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What is Artificial Intelligence:
A definition

(*cf., for instance, Norvig & Russell)

Today most of the main textbooks* define AI as “the study and 
design of intelligent agents, in which an intelligent agent is a 
system that perceives its environment and takes actions that 
maximize its chances of success”.

• In this approach being rational means maximizing the expected 
utility.

• Yet rationality only concerns what decisions are made (not the 
thought processes behind them)



Problem Setting:
• Set of possible instances X
• Set of possible labels Y
• Unknown target function f : X à Y
• Set of function hypotheses H={ h | h : X à Y }

Input:
• Training examples {<x(i),y(i)>} of unknown target function f

Output:
• Hypothesis h ∈ H that best approximates target function f

superscript: ith training example

Machine Learning as
Function Approximation



Day   Outlook Temperature  Humidity Wind PlayTennis?

Simple Training Data Set

A Training Data Set



Each internal node: test one discrete-valued attribute Xi 

Each branch from a node: selects one value for Xi 

Each leaf node: predict Y (or P(Y|X ∈ leaf))

A Decision Tree for
f: <Outlook, Temperature, Humidity, Wind> à PlayTennis?

A Decision Tree



Entropy
Entropy H(X) of a random variable X

Specific conditional entropy H(X|Y=v) of X given Y=v :

Mutual information (aka Information Gain) of X and Y :

Conditional entropy H(X|Y) of X given Y :

Information Gain



Problem Setting:
• Set of possible instances X

– each instance x in X is a feature vector
– e.g., <Humidity=low, Wind=weak, Outlook=rain, 
Temp=hot>

• Unknown target function f : X à Y
• Y=1 if we play tennis, else 0

• Set of function hypotheses H={ h | h : X à Y }
–each hypothesis h is a decision tree
–sorting x to a leaf, which assigns y

Decision Tree Learning

Input:
• Training examples {<x(i),y(i)>} of unknown target function f
Output:
• Hypothesis h ∈ H that best approximates target function f



Machine Learning:
A first view point 

Machine learning can be viewed as the task of searching through a large space of hypotheses
implicitly defined by the hypothesis representation. The goal of this search is to find the 

hypothesis that best fits the training examples.

It is important to note that by selecting a 
hypothesis space, the designer of the learning algorithm implicitly defines the 

space of all hypotheses that the program can ever learn (algorithmic bias).



Machine Learning:
 A second viewpoint

Machine learning can be also viewed as the task of optimizing  a function 
by avoiding the local minima. The goal of this search is to find the 

function that best approximates the target function. 

The drawback of this picture is that it ignores the role of generalization along the process.



Function Approximation: The Big Picture



A short dictionary

Training set. It is the set of labelled samples used to train the model.

Test set. It is  the set of labelled samples used to test the model.

Accuracy. It is the performance of the model on the test set corresponding to the total 
number of correct predictions over the total number of predictions.

Generalization. It is the ability of the learner to find a hypothesis that is able to enlarge 
successfully its own predictions from the training samples to the test samples.

Bias. We bias the algorithm towards a particular set of hypotheses by restricting the 
learner to choosing the predictor ℎ from a specific class of functions 𝐻. 

Capacity. It is defined as the ability of the model to fit a wide variety of functions: 
specifically, the capacity of a model specifies the class of functions 𝐻 (the hypothesis class) 
from which the learning algorithm can choose the specific function ℎ.



Underfitting/Overfitting (1)

A model is underfitting when it is not able to achieve a sufficiently low error on the 
training set.

A model is overfitting when the gap between training error and test error is too large. 

The goal of the learner is to find the right trade-off between the underfitting/overfitting 
regimes.



