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Abstract:

Living systems face both environmental complexity and limited access to free-energy resources.
Survival under these conditions requires a control system that can activate, or deploy, available
perception and action resources in a context specific way. In this Part |, we introduce the free-
energy principle (FEP) and the idea of active inference as Bayesian prediction-error minimization,
and show how the control problem arises in active inference systems. We then review classical and
quantum formulations of the FEP, with the former being the classical limit of the latter. In the
accompanying Part II, we show that when systems are described as executing active inference
driven by the FEP, their control flow systems can always be represented as tensor networks (TNs).
We show how TNs as control systems can be implemented within the general framework of
quantum topological neural networks, and discuss the implications of these results for modeling
biological systems at multiple scales.
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Deep Neural Networks miss a principled model of their operation. A novel framework for super-
vised learning based on Topological Quantum Field Theory that looks particularly well suited for
implementation on quantum processors has been recently explored. We propose the use of this
framework for understanding the problem of generalization in Deep Neural Networks. More specif-
ically, in this approach Deep Neural Networks are viewed as the semi-classical limit of Topological
Quantum Neural Networks. A framework of this kind explains easily the overfitting behavior of
Deep Neural Networks during the training step and the corresponding generalization capabilities.

I. INTRODUCTION the operational behavior of a non-linear weighted model
trained over hundreds of thousands of inputs that
contribute microscopically to the final configuration of
the network. These issues together constitute the main
technical challenge for achieving a fair, accountable, and
tranenarent Artificial Intellicence (AI) with the first

Deep neural networks (DNNs), i.e. neural networks
with several hidden layers, have become popular due to
their success in a variety of learning task ranging from



UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Chiyuan Zhang* Samy Bengio Moritz Hardt
Massachusetts Institute of Technology Google Brain Google Brain
chiyuan@mit.edu bengio@google.com mrtz@google.com
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ABSTRACT

Despite their massive size, successful deep artificial neural networks can exhibit a
remarkably small difference between training and test performance. Conventional
wisdom attributes small generalization error either to properties of the model fam-
ily, or to the regularization techniques used during training.

Through extensive systematic experiments, we show how these traditional ap-
proaches fail to explain why large neural networks generalize well in practice.
Specifically, our experiments establish that state-of-the-art convolutional networks
for image classification trained with stochastic gradient methods easily fit a ran-
dom labeling of the training data. This phenomenon is qualitatively unaffected
by explicit regularization, and occurs even if we replace the true images by com-
pletely unstructured random noise. We corroborate these experimental findings
with a theoretical construction showing that simple depth two neural networks al-
ready have perfect finite sample expressivity as soon as the number of parameters
exceeds the number of data points as it usually does in practice.

We interpret our experimental findings by comparison with traditional models.
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Understanding quantum machine learning also requires rethinking generalization
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Quantum machine learning models have shown successful generalization performance even when trained with
few data. In this work, through systematic randomization experiments, we show that traditional approaches to
understanding generalization fail to explain the behavior of such quantum models. Our experiments reveal that
state-of-the-art quantum neural networks accurately fit random states and random labeling of training data. This
ability to memorize random data defies current notions of small generalization error, problematizing approaches
that build on complexity measures such as the VC dimension, the Rademacher complexity, and all their uniform
relatives. We complement our empirical results with a theoretical construction showing that quantum neural net-
works can fit arbitrary labels to quantum states, hinting at their memorization ability. Our results do not preclude
the possibility of good generalization with few training data but rather rule out any possible guarantees based
only on the properties of the model family. These findings expose a fundamental challenge in the conventional
understanding of generalization in quantum machine learning and highlight the need for a paradigm shift in the

design of quantum models for machine learning tasks.

I. INTRODUCTION

Quantum devices promise applications in solving computa-
tional problems beyond the capabilities of classical comput-
ers [1-5]. Given the paramount importance of machine learn-
ing in a wide variety of algorithmic applications that make
predictions based on training data, it is a natural thought to
investigate to what extent quantum computers may assist in
tackling machine learning tasks. Indeed, such tasks are com-
monly listed among the most promising candidate applica-
tions for near-term quantum devices [6-9]. To date, within
this emergent field of quantum machine learning (QML) a
body of literature is available that heuristically explores the

alization is unable to explain the great success of large-scale
deep convolutional neural networks. These networks, which
display orders of magnitude more trainable parameters than
the dimensions of the images they process, defied conven-
tional wisdom concerning generalization.

