
Jonathan Miller, April 24, 2024

Applications

Applications of Fourier analytic
Barron Space theory

Applications of Fourier analytic Barron Space Theory

Applications: Outline

• Barron-E Canonical representation

• Model Compression

• Barron-E Weight initialization

• Sum of Sines

• Digits

• Barron neural network

• Conclusions

Barron-E Canonical representation:
Sum of Product of Sines

Barron-E Canonical representation
Sum of Product of Sines

• The standard shallow neural neural network is where the superscripts and and we

are doing Einstein summation over up to , the dimension, and over up to , the number of nodes, and the is per target.

•
In the Barron-E connoical form, we have where where .

• In Barron-E Canonical form, we see that , and .

• There is that term is a bound, and is a very high bound. We can correct it by, for example, matching effective function
examples maximum and minimum with approximation maximum and minimum.

• Obviously we also need to find , recall that the theory is for . We can just find it from the effective function
examples (maybe use median and not mean).

w1
ijσ (w0

jkxk + b0
j) + b1

i 1 = outer 0 = inner

k d j M i

M

∑
j

c(ωj, αj)σ (ω̂jkxk + tj) ω̂jk = ωjk /∥ωjk∥1 ∥ωjk∥1 = (
d

∑
k

|ωjk |)
c(ωj, αj) ≲ γ̃2(f*)w1

ij∥w0
jk∥1 ω̂jk ≃ ŵ0

jk tj ≃ b0
j /∥w0

jk∥1

γ̃2(f*)

b1
i f*(0) ≃ 0

Model Compression:
Sum of Product of Sines

Sum of Product of Sines

Model Compression

• Experiment: 160 samples,
,

• It is pretty easy to train a
network on this problem.

• We could select nodes randomly,
and get some approximation.

• But we could also transform to
canonical form and then do analysis.

(x, y) ∈ [−1,1]2 sin(2.1πx)sin(3.4πy)

M = 45000

15000

Sum of Product of Sines

Model Compression

• We can look the peaks of probability.

• A possible way to do this is to quantize or to bin
the parameters. This was done here, [-1,1]->[0,255]

• We select the peaks.

• Then we reduce from to nodes.

• We get pretty close to the correct scale, and could
expect to have a pretty small increase in our loss.

• We see the structure was found in the bias, and we
could select some and remove nodes that

aren’t consistent - This wasn’t done in this example.

M = 45000 21264

∥w0
jk∥1

Barron-E Weight Initialization:
Sum of Product of Sines

Simple ‘Analytic’
Problem:
Sum of Product of
Sines
Number of Instances: 160

Attribute Information:

The target function is known

This is at about the minimal size for the theory with
 (although the theory extends to).

(x, y) ∈ [−1,1]2

sin(2.1πx)sin(3.4πy)

d = 2 d = 1

Fourier analysis

Sum of Product of Sines

• For an analytical problem like this, it is easy to
know what the ‘true’ value is.

• While we get an approximation from the MC
estimate, we can improve our use case (as a
PDF and as a spectral norm) by applying a
threshold on the MC estimate of the Fourier
transform.

• We initially sample sparsely, but then sample
more densely in interesting region.

• Due to random sampling, we can get a better
or worse estimate of the Fourier transform.

Sum of Product
of Sines:
PDF
We pull 45000 times from our PDF.
We easily see the peaks in at

Since we have some width (if we have a great
sample, we could place a very high threshold),
the peaks in are noisier, but we see the expected

 peaks.

(ŵx, ŵy)

(±
2.1

2.1 + 3.4
, ± 3.4

2.1 + 3.4
) = (±0.38, ± 0.62)

t
2 × (2.1 + 3.4) = 11

Improved Initialization

Sum of Product of Sines

• In this case, we actually do better than we are
likely able to by training our network using
standard practices.

• Current best practices is to rescale the outer
weights and use median of initialization for
the outer bias.

• This in general should be from Train set.

• We used for the test set.

• It seems that the error, just from initialization,
will be small.

n = 12800

Improved Initialization

Sum of Product of Sines

• Here we consider and
160 points.

• We pull 45000 times from our PDF. We easily
see the peaks in at

• Since we have some width (if we have a great
sample, we could place a very high threshold),
the peaks in are noisier, but we see the
approximately peaks.

• With these few of data points, it is unlikely that
a neural network in trained in a standard way
would provide a good approximation.

sin(4.2πx)sin(6.8πy)

(ŵx, ŵy) (±0.38, ± 0.62)

2 × (4.2 + 6.8) = 22

Higher dependence
requires both more nodes
and is more sensitive to data.

∥ω∥1

Prediction is scaled.