Underfitting/Overfitting (2)



Overfitting 

Consider a hypothesis h and its
•  Error rate over training data: 𝑒𝑟𝑟𝑜𝑟$%&'((ℎ)
• True error rate over all data: 𝑒𝑟𝑟𝑜𝑟$%)*(ℎ)

We say h overfits the training data if

𝑒𝑟𝑟𝑜𝑟$%)*(ℎ) > 𝑒𝑟𝑟𝑜𝑟$%&'((ℎ)

Amount of overfitting = 𝑒𝑟𝑟𝑜𝑟$%)*(ℎ) - 𝑒𝑟𝑟𝑜𝑟$%&'((ℎ)



Generalization, bias & capacity
Let us have a hypothesis space generated by a linear regression algorithm. It will include 
the set of all linear functions of its input. 

If we decide to move up the level of abstraction of a linear regression algorithm to include 
polynomials in its hypothesis space, we will increase the capacity of the model. A 
polynomial of degree 1 gives us the linear regression model, with prediction:

𝑦 = 𝑤 ∗ 𝑥 + 𝑏

If we introduce 𝑥!as another feature provided to the linear regression model, we can 
learn a model that is quadratic:

𝑦 = 𝑤! ∗ 𝑥! + 𝑏

We could increase further the capacity of the model till to obtain a polynomial of degree 
15:

𝑦 =2
"#$

$%

𝑤"𝑥" + 𝑏



Increasing the volume of data:
Case (1)

The additional data is provided where the machine learning model needs it 
most.  In the example above, we are not going to see much improvement if we 

keep adding data to the tails while  ignoring the middle area.



Increasing the volume of data:
Case (2)

In this example, adding more data will not improve accuracy since we are 
attempting to model a nonlinear phenomenon with the wrong tool - a linear 

model.





Some (simplified) biology

• Very loose inspiration: human neurons



Perceptron



Error-Driven Classification



Errors, and What to Do

• Examples of errors
Dear GlobalSCAPE Customer, 

GlobalSCAPE has partnered with ScanSoft to offer you the 
latest version of OmniPage Pro, for just $99.99* - the 
regular list price is $499! The most common question we've 
received about this offer is - Is this genuine? We would like 
to assure you that this offer is authorized by ScanSoft, is 
genuine and valid. You can get the . . .

. . . To receive your $30 Amazon.com promotional certificate, 
click through to

  http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are 
there. We hope you enjoyed receiving this message. However, 
if you'd rather not receive future e-mails announcing new 
store launches, please click . . .



What to Do About Errors

• Problem: there is still spam in your inbox

• Need more features – words aren’t enough!
– Have you emailed the sender before?
– Have 1M other people just gotten the same email?
– Is the sending information consistent? 
– Is the email in ALL CAPS?
– Do inline URLs point where they say they point?
– Does the email address you by (your) name?



Classifiers

Hello,

Do you want free printr 
cartriges?  Why pay more 
when you can get them 
ABSOLUTELY FREE!  Just

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12  : 1
PIXEL-7,13  : 0
...
NUM_LOOPS   : 1
...

“2”

yf(X)X



Linear Classifiers

• Inputs are feature values
• Each feature has a weight
• Sum is the activation

• If the activation is:
– Positive, output +1
– Negative, output -1

S
f1
f2
f3

w1

w2

w3
> 0?

𝒂𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏𝒘 𝒙 = 	+
𝒊

𝒘	 ∗ 𝒙𝒊



Weights

• Binary case: compare features to a weight vector
• Learning: figure out the weight vector from examples

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

# free      : 4
YOUR_NAME   :-1
MISSPELLED  : 1
FROM_FRIEND :-3
...

# free      : 0
YOUR_NAME   : 1
MISSPELLED  : 1
FROM_FRIEND : 1
...

Inner product                   positive 
means the positive class

+

++

+
+

+

-

-

-

-

-

-

𝒘
𝒇(𝒙𝟏)

𝒇(𝒙𝟐) 

𝑓(𝑥) ∗ 𝑤



Decision Rules



Binary Decision Rule

• In the space of feature vectors
– Examples are points
– Any weight vector is a hyperplane
– One side corresponds to Y= +1
– Other corresponds to Y= -1

BIAS  : -3
free  :  4
money :  2
... 0 1

0

1

2

free

m
on

ey

+1 = SPAM

-1 = HAM 4

𝒇(𝒙) ∗ 𝒘 = 𝟎 

𝒙



Weight Updates



Learning: Binary Perceptron

• Start with weights = 0
• For each training instance:

– Classify with current weights

– If correct (i.e., y=y*), no change!

