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OUTLINE of the talk

Prediction of connectivity in sparse network
structures

Dynamic sparse training in deep learning

Neuromorphic computing
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Carlo V. Cannistraci Prof. pnD. Eng.

Zhou Yahui Chair Professor
Chief Scientist, Tsinghua Laboratory of Brain and Intelligence (THBI)

Director, Center for Complex Network Intelligence (CCNI) at THBI

If physics studies the principles and mechanisms of the outside universe.
Brain science studies the principles and mechanisms of the inside universe.
My research is at the interface between these two disciplines.

| deal with "Physics and Engineering of Complexity and Intelligence”: studying principles of natural and artificial

intelligence.



Crisis: | was a Master student in 2002

Artificial Neural Network (ANN) Brain Connectivity

Crisis: Why is brain connectivity sparse?
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Artificial Neural Network (ANN) Brain Connectivity
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Crisis: Why is brain connectivity sparse?

1. What is the computational advantage of connectivity sparsity in brain biology ?



Crisis: | was a Master student in 2002

Artificial Neural Network (ANN) Brain Connectivity

g ST

Crisis: Why is brain connectivity sparse?

1. What is the computational advantage of connectivity sparsity in brain biology ?

2. How to make profit of brain-inspired connectivity sparsity in ANN?



Crisis: | was a Master student in 2002

Artificial Neural Network (ANN) Brain Morphology
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Crisis: Why is brain connectivity sparse (topology)?
Crisis: What is the contribution of morphology?



Crisis: | was a Master student in 2002

Artificial Neural Network (ANN) Brain cell coupling

Crisis: Why is brain connectivity sparse (topology)?
Crisis: What is the contribution of morphology?
Crisis: What is the contribution of neuro-glia coupling ?



Crisis: | was a Master student in 2002

Artificial Neural Network (ANN)

Crisis: Why is brain connectivity sparse (topology)?

Brain Connectivity




My master student ‘Obsession’!
(2002)

He is best known for his theory of Hebbian
learning, which he introduced in his classic 1949
work The Organization of Behavior. He has been
described as the father of neuropsychology and
neural networks.

neurons that fire together wire together

network learning

Donald Olding Hebb
(July 22, 1904 — August 20, 1985)
psychologist

changing Adding
weightes of new links
the links exploiting sparsity

(Epitopological Learning)
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Complex network intelligence

Connectivity €< Function

How network connectivity influence function in complex systems, in particular learning and
intelligence. But also the reverse.




NETWORK TOPOLOGY MODELS AND MECHANISMS

link growth

How to model link connectivity in complex networks?

12
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From link-prediction in brain
connectomes and protein interactomes to

SUBJECT AREAS: h | | . d . .
wemooooer  the local-community-paradigm in
NETWORK MODELS
coweemons  cCOMplex networks
COMPLEXITY
Carlo Vittorio Cannistraci'-?*, Gregorio Alanis-Lobato'-?* & Timothy Ravasi'2
Received
4 Februory 2013 TIntegrative Systems Biology Laberatory, Biological and Envire | Sciences and Engineering Division, Computer, Electrical and
Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science
Accepted and Technology (KAUST), Ibn Al Haytham Bldg. 2, Level 4, Thuwal 2395546900, Kingdom of Saudi Arabia, “Division of Medical
20 February 2013 Genetics, Department of Medicine, University of Califomia, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA.
Published
8 April 2013 TR i
Growth and remodelling impact the network topology of complex systems, yet a general theory explaining
how new links arise between existing nodes has been lacking, and little is known about the topological
properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution
Correspondence and of a network might be predicted by mere topological features. We show how a link/community-based
requests for materials strategy triggers substantial prediction improvements because it accounts for the singular topology of
ol baodiamedio several real networks organised in multiple local communities - a tendency here named local-community-

C.V.C. (kalokagathos.
agon@gmail.com) or
TR. {timothy.ravasi@

kaust.edu.sa)

paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise
heterogeneous and dynamic systems that use self-organisation as a majoradaptation strategy. These systems
seem designed for global delivery of information and processing via multiple local modules. Conversely,
non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems
in which information/energy storage is crucial.

From link-prediction in brain connectomes and protein interactomes to the local-

community-paradigm in complex networks
CV Cannistraci, G Alanis-Lobato, T Ravasi
Scientific reports 3 (1), 1-14



Local Community Paradigm (LCP)

Explicative example: how CAR-Index predicts the likelihood of candidate links

Example 1 Example 2

CN-Index =3 CN-Index =3
CAR-Index =3 CAR-Index =9

CN-Index = # common first neighbours
CAR-Index = (# common first neighbours) x (# local community links)

® seed node —_ o - common first neighbour

g = of seed node
candidate link
level-1 link: level-1 link hypothetical local community link: level-2
—  between seed node and link between link between common first neigh-
common first neighbour seed nodes bours

15



The LCP-trick:
how to covert
classical neighbourhood
indices in
local-community indices

Type

Name of the Index

Formulation

Common Neighbours (CN)

CNGxy) = T NI = iy = iy

Preferential Attachment

PA(x,y) = [T - IT()] = (ex +ix) - (ey+iy) =
= exey + exCN(x,y) + e,CN(x,y) + CN(x,y)?

