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Introduction
Euler Scientific is a small research 
company. 
Collaboration with Fermilab/NGA on 
Bounding Generalization Risk for Deep 
Neural Networks. 
Today I will talk about applications for 
shallow Neural Networks that came out of 
that collaboration.

The is about Euler Scientific's 
gbtoolbox and not on behalf of 
the collaboration (publications 
forthcoming).



Applications of Fourier analytic Barron Space Theory

Generalization Bound Toolbox (on PyPI)

https://pypi.org/project/gbtoolbox/



Introduction

Fourier analytic Barron Space theory

• We have a complex phenomena. 

• We postulate some function, that takes the 
data we have and provides an output. 

• We find some approximate function. 

• We apply it to some new data, that we 
assume to be the same complex 
phenomena (so shares the same function). 

• How well does the approximate function 
describe the new data?

Image from Wikipedia



Generalization Error

Fourier analytic Barron Space theory

• We are concerned with the error associated with the 
difference between trained network on the training data 
and on unseen data in the same domain. 

• We can divide this error into the difference between the 
effective target function (which depends on the training 
data) and the function space defined by the neural 
network, or Approximation Error. 

• And Estimation Error (Sometimes also called 
Generalization Error), or the difference due to picking 
some other examples. 

• And Optimization Error, or finding the best 
Approximation from some Initialized Network. 

• Generalization Error = Approximation Error + Estimation 
Error + Optimization Error
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Fourier analytic Barron Space theory
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Barron Space

Fourier analytic Barron Space theory

• We consider functions ,  and we consider an effective target function,   

•
 is the Fourier transform of , we also define  

• Later we will talk about approximate of .  

• Then we can define the Barron norm  

• This defines our the function space that we are interested in, the paradigm that Fourier analytic Barron space 
theory works. 

• Recall also the manifold hypothesis, while  increase with  in practice it isn’t going to be the maximum.

f(x) x ∈ [−1,1]d f*(x)

f*(x) f̃*(ω) ∥ω∥1 =
d

∑
j

|ωj |

f̃*(ω)

γ( f*) = inf
f* ∫ ∥ω∥2

1| ̂f*(ω) |dω < ∞

γ( f*) d



Barron Space

Fourier analytic Barron Space theory

• Problem: Isn’t the Barron Norm very large? A lot of functions 
we want to approximate we imagine to have 
discontinuities. 

• However, we don’t have an analytic function, we have 
some set of . Our function space that we are finding 

the minimum  over are those such that . 

• Note this is also the case for Test, . 

• So given some finite discontinuities (or even not enough 
smoothness), there exists some  such that there is a 

. 

• Differences are going to be Estimation Error (or Error due 
to different Domains). 

{xi, yi}
γ( f*) f*(xi) = yi

f*(xj) = yj

f*(xi)
γ( f*) < ∞

Image from MathWorld

γ( f*) = inf
f* ∫ ∥ω∥2

1| ̂f*(ω) |dω < ∞



Barron Space

Fourier analytic Barron Space theory

• Problem: how to define a Fourier 
transform on  ? 

• Well, we are extending to . 
The obvious extension for analytic, isn’t 
going to be the extension that minimizes 
the Barron Norm. 

• Our effective target function, the one that 
we are approximating with our neural 
network, is the extension that minimizes 
the Barron Norm.

x ∈ [−1,1]d

x ∈ [−∞, ∞]d

γ( f*) = inf
f* ∫ ∥ω∥2

1| ̂f*(ω) |dω < ∞

Image from MathWorld



Fourier analytic Barron Space theory
Motivation Approximation

•  this is just the Fourier transform of a Fourier transform. 

•
 then we do the Fourier transform (recall  ) 

• Now we recall the Fourier transform of   

•  assuming that  and  (note that  ) 

• Consider MC estimator  where  come from PDF 

f(x) ≃ ∫ ∫ eiωxe−iωyf(y)dωdy

f(x) ≃ ∫ eiωxf̃(ω)dω ∥ω∥1 =
d

∑
j

|ωj |

∫ σ(ω̂x + t)ei∥ω∥1tdt ≃
eiωx

∥w∥2
1

+ δ(ω)

f(x) ≃ ∫ ∫ σ(ω̂x + t)ei∥ω∥1tf̃(ω)∥ω∥2
1dωdt f(0) = 0 ∇f(0) = 0 f̃(ω) = | f̃(ω) |eiArg( f )

f(x) ≃
M

∑
i

ρ(ωi, ti)
M

σ(ω̂ix + ti) | f̃(ω) |∥ω∥2
1|cos(∥ω∥t + Arg( f )) |



Fourier analytic Barron Space theory
Approximation Error: A bit more formal

• We have a neural network  and can define the Path Norm  

•
We consider the MC estimator, as motivated,  where 

 come from the PDF  where . 

• We have a bound on the error of an MC estimator. 