Employing clever randomization tests derived from non-
parametric statistics [60], the authors of Ref. [59] exposed
cracks in the foundations of Vapnik’s theory and its succes-
sors [61], at least when applied to specific, state-of-the-art,
large networks. Established complexity measures, such as the
well-known VC dimension or Rademacher complexity [62],
among others, were inadequate in explaining the generaliza-
tion behavior of large classical neural networks. Their find-



What is Artificial Intelligence:
A definition

Today most of the main textbooks* define Al as “the study and

design of intelligent agents, in which an intelligent agent is a

system that perceives its environment and takes actions that
its chances of success”.

* In this approach being rational means

* Yet rationality only concerns what decisions are made ( the
thought processes behind them)

(*cf., for instance, Norvig & Russell)



Machine Learning as
Function Approximation

Problem Setting:

 Set of possible instances X

» Set of possible labels Y

» Unknown target function f: X 2> Y

* Set of function hypotheses H={ h | h: X > Y}

Input: :
* Training examples {<x®,y(®>} of unknown target function f

Output:
« Hypothesis h € H that best approximates target function f



Sunny
Sunny
Overcast
Rain
Rain
Rain
Overcast

Sunny
Sunny
Rain
Sunny
Overcast
Overcast
Rain

A Training Data Set

High
High
High
High
Normal
Normal
Normal
High
Normal
Normal
Normal
High
Normal
High



A Decision Tree

A Decision Tree for
f: <Outlook, Temperature, Humidity, Wind> - PlayTennis?

Sunny Overcast Rain

High Normal Strong

/ X /

No Yes No

Each internal node: test one discrete-valued attribute X;

Each branch from a node: selects one value for X
Each leaf node: predict Y (or P(Y|X € leaf))



Information Gain

Entropy H(X) of a random variable X

H(X) = — i P(X = i) logs P(X = i)

=1

Specific conditional entropy H(X|Y=v) of X given Y=v :

n

H(X|Y =v) =— ) P(X =i]Y =v)logs P(X =i|]Y =v)

=1

Conditional entropy H(X]Y) of X given Y :
(XYy) = P(Y =v)H(X|Y =wv

vevalues(Y

Mutual information (aka Information Gain) of Xand Y:




Decision Tree Learning

Problem Setting:
» Set of possible instances X

» Unknown target function f: X 2 Y

« Set of function hypotheses H={ h | h: X 2 Y}

Input:

* Training examples {<x@®,y@®>} of unknown target function f
Output:

* Hypothesis / € H that best approximates target function f



Machine Learning:
A first view point

Machine learning can be viewed as the task of searching through a large space of hypotheses
implicitly defined by the hypothesis representation. The goal of this search is to find the
hypothesis that best fits the training examples.

It is important to note that by selecting a
hypothesis space, the designer of the learning algorithm implicitly defines the
space of all hypotheses that the program can ever learn (algorithmic bias).



Machine Learning:
A second viewpoint

Machine learning can be also viewed as the task of optimizing a function
by avoiding the local minima. The goal of this search is to find the
function that best approximates the target function.

Local Minimum

The drawback of this picture is that it ignores the role of generalization along the process.
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A short dictionary

Training set. It is the set of labelled samples used to train the model.

Test set. It is the set of labelled samples used to test the model.

Accuracy. It is the performance of the model on the test set corresponding to the total
number of correct predictions over the total number of predictions.

Generalization. It is the ability of the learner to find a hypothesis that is able to enlarge
successfully its own predictions from the training samples to the test samples.

Bias. We bias the algorithm towards a particular set of hypotheses by restricting the
learner to choosing the predictor h from a specific class of functions H.