(PA)
® 1
é Adamic & Adar (AA) AAxy) = T
& ser(; ' log,(IT(s)])
1
Resource Allocation (RA) RA(x,y) = Tyl
SGF(X)ZH r'(y) F(S)l
IT(x) N T(y)| CN(x,y)
Jaccard (JC) C(x,y) = —
169 = TrGo uTl ~ T U T
CAR(x,y) = CN(x,y) - LCL(x,y)
CAR — (NG y) - O]
sel'(x) NT'(y)
CPA(x,y)
§ CPA = egey + exCAR(x,y) + e;,CAR(x,y) + CAR(X,y)?
©
o]
& ly(s)l
(]
S CAA CAA(xy) = N
ser& T log,(IT(s)])
ly(s)l
CRA CRA(x,y) = ITs)]
sel'(x) N TI'(y)
CAR(X,y)
CIC = I
GC = i vt

16



Prediction power (dB)

Avg. LCP-corr (<L>)

LINK PREDICTION IN BRAIN CONNECTOMES AND MORE

50% synapses
destroyed

90
80}
random 7071
prediction 60}
Y 50t
5
=2 40t
30}
20¢
10}

% of synapses randomly destroyed and re—predicteq

20

30

40 50 60

70

80 90

A
50% synapses
destroyed

Community

% CAR
O CPA
O CAA
0O CRA
+ CJC
> LCL

+186%

Non

0
CPA LCL CAR CRACAACIC AA RA CN

x CN
O PA
O AA
O RA
+ IC

A/

PA 7
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LINK PREDICTION IN BRAIN CONNECTOMES AND MORE

Prediction Power (dB)

Cc CONNECTOMES SOCIAL NETWORKS % CAR % CN
IN-VIVO IN-SILICO DIFFERENT KINDS FOOD WEBS O CPA O PA
5t ¢>+n 105} o poo+ 2 g*¥ee 'f - L2
g WPor 1350 152p 08 B @ 6t o O CAA O AA
4t ol ..2_ o 05 == = O CRA O RA
13l 15} « 10k ol * +>000x o + CJC + JC
3k o o * Opmesceamnn. 11k
9.5} x 148} 9 0% > LCL
2- s 12.5_ b 9.5 B 10-
%o 146} 8 = -2t 0+%n
1+ I i
12 7 | + 9l
* a4 = 4L B0 +
Oqemmmmnmas 8.5 + ;; ° % 6 71 L " B *p
Ll 10,5} 142/ O 5 B e
8F |~ | -8t 13k
;/ ;;---------4- 10+ 13 +
-2+ + +
5 o T o T 4 252t o O o -105f T
Mouse Macaque C. elegans American Dolphin Zachary's  Food web of Food web of
single neuron cortical single neuron football games associations karate club Tuesday Lake Grassland
connectome connectome connectome p=0.28 p=042

p <1E-9 p <1E-6 p=0.12 p <1E-6 p <1E-6 p <1E-3 w/oPA: p<1E-6 w/oJC: p=0.02

18



What is behind this performance in network connectivity prediction?



LOCAL COMMUNITY PARADIGM (LCP) IN REAL NETWORKS

Network1 (Ben—Hur et al., 2005)
Nodes = 4036, Links = 10411

v LCL

70
# of Common Neighbours (CN)

Macaque Cortical Connectome
Nodes = 94, Links = 1515

30 o+
25
20

JLCL

15
10

0 10 20 30 40 50 60 70
CN

Network2 (Chen et al., 2006)
Nodes = 4385, Links = 12234

Network3 (You et al., 2010)
Nodes = 3645, Links = 12934

20 /

JLCL

10

C. elegans Rostral Ganglia Neuro-synaptic Connectome
Nodes = 131, Links = 687

30
25
20

VLCL

15
10
5

0

/

/o, +
ot

/ ‘f:*' &
L]

+

0 10 20 30 40 50 60 70

CN

LCPcorr =

cov(CN, LCL)

OCN-OLCL

,whenCN = 0
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The LCP points out a dichotomy
between

the structure of many real networks
(see figure below)

Protein Folding Tertiary Network
{Hydrogen bonds and
van der Waals interactions)
Associations

g &
0.89Q
Strong LcP /

Correlatlon

0.78

Mouse Visual Cortex Dolphin

Neuro-synaptic

Connectome %“
0. 8

Scientific arXiv

— 0.92 | t‘ Collaborations
'.

Yeast Genetic ,,
Interaction Network =55es2rs

o .,‘Kvn'

0.91
% 093

Political Blogosphere
US Elections (2004)

'o

.85 -—

0.93 B

g

Who votes who
for Wikipedia
Administration

Human Protein
Interaction Network

\ Power Grid )

Abiraterone

drug

}

\Weak LCP/

& Correlation

a-helix

C. elegans Rostral N/ American/Canadian . .
Ganglia Neuro-synaptic > Flight Map - Biological Network
Connectome / \ B Social Network
FROM: 0.84 TO: 0.99 m

042
Grassland spe
Food web

i,

cies

Diamond  Graphite
1 ,—@'
e e

@ Fullerene

B Power Grid Network
B Road Network
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o

edge probability (p)