– If wrong: adjust the weight vector



Learning: Binary Perceptron

• Start with weights = 0
• For each training instance:

– Classify with current weights

  𝑦 = #
+1	𝑖𝑓	𝑤 ∗ 𝑓 𝑥 ≥ 0
−1	𝑖𝑓	𝑤 ∗ 𝑓 𝑥 < 0

– If correct (i.e., y=y*), no change!
– If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.

  𝑤	 = 𝑤 + 𝑦∗ ∗ 𝑓

𝒘

𝒇

𝒚∗ ∗ 𝒇



Examples: Perceptron

• Separable Case



Multiclass Decision Rule

• If we have multiple classes:
– A weight vector for each class:

– Score (activation) of a class y 
(there will be a w for each 
class):

– Prediction highest score wins

Binary = multiclass where the negative class has weight zero

𝑤)

𝑓 𝑥 ∗ 𝑤)

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥) 	𝑓 𝑥 ∗ 𝑤)



Learning: Multiclass Perceptron

• Start with all weights = 0
• Pick up training examples one by one
• Predict with current weights

• If correct, no change!
• If wrong: lower score of wrong answer, 

raise score of right answer:
 	 𝑤! =	𝑤! − 	𝑓 𝑥

𝑤!∗ =	𝑤! + 𝑓(𝑥)

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥) 	𝑓(𝑥) ∗ 𝑤)
𝒇 

𝒘𝒚

𝒘𝒚∗

𝒘𝒚"





Perceptron
(linear)

Activation function
(step activation function)

𝒇 𝒔 = 𝒇 2
𝒊

𝒘 ∗ 𝑿

f(s) =  1,
 if s > 0

Activation function
(sigmoid activation function)

𝒇(𝒔) = 𝒇 2
𝒊

𝒘 ∗ 𝑿

𝒇 𝒔 =
𝟏

𝟏 + 𝒆𝒔



Generalization

When we train a machine learning model, we do not just want it to 
learn to model the training data. We want it to generalize to data it 
has not seen before. 

Generalization, therefore, is the ability of the machine learning 
model to perform efficiently on data it has not seen before.

If an algorithm works well on the training set but fails to generalize, 
we say it is overfitting. Improving generalization (or preventing 
overfitting) in neural nets is still a sort of dark art.



Rethinking generalization

The ICLR 2017 submission “Understanding Deep Learning required 
Rethinking Generalization”  has certainly disrupted our 

understanding of Deep Learning 
(see Zhang et al. 2017; Zhang et al. 2021). 





The issue at stack

Deep artificial neural networks often have far more trainable model 
parameters than the number of samples they are trained on.

Yet, some of these models exhibit remarkably small generalization 
error.  At the same time, it is certainly easy to come up with natural 
model architectures that generalize poorly. 

à What is it that distinguishes neural networks that generalize well 
from those that do not?



Complexity measures

Computational Learning Theory (CLT) has proposed a number of 
different complexity measures that are capable of controlling the 
generalization error:

ü Structural  Risk Minimization (Vapnik & Chervonenkis, 1974)
ü Rademacher complexity (Bartlett & Mendelson, 2003)
ü Uniform stability (Mukherjee et al., 2002; Poggio et al., 2004)

However, according to most of the scholars, when the number of 
parameters is large, some form of regularization is needed to ensure 
small generalization error. 



Learners and Complexity

•  There are many versions of underfit/overfit trade-off
–  Expressiveness = Representational Power
–  Representational Power = Complexity of the Learner
Different learners have different power

•  Usual trade-off:
–  More power = represent more complex systems, might overfit
–  Less power = will not overfit, but may not find “best” learner

•  How can we quantify representational power?
–  Not easily…
–  One solution is VC (Vapnik-Chervonenkis) dimension



Some notation

•  Let us assume our training data are i.i.d. from 
some distribution p(x)

•  Define “risk” and “empirical risk”

–  These are just “long term” test and observed training error

•  How are these related? Depends on overfitting…
–  Underfitting regime: pretty similar…
–  Overfitting regime: test error might be lots worse!