Capacity. Itis defined as the ability of the model to fit a wide variety of functions:
specifically, the capacity of a model specifies the class of functions H (the hypothesis class)
from which the learning algorithm can choose the specific function h.



Underfitting/Overfitting (1)

A model is underfitting when it is not able to achieve a sufficiently low error on the
training set.

A model is overfitting when the gap between training error and test error is too large.

The goal of the learner is to find the right trade-off between the underfitting/overfitting
regimes.

Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.45e+08)

— Model —— Model —— Model
—— True function —— True function —— True function
e Samples e Samples e Samples




Underfitting/Overfitting (2)

& Underfitting | Overfitting

Best: Fit

Model "complexity”




Overfitting

Consider a hypothesis /2 and its
» Error rate over training data: errory,.4in (h)
 True error rate over all data: errory,,.(h)

We say / gverfits the training data if

erTrOTtrue (h) > ETrTOTtrain (h)

Amount of overfitting = errory,,. (h) - errory,4i, (h)



Generalization, bias & capacity

Let us have a hypothesis space generated by a linear regression algorithm. It will include
the set of all linear functions of its input.

If we decide to move up the level of abstraction of a linear regression algorithm to include
polynomials in its hypothesis space, we will increase the capacity of the model. A
polynomial of degree 1 gives us the linear regression model, with prediction:

y=wx*xx+b

If we introduce x?as another feature provided to the linear regression model, we can
learn a model that is quadratic:

y=w,*x%+b

We could increase further the capacity of the model till to obtain a polynomial of degree
15:

15
y = z wixt + b
i=1



Increasing the volume of data:
Case (1)

The additional data is provided where the machine learning model needs it
most. In the example above, we are not going to see much improvement if we
keep adding data to the tails while ignoring the middle area.



Increasing the volume of data:
Case (2)

In this example, adding more data will not improve accuracy since we are
attempting to model a nonlinear phenomenon with the wrong tool - a linear
model.



Deep Learning

Hidden Layers

Output Layer

FOrward sl

W BACK-Propagation s )
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Some (simplified) biology

* Very loose inspiration: human neurons

impulses carried

toward cell body
branches

dendrites (Y / of axon

terminals

‘ \‘/Lk ' axon
nucleus S

= "<‘
impulses carried S

away from cell body
cell body




Perceptron




Error-Driven Classification




Errors, and What to Do

* Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the
latest version of OmniPage Pro, for just $99.99* - the
regular list price is $499! The most common question we've
received about this offer is - Is this genuine? We would like
to assure you that this offer is authorized by ScanSoft, is
genuine and valid. You can get the

. To receive your $30 Amazon.com promotional certificate,
click through to

http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are
there. We hope you enjoyed receiving this message. However,
if you'd rather not receive future e-mails announcing new
store launches, please click




What to Do About Errors

* Problem: there is still spam in your inbox

* Need more — words aren’t enough!
— Have you emailed the sender before?
— Have 1M other people just gotten the same email?
— Is the sending information consistent?
— |Is the email in ALL CAPS?
— Do inline URLs point where they say they point?
— Does the email address you by (your) name?



X

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

Classifiers

f(X)

# free

YOUR NAME
MISSPELLED
FROM FRIEND

PIXEL-7,12
PIXEL-7,13

NUM_LOOPS

o

y

SPAM
or

”2”



Linear Classifiers

* |nputs are
e Each feature has a
e Sumis the

* If the activation is: (F, i
— Positive, output +1 f Z = > (07?

W
— Negative, output -1 [ f, [y







Decision Rules




Binary Decision Rule

* Inthe space of feature vectors
— Examples are points
— Any weight vector is a hyperplane
— One side corresponds to Y= +1
— Other corresponds to Y= -1

X +1 = SPAM

BIAS : =3
fF R 4

money : 2 9
. -1=HAM
0 1 free 4

fx)*w=10




Weight Updates




Learning: Binary Perceptron

e Start with weights =0
e For each training instance:
— Classify with current weights

— If correct (i.e., y=y*), no change!

— If wrong: adjust the weight vector




Learning: Binary Perceptron

e Start with weights =0
e For each training instance:
— Classify with current weights

_(+H1ifwxf(x) =0 y *f
- —1lifw=f(x) <0

— If correct (i.e., y=y*), no change!