LOCAL COMMUNITY PARADIGM IN IDEALISED NETWORKS

Isomap reveals the presence

Isomap reveals the presence
of three clusters discriminated by D1

of two clusters discriminated by D1

1s

D1 Cp = 0.48, Lp=1.44
LCP-corr = 0.37

D1 cp=048, Lp=1.44
LCP-corr =0.71

Mean [ LCPcorr (G(n,p)) ] Std [ LCPcorr (G(n,p)) ] LCPcorr

0.5

Critical Region (Theory)
0.99 0.99 0.99 1
0.8 0.8 0.8
0.6 0.6 06 {
In(n)/ n
0.4 0.4 04}
0.2 ﬁ 0.2 0.2 L_
0.01 0.01 0.01 - 0
10 250 500 10 250 500 10 250 500

number of nodes (n) number of nodes (n) number of nodes (n)
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Common neighbours and the local-community-paradigm for ‘
topological link prediction in bipartite networks —

Simone Daminelli"*, Josephine Maria Thomas™*, Claudio Durdn”* and Carlo Vittorio Cannistraci’

Bioinformatics Group, Biotechnology Center (BIOTEC), Technische Universitit Dresden, Dresden, Germany
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Keywords: complex systems and networks, interdisciplinary physics, biological physics, link prediction, bipartite networks, networks
models

Supplementary material for this article is available online

Abstract
Bipartite networks are powerful descriptions of complex systems characterized by two different classes
of nodes and connections allowed only across but not within the two classes. Unveiling physical
principles, building theories and suggesting physical models to predict bipartite links such as product-
consumer connections in recommendation systems or drug—target interactions in molecular
networks can provide priceless information to improve e-commerce or to accelerate pharmaceutical

c e . .

1o 1 1 1 .t . . i~ a1 1 1 . a1
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Monopartite graph

Triadic closure

Bipartite graph

Triadic€losure
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Social Networks 35 (2013) 159-167

Contents lists available at ScienceDirect

Social Networks

journal homepage: www.elsevier.com/locate/socnet

Triadic closure in two-mode networks: Redefining the global and local
clustering coefficients

Tore Opsahl*

Imperial College Business School, Imperial College London, London, United Kingdom

ARTICLE INFO ABSTRACT

Keywords: As the vast majority of network measures are defined for one-mode networks, two-mode networks often
Clustering coefficient have to be projected onto one-mode networks to be analyzed. A number of issues arise in this transfor-
Random networks mation process, especially when analyzing ties among nodes’ contacts. For example, the values attained

Triadic closure

by the global and local clustering coefficients on projected random two-mode networks deviate from the
Two-mode networks

expected values in corresponding classical one-mode networks, Moreover, both the local clustering coef-
ficient and constraint (structural holes) are inversely associated to nodes’ two-mode degree. To overcome
these issues, this paper proposes redefinitions of the clustering coefficients for two-mode networks.

© 2011 Elsevier B.V. All rights reserved.
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Zhou, T. et al., 2007. Bipartite network projection and personal recommendation.
Phys Rev E Stat Nonlin Soft Matter Phys, 76(4 Pt 2), p.46115.
Network based inference (NBI, also known as ProbS) (tuning-free)

Zhou, T. et al., 2010. Solving the apparent diversity- accuracy dilemma of recommender systems.
Proceedings of the National Academy of Sciences of the United States of America, 107(10), pp.4511-5.
HeatS + ProbS (one parameter to tune)

x
X-nodes: g :

Y-nodes:

¥, Y.

One-mode-projection lx-pmjecliﬂﬂ
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OPEN 8 ACCESS Freely available online @. PLOS | ONE

Using Random Walks to Generate Associations between
Objects

Muhammed A. Yildirim*, Michele Coscia

Center for International Development, Harvard University, Cambridge, Massachusetts, United States of America

Bipartite projection via random-walk (BPR)

Abstract

Measuring similarities between objects based on their attributes has been an important problem in many disciplines.
Object-attribute associations can be depicted as links on a bipartite graph. A similarity measure can be thought as a
unipartite projection of this bipartite graph. The most widely used bipartite projection techniques make assumptions that
are not often fulfilled in real life systems, or have the focus on the bipartite connections more than on the unipartite
connections. Here, we define a new similarity measure that utilizes a practical procedure to extract unipartite graphs
without making a priori assumptions about underlying distributions. Our similarity measure captures the relatedness
between two objects via the likelihood of a random walker passing through these nodes sequentially on the bipartite
graph. An important aspect of the method is that it is robust to heterogeneous bipartite structures and it controls for the
transitivity similarity, avoiding the creation of unrealistic homogeneous degree distributions in the resulting unipartite
graphs. We test this method using real world examples and compare the obtained results with alternative similarity
measures, by validating the actual and orthogonal relations between the entities.

Citation: Yildirim MA, Coscia M (2014) Using Random Walks to Generate Associations between Objects. PLoS ONE 9(8): e104813. doi:10.1371/journal.pone.
0104813

Editor: Fabio Rapallo, University of East Piedmont, Italy
Received April 2, 2014; Accepted July 13, 2014; Published August 25, 2014

Copyright: © 2014 Yildirim, Coscia. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Sunnortina Infarmation files
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From monopartite to bipartite