VC Dimension

• VC dimension for a set of functions {f(a)} is 
defined as the maximum number of training 
points that can be shattered by {f(a)}. 

• If the VC dimension is h, then there exists at least 
one set of H points that can be shattered. But not 
necessary for every set of H points.



8 possible labeling of 3 points can be separated by lines

A linear function has VC dimension 3



Yet a linear function cannot separate the labeling of these four points
using a line. Thus the VC dimension of a line is 3.



VC Dimension 
and Structural Risk Minimization
• Given some machine f, let H be its VC dimension.
• H is a measure of f’s power (H does not depend on the choice 

of training set)
• Vapnik showed that with “high probability” 1-𝜂	represents 

the “representational power” of classifier

•  Structural Risk Minimization



What does the VC dimension 
measure?

• Is it the number of parameters?
Related but not really the same.

• I can create a machine with one numeric 
parameter that really encodes 7 parameters

• And I can create a machine with 7 parameters 
which has a VC-dim of 1

• Filippos private opinion: it often is the number of parameters that counts.



Using VC-dimensionality
People have worked hard to find VC-dimension for...

– Decision Trees
– Perceptrons
– Neural Nets
– Support Vector Machines
– And many many more

All with the goals of
1. Understanding which learning machines are more or less 

powerful under which circumstances
2. Using Structural Risk Minimization to choose the best 

learning machine



Regularization

Regularization is any modification we make to a learning 
algorithm that is intended to reduce its generalization 

error, possibly at the expense of increased training error。 



ü Network model

ü Learning method

The two variables controlling 
regularization



ü Regularization by construction is present both in the training and 
inference stages 

ü Regularization by training is not present in the inference path

Regularization



ü Explicit regularization:
• early stopping
• dropout
• weight decay/weight sharing
• data augmentation

à In all these cases the goal of regularization is to improve 
generalization.

ü Implicit regularization:
• SGD
• batch normalization

Regularization by training



Early stopping

It is an hyperparameter 
controlling the effective 
capacity of the model by 

determining how 
many steps it can take to fit 

the training set. 

The additional cost to early 
stopping is the need to 

maintain a copy of the best 
parameters. 



Dropout

Dropout trains the ensemble 
of networks consisting of all 

sub-networks that can be 
formed by removing non-

output units from an 
underlying base network.

Dropout trains an ensemble of 
models that share hidden 

units. This means each hidden 
unit must be able to perform 

well regardless of which other 
hidden units are in the model. 



Weight decay/sharing

Weight decay 
penalizes model 
parameters for 

deviating from the 
fixed value of zero. 

Weight sharing 
forces sets of 

parameters to be 
equal.We minimize a sum comprising both the mean 

squared error on the training and a criterion
 J(w) that expresses a preference for the weights 

to have smaller squared L2 norm. 



Data augmentation

The main task facing a classifier is to be invariant to a wide 
variety of transformations. We can generate new (x, y) pairs 
easily just by transforming the x inputs in our training set. 

 
Operations like translating the training images a few pixels in 

each direction, rotating the image or scaling the image can often 
greatly improve generalization, even if the model has already 

been designed to be partially translation invariant by using the 
convolution and pooling techniques.

Injecting noise in the input to a neural network can also be seen 
as a form of data augmentation. 



1) Deep neural networks, when trained on a completely random labeling of the 
data, can easily achieve 0 training error. 

2) The effective capacity of neural networks is large enough for a brute-force 
memorization of the entire training set.

3) The test error will be of course no better than random chance insofar as there 
is no correlation between the training labels and the test labels.

4) Even optimization on random labels remains easy: training time increases only 
by a small constant factor compared with training on the true labels.

5) Randomizing labels is solely a data transformation, leaving all other properties 
of the learning problem unchanged.