— If wrong: adjust the weight vector by
adding or subtracting the feature
vector. Subtract if y* is -1.

w=w+y *f



Examples: Perceptron

* Separable Case




Multiclass Decision Rule

* |f we have multiple classes:
— A weight vector for each class:

Wy,

— Score (activation) of a class y
(there will be a w for each
class):

FG) = w,

— Prediction highest score wins

y = argmax,, f(x) * w,

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

Start with all weights =0
Pick up training examples one by one
Predict with current weights f

y = argmax,, f(x) * w,, W,

If correct, no change!

If wrong: lower score of wrong answer,
raise score of right answer:

Wy=Wy—f(X) W1

Wy, = Wy + f(x)



impulses carried

toward cell body
branches

of axon

impulses carried
away from cell body

terminals

Z( wo
synapse
. WoZo

. |
axon from a neuron

cell body

Zwiwi + b

output axon

activation
function




Perceptron

Z( wo .
e (linear)
axon from a neuron
. WoTo
' Activation function
Il bod - c e
cell body f(Zwi$i+b> (step activation function)
Zwimi +b
: output axon
activation f(S) = f Z w*x X
function 7
fls) = 1,
ifs>0

Activation function
(sigmoid activation function)

f(S)=f{ZW*X}
i 1

mout lover (class/target) f(s) —
hidden layers: “deep™ if > 1 1+ e’

output layer




Generalization

When we train a machine learning model, we do not just want it to
learn to model the training data. We want it to generalize to data it
has not seen before.

Generalization, therefore, is the ability of the machine learning
model to perform efficiently on data it has not seen before.

If an algorithm works well on the training set but fails to generalize,
we say it is overfitting. Improving generalization (or preventing
overfitting) in neural nets is still a sort of dark art.



Rethinking generalization

The ICLR 2017 submission “Understanding Deep Learning required
Rethinking Generalization” has certainly disrupted our
understanding of Deep Learning
(see Zhang et al. 2017; Zhang et al. 2021).
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ABSTRACT

Despite their massive size, successful deep artificial neural networks can exhibit a
remarkably small difference between training and test performance. Conventional
wisdom attributes small generalization error either to properties of the model fam-
ily, or to the regularization techniques used during training.

Through extensive systematic experiments, we show how these traditional ap-
proaches fail to explain why large neural networks generalize well in practice.
Specifically, our experiments establish that state-of-the-art convolutional networks
for image classification trained with stochastic gradient methods easily fit a ran-
dom labeling of the training data. This phenomenon is qualitatively unaffected
by explicit regularization, and occurs even if we replace the true images by com-
pletely unstructured random noise. We corroborate these experimental findings
with a theoretical construction showing that simple depth two neural networks al-
ready have perfect finite sample expressivity as soon as the number of parameters
exceeds the number of data points as it usually does in practice.

We interpret our experimental findings by comparison with traditional models.




The issue at stack

Deep artificial neural networks often have far more trainable model
parameters than the number of samples they are trained on.

Yet, some of these models exhibit remarkably small generalization
error. At the same time, it is certainly easy to come up with natural
model architectures that generalize poorly.

- What is it that distinguishes neural networks that generalize well
from those that do not?



Complexity measures

Computational Learning Theory (CLT) has proposed a number of
different complexity measures that are capable of controlling the
generalization error:

v’ Structural Risk Minimization (Vapnik & Chervonenkis, 1974)
v' Rademacher complexity (Bartlett & Mendelson, 2003)
v Uniform stability (Mukherjee et al., 2002; Poggio et al., 2004)

However, according to most of the scholars, when the number of

parameters is large, some form of regularization is needed to ensure
small generalization error.