A Monopartite Network Topology B Bipartite Network Topology
neighbour seed node neighbour seed node
[ node type 1 o

node type 2 @

CNs = 6;
LCLs =7;
Sk
CN index in monopartite networks CN index in bipartite networks
predicts the likelihood of x,y interaction predicts the likelihood of x,y interaction
by counting the number of neighbours by counting the number of neighbours
touched by the triangles that pass touched by the quadrangles that pass
through the seed nodes through the seed nodes
From triangles to quadrangles: From L2 to L3
Daminelli, ... and Cannistraci Common neighbours and the local-community-paradigm for topological

link prediction in bipartite networks. New J. Phys. (2015). 28



A Aid (151 x 34) D GPC Receptors (95 x 223)
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021 J
0.1}F 4
CJC LCL CAACRACPACARBPR PA NBI CN AA RA Jac Cos Pea Euc JC Rand CRA CAA CJC CPACAR LCL AA RA CN BPR NBI PA JC Jac Cos Pea Euc Rand
(N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N (N} (N) (N) (N} (N) (N) (N) (N)
B lpums (267 x 513) E lon Channels (204 x 210)
0.5

0.4
0.3
0.2
0.1

CJC CAACRALCL CPACARCN PA AA BPR RA Jac Cos JC NBI Pea Euc Rand 0 CJC LCL CAA CPACARCRA NBIBPR AA RA CN Jac PA Cos JC Pea Euc Rand
(N) (N} (N) (N) (N) (N) (N) (N) (N) (N) (N) (N} (N) (N) (N) (N) (N} (N) (N) (N)
C Movielens (1682 x 943) F Enzymes (664 x 445)

CJC CAALCL CRACPACAR PA BPR CN AA NBI RA Jac Cos JC Pea Euc Rand
(N)(N) (N) (N) (N} (N) (N) (N) (N) (N)

CRA CAA LCLCPACAR CJCBPR CN AA NBI RA Jac Cos JC Pea PA Euc Rand
(N) (N} (N) (N} (N) (N) (N) (N) (N) (N)

I .CP-based [N Classical

B Random

Il One-mode-projection
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p<0.001
0.35;

0.3
0.25¢
0.2}
0.15¢
0.1}
0.05¢

precision

LCP-based classical

C p<0.001
0.35¢

0.3}
0.25¢
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0.15¢
0.1}
0.05¢

A 186%

precision

LCP-based projection

o

AUPR

O

AUPR

0.3
0.25¢
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0.15}
0.1}
0.05¢

0.3
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CD-Based Indices
for
Link Prediction in
Complex Network
Tao Wang et al.
Plos One 2016

doi:10.1371/journal.pone.0146727 1004

1 2 3 4 5 6 7 Mean
USAir Neural Word PB Jazz Email FT
(-0.208) (-0.1632) (-0.1293) (-0.079) (0.0202) (0.0782) (0.1624)
CN 82.26059 20.2745 11.44615 70.56 31.44099 77.58659 28.37255 45.99163
Salton 11.8002 5.0095 0 3.96 33.56522 24.024 34.15686 16.07368
PA 70.5669 12.4485 15.73846 26.84 8.10559 9.445799 0.029412 20.45352
Sorensen 15.8046 6.192 0 7.84 32.83851 35.3808 33.84314 18.84272
LHN 2.1939 0 0 0.2 6.322981 0.9828 38.26471 6.852055
RA 100.3656 21.371 9.446154 62.48 33.52174 79.00619 27.70588 47.69951
LP3 81.40859 21.3495 12.49231 73.12 29.36025 74.69279 25.79412 45.45965
LP4 79.40639 20.597 16.46154 72.84 27.82609 72.61799 26.56863 45.18823
LRW 25.3683 30.4225 10.30769 38 22.1677 36.4182 24.81373 26.78544
LB 78.65957 18.34043 15.67692 58.48 17.09938 47.33333 18.28431 36.2677
CAR 80.32229 19.8015 8.446154 69.16 32.21739 76.54919 39 45.64236
CPA 80.47139 21.07 10.69231 69.2 32.09938 70.59779 32.57843 45.24419
CAA 80.76959 21.5215 7.230769 69.24 33.15528 78.29639 35.05882 46.46748
[ cra 85.79639 24.725 7.553846 71.84 34.73292 85.55819 35.10784 49.3306
cJC 76.40309 15.0715 3.830769 64.64 34.58385 83.15579 34.93137 44.,65948
CD-LD 81.81329 21.0055 4.584615 70.6 31.85093 80.69879 305 45.86473
CD-LD-2 88.99139 17.9955 16.30769 70.32 32.07453 75.40259 33.20588 47.7568
CD-LD-3 88.99139 17.9955 15.73846 70.56 32.52174 73.38239 34.78431 47.71054
CD-LD-4 88.99139 21.0055 15.07692 70.32 3252174 76.98599 34 48.41451
CD-LD-5 88.99139 21.0055 15.03077 70.2 3252174 79.00619 34 48.67937
CD-LD-6 88.99139 21.0055 15.03077 70.2 3252174 79.60679 34 48.76517
CD*LD 81.77069 19.6725 6.076923 70.72 32.21118 79.98899 31.29412 45.96206
CD*LD-2 87.99029 17.501 6.876923 70.2 3252174 73.21859 32.41176 45.81719
CD*LD-3 88.99139 15.996 11.16923 70.68 33.19876 73.00019 35.57843 46.94486
CD*LD-4 88.99139 17.9955 11.16923 70.56 33.19876 76.98599 35.57843 47.78276
CD*LD-5 88.99139 17.9955 11.16923 70.56 33.19876 78.78779 35.57843 48.04016
CD*LD-6 88.99139 17.9955 12.01538 70.68 33.19876 79.38839 35.57843 48.26398
CD 1.8105 1.0965 0.892308 0.4 16.08075 6.551999 34.08824 8.702898
CD-2 4.0044 1.9995 1.2 12 22.36025 16.8168 23.71569 10.18523
CD-3 4.0044 1.0105 1.2 0.6 22.36025 26.4264 36.37255 13.13916
CD-4 3.0033 1.0105 1.2 0.48 18.97516 17.4174 37.15686 11.32046
CD-5 3.0033 1.0105 1.2 0.72 18.29193 6.388199 37.15686 9.681541
CD-6 3.0033 1.0105 1.2 0.72 18.29193 5.4054 37.15686 9.541141
CDI 71.3976 11.997 11.44615 29.04 8.720497 14.0322 0.313725 20.99245
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2019