Discovery (1)



If the model architecture itself is not a sufficient regularizer, it 
remains to see how much explicit regularization, such as dropout or 

data augmentation, helps.

à “Explicit regularization may improve generalization performance, 
but is neither necessary nor by itself sufficient for controlling 

generalization error” (Zhang and al. 2017)

Discovery (2)



Definition 1: Error Response to Validation and Real Data

We can define it as the behavior of our system in response to 
validation data, i.e. data that we have not included as part of the 
training set.

We might be more ambitious and define it as behavior when the 
system is deployed to analyze real world data: we essentially would 
like to see our trained system perform accurately in the context of 
data it has never seen.

Four different notions of generalization



Definition 2: Model sparsity

A second definition is based on the idea of Occam’s Razor, i.e. the 
simplest among the hypotheses is the best one. 

Feature selection simplifies a machine learning problem by choosing 
which subset of the available features should be used. 

Four different notions of generalization



Definition 3: Fidelity in Generating Models

A third definition is based on the system’s ability to recreate or 
reconstruct the features. 

This is the approach taken by generative models. If a neural network 
is able to accurately generate realistic images, then it is able to 
capture the concept of that image in its entirety. 

Four different notions of generalization



Definition 4: Effectiveness in Ignoring Nuisance Features

This definition involves the notion of ignoring nuisance variables, i.e. 
a system is able to generalize whenever it is able to ignore nuisance 
features for its tasks. 

Remove away as many features as possible until you cannot remove 
any more. 

Four different notions of generalization



Methods that do not seem to have anything to do with generalization 
issues such as Stochastic Gradient Descent in fact do contribute

A number of works have used a variety of techniques to conclude that 
the loss functions of deep network have no bad (or a few) local 
minima (even though may instead have many saddle points)

SGD acts as an implicit regularizer.: for linear models, SGD always 
converges to a solution with a small norm. 

SGD & Generalization



1) Different optimization algorithms (SGD, SGDM, RMSProp, 
Adadelta, Adam) find different local minima

2) The loss surfaces of the same algorithm from different 
initializations are remarkably characteristic of the optimization 
algorithm

3) Batch normalization is key to obtaining this consistency in the 
projected loss surface

Deep Learning loss surfaces

The success of deep learning critically depends on how well we can 
minimize loss functions: understanding the geometry of these loss 
functions and how optimization algorithms traverse them is thus of 

vital importance.



To investigate the shape of the loss function, it is possible to compute the value 
of the loss function for weight vectors interpolated between the initial weights, 
the final weights for one algorithm, and the final weights for a second algorithm 

for each pairing of algorithms for the VGG (Visual Geometry Group) network.  



Different optimization algorithms find different types of local minima

a. It is possible to identify some stereotypical features for the final 
points found by different algorithms

b. However, the generalization accuracy of these different final points 
on validation data was not different between algorithms

c. Moreover it does not appear to be any relationship between the 
weight initialization and the validation accuracy

Deep Learning loss surfaces



1. The effective capacity of successful neural network architectures is 
large enough to shatter the training data

2. Consequently, these models are in principle rich enough to 
memorize the training data

3. Therefore, traditional measures of model complexity struggle to 
explain the generalization ability of large artificial neural networks 

4. Yet, optimization continues to be empirically easy even if the 
resulting model does not generalize

How to understand the notion of effective capacity 



Can we thrust AI?

Neural Networks are black boxes to the extent that:

ü why and how generalization and, therefore, learning is achieved is not 
clear (see, for instance, Zhang 2017; 2021);

ü the behavior of NN cannot be easily interpreted to the extent that we 
cannot read their operation step-by-step by using a reverse engineering 
approach (e.g. what is the contribution of the example n. 13412 to the 
final output?);

ü NN are not able  to justify their decisions by providing plausible  
reasons or explanations for their own decisions: therefore, NN cannot 
enter into a realm of rhetorical negotiation between the human and 
the artificial actors (please make a comparison with decision trees).



Thanks for your attention!  