Learners and Complexity

There are many versions of underfit/overfit trade-off
Expressiveness = Representational Power
Representational Power = Complexity of the Learner

Different learners have different power

Usual trade-off:
More power = represent more complex systems, might overfit

Less power = will not overfit, but may not find “best” learner

How can we quantify representational power?
Not easily...
One solution is VC (Vapnik-Chervonenkis) dimension



Some notation

Let us assume our training data are i.i.d. from
some distribution p(x)

Define “risk” and “empirical risk”™
These are just “long term” test and observed training error

R(6) = TestError = E[d(c # ¢(x; 0))]

1 : :
emp 0) = TrainE _ 6 (7) Al (1) .
RMP(0) ainError = — E (¢ £ é(x'Y 5 )

How are these related? Depends on overfitting...

Underfitting regime: pretty similar...
Overfitting regime: test error might be lots worse!



VC Dimension

* VC dimension for a set of functions {f(a)} is
defined as the maximum number of training
points that can be shattered by {f(a)}.



A linear function has VC dimension 3

8 possible labeling of 3 points can be separated by lines




o O
OENG,

Yet a linear function cannot separate the labeling of these four points
using a line. Thus the VC dimension of a line is 3.



VC Dimension
and Structural Risk Minimization

* Given some machine f, let H be its VC dimension.

* His ameasure of f's power (H does not depend on the choice
of training set)

* Vapnik showed that with “high probability” 1-n represents
the “representational power” of classifier

R(0) = TestError = E[d(c # ¢(x; 0))]

1 : :
emp (9 — TrainE _ 5D £ (2@ -
RMP(0) ainFrror = — ; (¢ £ é(x'Y 5 0))

Structural Risk Minimization

Hlog(2m/H) + H —log(n/4)

TestError < TrainError +




What does the VC dimension
measure?

* |sit the number of parameters?
Related but not really the same.

* | can create a machine with one numeric
parameter that really encodes 7 parameters

 And | can create a machine with 7 parameters
which has a VC-dim of 1



Using VC-dimensionality

People have worked hard to find VC-dimension for...
— Decision Trees
— Perceptrons
— Neural Nets
— Support Vector Machines

— And many many more
All with the goals of



Regularization

Regularization is any modification we make to a learning
algorithm that is intended to reduce its generalization
error, possibly at the expense of increased training error.



The two variables controlling
regularization

v" Network model

v Learning method



Regularization

v’ Regularization by construction is present both in the training and
inference stages

v’ Regularization by training is not present in the inference path



Regularization by training

v’ Explicit reqularization:
 early stopping
 dropout
* weight decay/weight sharing
e data augmentation

— In all these cases the goal of regularization is to improve
generalization.

v Implicit reqularization:
* SGD
* batch normalization



Early stopping

& Underfitting | Overfitting >

Model “complexity™

It is an hyperparameter
controlling the effective
capacity of the model by
determining how
many steps it can take to fit
the training set.

The additional cost to early
stopping is the need to
maintain a copy of the best
parameters.



Dropout trains the ensemble
of networks consisting of all
sub-networks that can be
formed by removing non-
output units from an
underlying base network.

Dropout trains an ensemble of
models that share hidden
units. This means each hidden
unit must be able to perform
well regardless of which other
hidden units are in the model.

semble of Sub-Networks




Weight decay/sharing

Underfitting Appropriate weight decay Overfitting

(Excessive \) (Medium \) (A—0)

H O

J(’LU) — MSEtrain + AW w

We minimize a sum comprising both the mean
squared error on the training and a criterion
J(w) that expresses a preference for the weights
to have smaller squared L2 norm.

Weight decay
penalizes model
parameters for

deviating from the
fixed value of zero.

Weight sharing
forces sets of
parameters to be
equal.



Data augmentation

The main task facing a classifier is to be invariant to a wide
variety of transformations. We can generate new (X, y) pairs
easily just by transforming the x inputs in our training set.

Operations like translating the training images a few pixels in
each direction, rotating the image or scaling the image can often
greatly improve generalization, even if the model has already
been designed to be partially translation invariant by using the
convolution and pooling techniques.

Injecting noise in the input to a neural network can also be seen
as a form of data augmentation.



Discovery (1)

Deep neural networks, when trained on a completely random labeling of the
data, can easily achieve 0 training error.

The effective capacity of neural networks is large enough for a brute-force
memorization of the entire training set.