ARTICLE
https://doi.org/10.1038/s41467-019-09177-y OPEN

Network-based prediction of protein interactions

[stvén A. Kovécs1'2’3, Katja Luck 2’4, Kerstin Spirohn2'4, Yang Wang2'4, Carl Pollis 2'4, Sadie Schlabach2'4,
Wenting Bian?4, Dae-Kyum Kim%°, Nishka Kishore2>, Tong Hao?*, Michael A. Calderwood® 24,
Marc Vidal?4 & Albert-Laszlé Barabdsi267

[...] the best performing literature method, Cannistraci Resource Allocation (CRA),
out of 23 different methods tested.
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Why is CRA so powerful in link prediction?



Understanding link prediction via geometrical space

f o) Comel Universy How topology predict geometry

arXiv.org > physics > arXiv:1707.09496 et o
(Help | Advanced

Geometry Topology

Physics > Physics and Society

Local-ring network automata and the impact of hyperboli
geometry in complex network link-prediction

Alessandro Muscoloni, Carlo Vittorio Cannistraci
(Submitted on 29 Juf 2017)

Topological link-prediction can exploit the entire network topology (global methods) or only the
neighbourhood (local methods) of the link to predict. Global methods are believed the best. Is this
common belief well-founded? Stochastic-Block-Model (SBM) is a global method believed as one
of the best link-predictors, therefore it is considered a reference for comparison. But, our results
suggest that SBM, whose computational time is high, cannot in general overcome the
Cannistraci-Hebb (CH) network automaton model that is a simple local-learning-rule of
topological self-organization proved as the current best local-based and parameter-free
deterministic rule for link-prediction. To elucidate the reasons of this unexpected result, we
formally introduce the notion of local-ring network automata models and their relation with the
nature of common-neighbours' definition in complex network theory. After extensive tests, we
recommend Structural-Perturbation-Method (SPM) as the new best global method baseline.
However, even SPM overall does not outperform CH and in several evaluation frameworks we
astonishingly found the opposite. In particular, CH was the best predictor for synthetic networks
generated by the Popularity-Similarity-Optimization (PSO) model, and its performance in PSO
networks with community structure was even better than using the original internode-hyperbolic-
distance as link-predictor. Interestingly, when tested on non-hyperbolic synthetic networks the
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Topological Automata: local rules that create collective intelligence
Epitopological learning on networks

local community degree = 2
... a— totaldegree =6
Local community: cn3
cohort of linked
common first neighbours

local community degree (i)
total degree (i) B

CRA(x,y) = Z

LECN



Local-ring network automata and the impact of hyperbolic

geometry in complex network link-prediction

A

Network active/adaptive matter

Geometry and Self-organization

local community degree = 2
— / total degree = 6
Local community: cn 3
cohort of linked
common first neighbours

local community degree (i) 1 2 11 local-tunnel local-ring closing
CRA(Y) = ) - -

1
total degree (i) 346 12

iIECN



Interpretation of local similarity indices as local-ring network automata

-

Link prediction
based on
Network

Automata . _
local-tunnel local-ring closing

CNs index is a network automaton that evaluates the size of the local tunnel

to estimate the likelihood to form a local ring

CRA index is a network automaton that evaluates the size and assess the existence of the local tunnel

to estimate the likelihood to form a local ring
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Missing links test: 10% removal on nPSO model with 8
communities synthetic networks

Real small size net

>

Real big size net
>
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Missing links test: 10% removal test on large networks, till 40.000 nodes

| CRA_| SPM__
T 012 008
0.16 0.5
053  0.67
DT 008 0.07
BEEUTT T 022 | 0.27
016 0.1
011  0.10
.

" meanranking | 129  1.71
____pvalue  EEEEUE

Result: 5/7 for CRA



Link prediction in time - test (15 predictions in total on 6 nets)
on ARK-2009-09 to ARK-2010-12 Internet networks
(20.000 to 30.000 nodes)

Internet networks t1 = Internet networks t2

Internet networks t1 = Internet networks t3

Internet networks t1 = Internet networks t6

mean mean
precision ranking
t1 t2 t3 t4 t5

t2 t3 t4 t5 t6

]

" o11 012 013 014 014 008 009 009 010 011  CRA 0.13 1 1.2h
12| 012 013 014 0.4 007 008 009 010  SPM 0.09 2 6.8 h
13| 012 013 0.4 008 009 0.0

14| 012 0.3 008  0.09

[ 15| 0.12 0.09
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Missing links test: 10% removal on WS model
(which is not power-law) synthetic networks
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New Results A Follow this preprint

Local-community network automata modelling based on length-three-paths for
prediction of complex network structures in protein interactomes, food webs and

more

Alessandro Muscoloni, llyes Abdelhamid, “2 Carlo Vittorio Cannistraci
doi: https://doi.org/10.1101/346916

This article is a preprint and has not been certified by peer review [what does this mean?].

