-\mathcal{L} \supset -ig_X \cos\theta'_X \left[\left(\partial^{\mu} X^{\nu} - \partial^{\nu} X^{\mu} \right) X^{\dagger}_{\mu} \tilde{X}_{3,\nu} - \left(\partial^{\mu} X^{\nu\dagger} - \partial^{\nu} X^{\mu\dagger} \right) X_{\mu} \tilde{X}_{3,\nu} + X_{\mu} X^{\dagger}_{\nu} \left(\partial^{\mu} \tilde{X}^{\nu}_{3} - \partial^{\nu} \tilde{X}^{\mu}_{3} \right) \right] \\ -ig_X \sin\theta'_X \left[\left(\partial^{\mu} X^{\nu} - \partial^{\nu} X^{\mu} \right) X^{\dagger}_{\mu} \tilde{Z}'_{\nu} - \left(\partial^{\mu} X^{\nu\dagger} - \partial^{\nu} X^{\mu\dagger} \right) X_{\mu} \tilde{Z}'_{\nu} + X_{\mu} X^{\dagger}_{\nu} \left(\partial^{\mu} \tilde{Z}'^{\nu} - \partial^{\nu} \tilde{Z}'^{\mu} \right) \right] \\ -e\varepsilon \cos(\theta'_X) \tilde{Z}'_{\mu} \bar{f} \gamma^{\mu} f + e\varepsilon \sin(\theta'_X) \tilde{X}_{3\mu} \bar{f} \gamma^{\mu} f \tag{1}$$

- Dark spontaneous symmetry breaking by the VEVs of dark Higgs fields
- Dark Higgs Sector
 - Singlet scalar *S*
 - *H*_X
 - Kinetic mixing between Z' and hypercharge gauge bosons

Figure 2: DM relic abundance, Ωh^2 , as a function of m_X and $m_{\tilde{X}_3}/m_X$ for SIMP DM thermally produced by the freeze-out of $3 \to 2$ processes. Here we take $\alpha_D = 0.5$. The horizontal dashed line corresponds to the observed value of Ωh^2 . Coloured lines have been obtained by evaluating Eq. (40) from [24].

Relic Targets of DM Models

Calculating Dark Matter Abundance The Boltzmann Equation $\dot{n} + 3Hn = R$ Universe's Expansion Particle Physics

- n: number density
- *H*: Hubble Rate (Universe's Expansion)
- *R*: Interaction Rate Density (# interactions per time and volume)
 - Includes all annihilations and productions
- More convenient to define Y and x

•
$$Y \equiv \frac{n}{s}$$
, $x \equiv \frac{m}{T}$

s: entropy density

Ways of Producing Dark Matter

- Γ : Interaction Rate (# interactions per time)
- *H*: Hubble Rate (universe's expansion rate)
- Freeze-In
 - $\Gamma < H$ (decoupled)
 - small interaction rates
 - never thermalizes with bath
- Freeze-Out
 - $\Gamma > H$ (coupled)
 - Iarge interaction rates
 - thermalizes with bath

This work!

→ Increasing Coupling

Hadronic Resonances

- If DM freezes-out after the QCD phase transition (~150 MeV), DM annihilates to hadronic final states rather than to quarks.
 - Must consider for $m_X \leq 3 \, GeV$

$$\sigma v_{XX \to A' \to \text{hadrons}} \approx R(s) \sigma v_{XX \to A' \to \mu^- \mu^+}$$
$$R(s) \equiv \sigma_{e^+e^- \to \text{hadrons}} / \sigma_{e^+e^- \to \mu^+ \mu^-}$$

Taylor R. Gray | Science Coffee at Lund 2023

Confidence Intervals

(I'm sorry to the Bayesian statistics supporters in the audience)

- x% CL: If experiment is repeated many times, the intervals include the true parameter x% of the time
- Counting experiment, take Poisson distribution:

$$f(n;\nu) = \frac{\nu^n}{n!}e^{-\nu}$$

- Uncertainty on number of background events
 - Neutrino flux, NCE cross section model ($\sigma_{\nu N \rightarrow \nu N}$), detector response
 - Nuisance parameters introduced

Experiments

Light Dark Matter eXperiment (LDMX)

- Future fixed target missing momentum exp
 - 2025: LESA delivers beam to LDMX allowing 4×10¹⁴ EOT
 - 2027: 10¹⁶ EOT
- e⁻ incident on a thin tungsten target
- Charged particle tracker and calorimeters to measure DM signature
 - Recoil electron pT accompanied by absence of other particle activity

Electron Beam Dumps

NA64

arXiv:1710.00971

- 100 GeV electron beam incident on a lead target
- Event: single electron produced and missing energy

E137

arXiv:1406.2698

- DM produced from electron-target collisions
- 20 GeV beam incident on a set of aluminum plates interlaced with cooling water.
- Downstream detector

Proton Beam Dumps

arXiv:1107.4580

DM scatterings mimic neutrino scatterings! (Neutral current-like scatterings)

LSND

arXiv:hep-ex/0101039

- pions produced by impacting an 800 MeV proton beam onto a water or metal target
- $\pi^0 \to A' \gamma, A' \to XX$

Mini-Boone arXiv:1807.06137

- Designed to study short-baseline neutrino oscillations
 - 8 GeV proton beam incident on a steel target
- Peak ~ 800 MeV (ρ mass)

FIG. 2. DM production channels relevant for this search with an 8 GeV proton beam incident on a steel target.

Monophoton Searches $e^+e^- \rightarrow \gamma A', A' \rightarrow XX$ Search for single photon events in e^+e^- collision data

arXiv:1702.03327

- BABAR detector at PEP-II B-factory
- Large missing energy/momentum
- Exclusions for $m_{A'} \leq 8 \text{ GeV}$

- Experiment operated at SuperKEKB
 - First data taken in 2019, more to come..
- 7 GeV electrons with 4 GeV positrons