The test error will be of course no better than random chance insofar as there
is no correlation between the training labels and the test labels.

Even optimization on random labels remains easy: training time increases only
by a small constant factor compared with training on the true labels.

Randomizing labels is solely a data transformation, leaving all other properties
of the learning problem unchanged.



DIN\VIaAVA

If the model architecture itself is not a sufficient regularizer, it
remains to see how much explicit regularization, such as dropout or
data augmentation, helps.

- “Explicit regularization may improve generalization performance,
but is neither necessary nor by itself sufficient for controlling
generalization error” (Zhang and al. 2017)



Four different notions of generalization

Definition 1: Error Response to Validation and Real Data

We can define it as the behavior of our system in response to
validation data, i.e. data that we have not included as part of the
training set.

We might be more ambitious and define it as behavior when the
system is deployed to analyze real world data: we essentially would
like to see our trained system perform accurately in the context of
data it has never seen.



Four different notions of generalization

Definition 2: Model sparsity

A second definition is based on the idea of Occam’s Razor, i.e. the
simplest among the hypotheses is the best one.

Feature selection simplifies a machine learning problem by choosing
which subset of the available features should be used.



Four different notions of generalization

Definition 3: Fidelity in Generating Models

A third definition is based on the system’s ability to recreate or
reconstruct the features.

This is the approach taken by generative models. If a neural network
is able to accurately generate realistic images, then it is able to
capture the concept of that image in its entirety.



Four different notions of generalization

Definition 4: Effectiveness in Ignoring Nuisance Features

This definition involves the notion of ignoring nuisance variables, i.e.

a system is able to generalize whenever it is able to ignore nuisance
features for its tasks.

Remove away as many features as possible until you cannot remove
any more.



SGD & Generalization

Methods that do not seem to have anything to do with generalization
issues such as Stochastic Gradient Descent in fact do contribute

A number of works have used a variety of techniques to conclude that
the loss functions of deep network have no bad (or a few) local
minima (even though may instead have many saddle points)

SGD acts as an implicit regularizer.: for linear models, SGD always
converges to a solution with a small norm.



Deep Learning loss surfaces

The success of deep learning critically depends on how well we can

minimize loss functions: understanding the geometry of these loss

functions and how optimization algorithms traverse them is thus of
vital importance.

1) Different optimization algorithms (SGD, SGDM, RMSProp,
Adadelta, Adam) find different local minima

2) The loss surfaces of the same algorithm from different
initializations are remarkably characteristic of the optimization
algorithm

3) Batch normalization is key to obtaining this consistency in the
projected loss surface
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To investigate the shape of the loss function, it is possible to compute the value

of the loss function for weight vectors interpolated between the initial weights,

the final weights for one algorithm, and the final weights for a second algorithm
for each pairing of algorithms for the VGG (Visual Geometry Group) network.



Deep Learning loss surfaces

Different optimization algorithms find different types of local minima

a. ltis possible to identify some stereotypical features for the final
points found by different algorithms

b. However, the generalization accuracy of these different final points
on validation data was not different between algorithms

c. Moreover it does not appear to be any relationship between the
weight initialization and the validation accuracy



How to understand the notion of effective capacity

The effective capacity of successful neural network architectures is
large enough to shatter the training data

Consequently, these models are in principle rich enough to
memorize the training data

Therefore, traditional measures of model complexity struggle to
explain the generalization ability of large artificial neural networks

Yet, optimization continues to be empirically easy even if the
resulting model does not generalize



Can we thrust Al?

Neural Networks are black boxes to the extent that:

v" why and how generalization and, therefore, learning is achieved is not
clear (see, for instance, Zhang 2017; 2021);

v’ the behavior of NN cannot be easily interpreted to the extent that we
cannot read their operation step-by-step by using a reverse engineering

approach (e.g. what is the contribution of the example n. 13412 to the
final output?);

v" NN are not able to justify their decisions by providing plausible
reasons or explanations for their own decisions: therefore, NN cannot
enter into a realm of rhetorical negotiation between the human and
the artificial actors (please make a comparison with decision trees).