42



HOW IT WORKS SUBJECT AREAS SCREENING PREPRINTS

.
Pre p rl n ts INSTRUCTIONS FOR AUTHORS ADVISORY BOARD ABOUT

Advanced Search

preprints.org > physical sciences > general & theoretical physics > doi: 10.20944/preprints202012.0808.v1

preprint  Article  Version 7  Preserved in Portico This version is not peer-reviewed
Adaptive Network Automata Modelling of Complex Networks December 2020
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Abstract

Many complex networks have a connectivity that might be only partially detected or that tends to grow over time, hence the prediction
of non-observed links is a fundamental problem in network science. The aim of topological link prediction is to forecast these non-
observed links by only exploiting features intrinsic to the network topology. It has a wide range of real applications, like suggesting
friendships in social networks or predicting interactions in biological networks.The Cannistraci-Hebb theory is a recent achievement in
network science that includes a theoretical framework to understand local-based link prediction on paths of length n. In this study we
introduce two innovations: theory of modelling (science) and theory of realization (engineering). For the theory of modelling we first
recall a definition of network automata as a general framewaork for modelling the growth of connectivity in complex networks. We then
show that several deterministic models previously developed fall within this framework and we introduce novel network automata
following the Cannistraci-Hebb rule. For the theory of realization, we present how to build adaptive network automata for link
prediction, which incorporate multiple deterministic models of self-organization and automatically choose the rule that better explains
the patterns of connectivity in the network under investigation. We compare Cannistraci-Hebb adaptive (CHA) network automaton
against state-of-the-art link prediction methods such as structural perturbation method (SPM), stochastic block models (SBM) and
artificial intelligence algorithms for graph embedding. CHA displays an overall higher link prediction performance across different
evaluation frameworks on 1386 networks. Finally, we highlight that CHA offers the key advantage to explicitly explain the mechanistic
rule of self-organization which leads to the link prediction performance, whereas SPM and graph embedding not. In comparison to
CHA, SBM unfortunately shows irrelevant and unsatisfactory performance demonstrating that SBM modelling is not adequate for link
prediction in real networks.

Subject Areas

complex networks; network models; link prediction; automata theory; network automata; Cannistraci-Hebb theory
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Network Automata

e CH1 and CH2: minimization of

the eLCL and maximization of

the iLCL.
* CH3 solely based on the
minimization of eLCL.
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elLCL
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@ sced
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di Jdiy, *di, i 1 n—1
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Experimental analyses on 2-hop-based and 3-hop-based link n

Tao Zhou

Web Sciences Center
Verified email at ustc.edu - Homepage

2020

networks human dynamics recommendation prediction

* majority
Received 14 January 2020 of known methods are similarity-based, which assign similarity indices for node pairs
Received in revised form 24 September 2020 andeaceume that tuonadecal losaisimilosiiebavahichomprababiliniiobeconnactad

2—th—based and 3-hop-based similarity indices on 137 real networks. Overall speaking,
the class of Cannistraci- Hebb indices performs the best among all considered candidates.

I 1 _1*,." -~ 1 1 1 1* i~ L T | 1 1* b W Akl 1

2-hop- based and 3-hop-based similarity indices on 137 real networks. Overall speaking,
the class of Cannistraci-Hebb indices performs the best among all considered candidates.
In addition, 3-hop-based indices outperform 2-hop-based indices on ROC-AUC, and
3-hop-based indices and 2-hop-based indices are competitive on precision. Further
statistical results show that 3-hop-based indices are more suitable for disassortative
networks with lower densities and lower average clustering coefficients.

© 2020 Elsevier B.V. All rights reserved.
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Highly accurate protein structure prediction with
AlphaFold Associated Content
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Nature 596, 583-589 (2021) | Cite this article Highlv accurate protein structure

1.14m Accesses | 7380 Citations | 3434 Altmetric | Metrics prediction for the human proteome

Kathryn Tunyasuvunakool, Jonas Adler ... Demis Hassabis
Nature Article Open Access 22 Jul 2021

Abstract

Protein-structure prediction
revolutionized

Proteins are essential to life, and understanding their structure can facilitate a mechanistic

understanding of their function. Through an enormous experimental effort234, the
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Protein complex prediction with AlphaFold-Multimer

Richard Evans, & Michael O'Neill, “' Alexander Pritzel, Natasha Antropova, (' Andrew Senior,
Tim Green,Augustin Zidek, & Russ Bates, & Sam Blackwell, © Jason Yim, © Olaf Ronneberger,
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doi: https://doi.org/10.1101/2021.10.04.463034

This article is a preprint and has not been certified by peer review [what does this mean?].
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Abstract

While the vast majority of well-structured single protein chains can now be predicted
to high accuracy due to the recent AlphaFold [1] model, the prediction of multi-chain
protein complexes remains a challenge in many cases. In this work, we demonstrate

that an AlphaFold model trained specifically for multimeric inputs of known

ctmnirhinmatrns wihicrh e Fall AlnhaFald_Multimar cianificanths incrraascac arriiramg AF
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Article | Open Access | Published: 01 April 2022

AF2Complex predicts direct physical interactionsin
multimeric proteins with deep learning