Barron-E Weight Initialization:
Digits

Simple ‘Real’
Problem:
Digits
Number of Instances: 1797

Attribute Information: 8x8 image of integer pixels in
the range 0..16

The data set contains images of hand-written digits:
10 classes where each class refers to a digit.

Note that Digits is a small problem, with a space of
size , however, still very sparse23×64=192

From sklearn datasets

Processing and Problem Statement

Digits

• Our effective target function is if the image is a 6 or not. Instead of using as the target function, we use 6ness as the target
function (and so a range of values are possible for any image). The labeled data are given values of .

• We run PCA to reduce down to features, this makes it easy to calculate and to interpret the features/weights.

• We scale the input by the maximum value of the full dataset. This is so that we fulfill the requirement .

• We divide into validation (20%), test (30%) and train (50%).

• We use an initialization where the inner biases are set from a uniform distribution scaled by , the outer bias is set to , the

inner weights are set according to the a normal distribution scaled by and the outer weights are set by a uniform

distribution between where is the number of nodes.

• We use SGD with a learning rate of and a batch size of . We sometimes adjust the number of nodes, unless noted
.

1,0
10, − 10

d = 6

x ∈ [−1,1]d

± 2/d 0
± 2/d

± 3/M M

0.01 64
M = 8000

Standard Shallow Neural Network

Digits

• We only allowed the network to train for
4000 epochs with early stop (if we used
GD instead of SGD it would continue to
improve slowly to 4000 epochs).

• This is an easy problem, we don’t see much
sign of overtraining (especially for GD).

Accuracy Precision Sensitivity
Test (Initial) 87.6% 24.1% 13.5%
Train (Final) 98.7% 92.8% 92.8%
Test (Final) 97.0% 87.5% 80.9%

The empirically estimated generalization error is
then 1.7% (accuracy), 5.3% (precision) and 12.1%
(sensitivity).

Digits is very simple, very much
a toy dataset.

Approximate Fourier transforms

Digits

• We use MC estimation to approximate the Fourier
transform (Rather than a non-equispaced to
equispaced/non-equispaced Fourier transform: NFFT/
NNFFT).

• We find as expected that if we take what we think as the
full frequency space, that most of it is consistent with 0
(we can estimate the due to the estimation). We can
then look at the space and reduce what part of the
space we use.

• We can then draw out , , from the PDF defined by
the approximate Fourier transform to use as an
initialization weight in our network.

• Interestingly, the neural network does well with low freq.

σ

ŵi t z

We focus on the lower
frequencies

Barron Initialized Shallow Neural Network

Digits

• We only allowed the network to train for 4000
epochs, but we include an early stop condition
based on improvement of the validation sample.

• We include a threshold here, this
doesn’t get the high frequency behavior.

• We start close to minimal loss. But our
generalization doesn’t improve if we train.

| ỹ | > 1.7

Accuracy Precision Sensitivity
Train (Initial) 90.4% 49.0% 90.4%
Test (Initial) 89.6% 47.5% 73.1%
Train (Final) 97.2% 90.3% 78.3%
Test (Final) 95.7% 93.9% 59.6%

The empirically estimated generalization error is then
1.5% (accuracy), 3.6% (precision) and 18.7% (sensitivity).

Initialization is much better, but final is worse.

Barron Initialized Shallow Neural Network

Digits

• We only allowed the network to train for 4000
epochs with early stop (if we used GD instead of SGD
it would continue to improve slowly to 4000 epochs).

• We include a threshold here, this doesn’t
get all the high frequency behavior.

• We need to increase since we have
higher high frequency contribution.

| ỹ | > 1.2

M = 80000

Accuracy Precision Sensitivity
Train (Initial) 92.3% 55.1% 91.6%
Test (Initial) 91.7% 55.1% 73.1%
Train (Final) 98.6% 97.3% 86.7%
Test (Final) 95.9% 87.5% 67.3%

The empirically estimated generalization error is then
2.7% (accuracy), 9.8% (precision) and 19.4% (sensitivity).

Not highly optimized, but similar. This is not a great training example.

We know (part of) the reason
Neural Networks generalize.

We know how (in one paradigm) the
weights connect to the target function.

We can use our understanding of the Fourier
representation of our target function to

provide a prior on the initialization.

Applications of Fourier analytic Barron Space theory
Discussion of the Future

• Prototype exists that extends approximate Fourier transform to .

• Improving Fourier analysis is very important for application.

• Deep Neural Networks are similar but require more careful calculation.

• There is a difference in the calculation for deep (2+ hidden layers) versus shallow. Only
simple deep neural networks have been analyzed.

• Future theory step is extension to Recurrent Neural Networks (possibly easier to calculate
than DNN).

d ∼ 100

Publications in preparation.