• E et al. proved that there are paramete such that both  and 

  

M

∑
i

aiσ(bix + ci) ∥Θ∥P =
m

∑
k

|ak | (∥bk∥1 + |ck | )

̂fm(x, {ω, β, z}) =
1
m

m

∑
j

ρ(ωj, βj, zj)σ(ω̂j ⋅ x + zjβj)

{ωj, βj, zj} p(ω, β, z) = | ̂f*(ω) |∥ω∥2
1|cos(∥ω∥1βz − arg( ̂f*(ω)) | /ν ν ≤ 2γ( f*)

∥Θ∥P ≤ 2γ2( f*)

Ex[( f(x) − fm(x, {ω, t, z}))2] ≤
3γ2

2( f*)
m



Estimation Error

Fourier analytic Barron Space theory

• Consider some regularized neural network (with L1 regularization , but both I and E et al. find this not important). 

• If we consider all the  that have  , these  are a hypothesis space . The Rademacher complexity of this 

space, . And  where  are . 

• For , with probability  over the choice of ,  

where  

• Then we have  where  is the 

population risk and  is the empirical risk.

λ

fm ∥Θ∥P ≤ Q fm F

Rn(Q) ≤ 2Q
2 ln(2d)

n
Rn =

1
n

Eϵ[supf∈F

n

∑
i

ϵi f(xi)] {ϵi} ±1/2

δ > 0 1 − δ Z = {zk} |
1
n

n

∑
i

f(xi) − Ex[ f(x)] | ≤ EZ[Rn(Q)] + B
2 ln(2/δ)

n
| f(z) | < B

|L(θ) − L̂n(θ) | ≤ 4A(∥Θ∥P + 1)
2 ln(2d)

n
+ B

ln(∑k 2k−2(∥Θ∥P + 1)/δ)

n
L(θ)

L̂n(θ)



Generalization Error Bound

Fourier analytic Barron Space theory

• We have Generalization Error = Approximation Error + 
Estimation Error. 

• Where the two Errors are connected through the 
Path Norm/Barron Norm. 

•  

where ,  (and is 

related to the effective regularization),  is the 
effective target function,   is the dimension,  us 
the Barron norm and  is the probability the bound 
holds. 

• Thus we have a bound on the application of the 
optimum neural network on unseen in domain data.

Ex | fm(x, ̂θ) − f*(x) |2 ≤
γ2( f*)

m
+ λγ̃( f*) + (γ̃( f*) + ln(n/δ))/ n

γ̃( f ) = max(γ( f ),1) λ ≥ 4 2 ln(2d)/n
f*(x)

d γ( f )
1 − δ
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Discussion Generalization Error

Fourier analytic Barron Space theory

• If we initialize close to the optimal, using 
this Barron Theory, the training is more 
likely to make us optimal. 

• If it doesn’t, the Error is at most can be 
determined from the initialized + training. 

• So we get an Error Bound, we possibly 
have a more precise network (from 
additional training). 

• We have some short training period, and 
possibly more successful, since we close.
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Discussion

Fourier analytic Barron Space theory

• Memorization is approximation close to example 
data, generalization is approximation far from 
example data. 

• Neural networks are statistical learners, in  but the 
approximation is also in  in the Fourier analytic 
Barron Space regime, which explains their success at 
generalization. 

• We can determine how the distribution that reflects a 
neural network that approximates the effective target 
function changes due to removing/including data. 

• It is clear that Fourier analytic Barron Space theory 
isn’t the final theory of Neural Networks, but a step.

X
ω

Image from MathWorld
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Generalization



Discussion of Applications

Fourier analytic Barron Space theory

• While the theory is a bit different for classification 
compared to regression, it is better to think of 
‘dogness’ for example instead of ‘is it a dog’. 

• This is because the space that cifar10 exists in is 
and even if we consider grey-scale cifar10 it 

is  . Even MNIST is in . 

• Many points in this extended space might be dog-like 
but would have some ‘dogness’. 

• Probably some cases where the target function is 
fundamentally classification (0 or 1), but most cases 
we want our effective target function to be regression.

(224)1024

28192 28×28×28=6272

Image from Stable Diffusion on OpenArt

Dog Not Dog



Discussion of Applications

Fourier analytic Barron Space theory

• While your distribution doesn’t need to be i.i.d. of data (in general it isn’t), if it is very not i.i.d. it might be good to do 
some transformation first (PCA, VAE, etc). 

•
For shallow neural network , we can transform into Barron-E canonical form 

 and then identify  with ,  with  and  with . 

• Obviously in practice there is another free parameter in a neural network (the outer weight) since  just identifies the 
sign. But in Barron-E canonical form we can consider the weights as being an interpolation of the coefficient. 

• Maybe better when quantized 

• Other activation functions considered in theory, but just variations on ReLU. Same with multi-target.

M

∑
j

ajσ(bj ⋅ x + cj)

M

∑
j

aj∥bj∥1σ(b̂j ⋅ x + cj /∥bj∥1) aj∥bj∥1 ρ(ωj, βj, zj) b̂j ω̂j cj /∥bj∥1 zjβj

zj