Mu Gao & Davi Nakajima An, Jerry M. Parks & Jeffrey Skolnick &

Nature Communications 13, Article number: 1744 (2022) | Cite this article

18k Accesses | 46 Citations | 146 Altmetric | Metrics

Abstract

Accurate descriptions of protein-protein interactions are essential for understanding
biological systems. Remarkably accurate atomic structures have been recently computed for

individual proteins by AlphaFold2 (AF2). Here, we demonstrate that the same neural network
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Network shape intelligence outperforms AlphaFold2 intelligence in vanilla protein
interaction prediction

llyes Abdelhamid, Alessandro Muscoloni, Danny Marc Rotscher, Matthias Lieber, Ulf Markwardt,
Carlo Vittorio Cannistraci

doi: https://doi.org/10.1101/2023.08.10.552825

This article is a preprint and has not been certified by peer review [what does this mean?].
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Abstract

For decades, scientists and engineers have been working to predict protein
interactions, and network topology methods have emerged as extensively studied

techniques. Recently, approaches based on AlphaFold2 intelligence, exploiting 3D

Nature Machine Intelligence 2023 under review
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Yeast protein interaction network
4951 proteins and 22382 interactions

2238 (10%) 2238 (10%)
Positive interactions Negative interactions
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OUTLINE of the talk

1. Prediction of connectivity in sparse network
structures

2. Dynamic sparse training in deep learning



Meanwhile in computer science



Crisis: | was a Master student in 2002

Artificial Neural Network (ANN) Brain Connectivity

Crisis: Why is brain connectivity sparse?

1. What is the computational advantage of connectivity sparsity in brain biology ?

2. How to make profit of brain-inspired connectivity sparsity in ANN?
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Crisis: Unacceptable Cost of Training models

*GPT-3: 175 billion parameters
* Cost (2020): $4.6 million

* GPT-4 (Human Brain): 100 trillion parameters
* Cost (2020): $2.6 billion

GPT-3 model == 1024 A100 GPUs and 34 days == 4.6 million dollars

Twitter: GPT-3 @gpt_three



Sparse Evolutionary Training (SET)

8 [\N Mg b [ \XT¥d
ht

Ei_'r"f{ -.\:_:__:: "f?' — 4 l — < l. — .

" ok e [N

1. Start from a sparse connected topology given by Erdos-Renyi model
2. Train the network in an evolution epoch
3. Remove a certain fraction of weights with the lowest absolute value

4. Randomly regrow new weights in the same amount as the ones removed
previously

5. Repeat step 2 - 4 until the network convergence

Mocanu et al. Scalable training of artificial neural networks with adaptive sparse connectivity 62
inspired by network science. Nat Commun (2018).



Epitopological Learning (EL)
* a brain-inspired learning paradigm

* a field of network science that studies how to
implement learning on networks by changing the
shape of their connectivity structure
(epitopological plasticity) .

-> g subcase: T™' = T™ 4+ LPr,px(T™)

 The Cannistraci-Hebb theory is a strategy to
implement EL based on local topology information
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Epitopological Sparse Meta-Deep Learning (ESML)

Dynamic Sparse Training
(Mocanu et al 2018 / Evci et al 2020)

Initialization Link Removal

1 e 1 |

Training Interval

Random/
Gradient-based

---------------- -

\
—%— Removed Links

' x Inactive Neurons

__________ Potential Links

Ty mm on omm o o mm mm n ommm P

Epitopological Sparse Meta-deep Learning
EL (Link prediction)

Network percolation

e — — — — — — — — —

Inactive Neurons Removal

twio rounds

Incomplete Path Adjustment

—_—— e e e e e — —— — — — —— — —— —— —— — —— — — — — —— ———

Sandwich1

CH3-L3

— — — — —— —— — — — — — —
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How the topology evolves during the epochs
https://www.youtube.com/watch?v=b5ILpOhb3BI

Epoch: O
Both of the networks initialized with Erdos-Renyi network
Hyperbolic presentation of SET (Random)

Plain presentation of SET (Random)

784 1000 999 1000

Hyperbolic presentation of ESML (CH3-L3)

Plain presentation of ESML (CH3-L3)

784 1000 999 1000
ESML (CH3-L3) vs SET (random) ANP across the epochs
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https://www.youtube.com/watch?v=b5lLpOhb3BI

CHT innovations and their impact on performance

A Correlated Sparse Topological Initialization (CSTI)

Vectorization Feature correlation Connectivity selection Assembling topologically
hubbed network blocks
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Active Neuron Post-percolation rate

Initial node size - Activate Neuron Post-percolation
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Published as a conference paper at ICLR 2024

EPITOPOLOGICAL LEARNING AND CANNISTRACI-
HEBB NETWORK SHAPE INTELLIGENCE BRAIN-

INSPIRED THEORY FOR ULTRA-SPARSE ADVANTAGE
IN DEEP LEARNING

Yingtao Zhang

Yingtao Zhang' >, Jialin Zhao'-*-*, Wenjing Wu'-*-*, Alessandro Muscoloni'-**
& Carlo Vittorio Cannistraci'-%5:* *

LCenter for Complex Network Intelligence (CCNI)

2Tsinghua Laboratory of Brain and Intelligence (THBI)

3Department of Computer Science, *Department of Biomedical Engineering
Tsinghua University, Beijing, China.
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ICLR2024 evaluation: avg. score 7.33, ranks 326/2261 accepted (in the top 15%)

70



Crisis: | was a Master student in 2002

Artificial Neural Network (ANN) Brain Connectivity

% % Vs. NN \3/’/
e 3 ’ kL 77271\ / 3
AN

Crisis: Why is brain connectivity sparse?

1. What is the computational advantage of connectivity sparsity in brain biology ?

2. How to make profit of brain-inspired connectivity sparsity in ANN?
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Crisis: | was a Master student in 2002

Artificial Neural Network (ANN) Brain Connectivity

Crisis: Why is brain connectivity sparse?

A 20 years long research path to address
a philosophical question
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Question2: Network Morphology

Artificial Neural Network (ANN) Brain Morphology

% ¢, £ dendrite

—
~—

Crisis: What is the contribution of morphology?
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OUTLINE of the talk

Prediction of connectivity in sparse network
structures

Dynamic sparse training in deep learning

Neuromorphic computing
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Neuromorphic Dendritic Computation with Silent Synapses for Visual Motion
Perception

| @Eunhye Baek *, )Sen Song , @Zhao Rong , @)Luping Shi *, @)Carlo Vittorio Cannistraci *
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Abstract

Most neuromorphic technologies use a point-neuron model, missing the spatiotemporal nature of neuronal computation performed in
dendrites. Dendritic morphology and synaptic organization are structurally tailored for spatiotemporal information processing, enabling
various computations like visual perception. Here, we report on a neuromorphic computational model termed ‘dendristor’, which integrates
functional synaptic organization with dendritic tree-like morphology computation. The dendristor presents bioplausible nonlinear
integration of excitatory and inhibitory synaptic inputs with silent synapses and diverse spatial distribution dependency. We show that the
dendristor can emulate direction selectivity, which is the feature to react robustly to a preferred signal direction on the dendrite. We
discover that silent synapses can remarkably enhance direction selectivity, turning out to be a crucial player in dendritic computation
processing. Finally, we develop neuromorphic dendritic neural circuits that can emulate a cognitive function such as motion perception in
the retina. Using dendritic morphology, we achieve visual perception of motion in 3D space by various mapping of spatial information on
different dendritic branches. This neuromorphic dendritic computation innovates beyond current neuromorphic computation and provides
solutions to explore new skylines in artificial intelligence, neurocomputation, and brain-inspired computing.

Nature Electronics 2024 Accepted
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Direction selective

neuromorphic neural circuit (NNC)

OUT_rD_ N1 N2’
P —
|OI _‘ _‘
1 |
D
O
O —d
IN-D T
1D N2
receptors
—
—{ excitatory
—e inhibitory
I t A J
>ien IN-D OUT-D
b IN-D OuT-D
(MA) ‘ .
s ‘N1 ‘ + 3tN1
i — 0
E g' 1 9’
-3 0————————I==al——-c
2 3 N2 3t N2
<0 — 0———4‘- ~—
o 9 19
5, . -
(V)

t(s)

0 200 400 6000

200 400 600
t(s)

e @ @
oloJo
0000 000@
GI01®;
@ @ o
@ @® @

\ @ ® o

far

Ne ]
Ny
600 s
f > ->
close far
Nclose .
Nfar

9V
77



N,
a

dd 39

N
ﬁn-,.,-,\--‘-\.
e & N
‘d'q N
7.8 h

Receptors for
2D directions

Receptors for
depth

2D retina receptors

e

400

300

200 ‘V
&

100 |
W‘ﬁ‘ 3
0 &

1600 1500 1400 1300 t(s)

Real movement Projection Reconstruction
in 3D space on 2D retina receptors in 3D space
f — — —_—
y-z X+2 -X+z
----------------- rs

0 500 1000 1500



Neuromorphic engineering for modelling dendritic computation with silent synapses
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Crisis: | was a Master student in 2002

Artificial Neural Network (ANN) Brain cell coupling

Crisis: What is the contribution of neuro-glia coupling?

80



Scientific Institutions \% ploec - cystems biology
m _ x> dresden
=

_ |_|potype (Germany) Scuolalnterpolltecnlca Ilporupe
- Politecnico di Torino and Milano (ltaly) “+@® Lipidomics for a better life
- Italian Interpolytechnic School of Doctorate (SIPD, Italy)

- San Raffaele Scientific Institute, Hospital and University (ltaly) CENTRO NEUROLES|
- King Abdullah University of Science and Technology (KAUST, Saudi BONINO EC?SIITJES.‘E!I&
Arabia)

- University of California San Diego/ Ideker Lab (USA) P %q X
- ISMB/ECCB generously provided me (International) ‘“«A__ ,__,ﬁ ¥ Politecnico
- Italian National Research Council (CNR) / Bioengineering (| ‘1'.:"'=":;;;"=:ﬂ$’ di Torino

- Technical University Dresden (Germany) e

- Klaus Tschira Foundation (Germany) Stk S S A ST

- EANITON Cansortium and RIKEN institute (Japan) e ——————

v TECHNISCHE
. Z @ UNIVERSITAT
KAUST SCHOOL or MEDICINE .. DRESDEN

King Abdullah Uaiversity of Tsinghua University
Science and Technology 81

" “’US UCSan Diego




OO

Carlo Vittorio Cannistraci

Center for Complex Network
Intelligence

EMAIL: kalokagathos.agon@gmail.com

Thanks!

<5 T
# - SO & Q A\ b
Z Gk :-‘. F

j Tsinghua University

-«11“‘ ﬁlﬁ

D

A B i



