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Barron-E Canonical representation: 
Sum of Product of Sines



Barron-E Canonical representation
Sum of Product of Sines

• The standard shallow neural neural network is  where the superscripts  and  and we 

are doing Einstein summation over  up to , the dimension, and over  up to , the number of nodes, and the  is per target. 

•
In the Barron-E connoical form, we have  where  where . 

• In Barron-E Canonical form, we see that ,  and . 

• There is that term  is a bound, and is a very high bound. We can correct it by, for example, matching effective function 
examples maximum and minimum with approximation maximum and minimum. 

• Obviously we also need to find  , recall that the theory is for . We can just find it from the effective function 
examples (maybe use median and not mean).
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Model Compression: 
Sum of Product of Sines



Sum of Product of Sines

Model Compression

• Experiment: 160 samples, 
,  

• It is pretty easy to train a  
network on this problem. 

• We could select  nodes randomly, 
and get some approximation. 

• But we could also transform to 
canonical form and then do analysis.

(x, y) ∈ [−1,1]2 sin(2.1πx)sin(3.4πy)

M = 45000

15000



Sum of Product of Sines

Model Compression

• We can look the peaks of probability. 

• A possible way to do this is to quantize or to bin 
the parameters. This was done here, [-1,1]->[0,255] 

• We select the peaks.  

• Then we reduce from  to  nodes. 

• We get pretty close to the correct scale, and could 
expect to have a pretty small increase in our loss. 

• We see the structure was found in the bias, and we 
could select some  and remove nodes that 

aren’t consistent - This wasn’t done in this example.

M = 45000 21264
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jk∥1



Barron-E Weight Initialization: 
Sum of Product of Sines



Simple ‘Analytic’ 
Problem: 
Sum of Product of 
Sines
Number of Instances: 160 

Attribute Information:  

The target function is known 
 

This is at about the minimal size for the theory with 
 (although the theory extends to ).

(x, y) ∈ [−1,1]2

sin(2.1πx)sin(3.4πy)

d = 2 d = 1



Fourier analysis

Sum of Product of Sines

• For an analytical problem like this, it is easy to 
know what the ‘true’ value is. 

• While we get an approximation from the MC 
estimate, we can improve our use case (as a 
PDF and as a spectral norm) by applying a 
threshold on the MC estimate of the Fourier 
transform. 

• We initially sample sparsely, but then sample 
more densely in interesting region. 

• Due to random sampling, we can get a better 
or worse estimate of the Fourier transform.



Sum of Product 
of Sines: 
PDF
We pull 45000 times from our PDF. 
We easily see the peaks in  at  

 

Since we have some width (if we have a great 
sample, we could place a very high threshold), 
the peaks in  are noisier, but we see the expected  

  peaks.

(ŵx, ŵy)

(±
2.1

2.1 + 3.4
, ± 3.4

2.1 + 3.4
) = (±0.38, ± 0.62)

t
2 × (2.1 + 3.4) = 11



Improved Initialization

Sum of Product of Sines

• In this case, we actually do better than we are 
likely able to by training our network using 
standard practices. 

• Current best practices is to rescale the outer 
weights and use median of initialization for 
the outer bias. 

• This in general should be from Train set. 

• We used  for the test set. 

• It seems that the error, just from initialization, 
will be small.

n = 12800



Improved Initialization

Sum of Product of Sines

• Here we consider  and 
160 points. 

• We pull 45000 times from our PDF. We easily 
see the peaks in  at   

• Since we have some width (if we have a great 
sample, we could place a very high threshold), 
the peaks in  are noisier, but we see the 
approximately  peaks. 

• With these few of data points, it is unlikely that 
a neural network in trained in a standard way 
would provide a good approximation.

sin(4.2πx)sin(6.8πy)

(ŵx, ŵy) (±0.38, ± 0.62)

2 × (4.2 + 6.8) = 22

Higher  dependence 
requires both more nodes 
and is more sensitive to data.

∥ω∥1

Prediction is scaled.



Barron-E Weight Initialization: 
Digits



Simple ‘Real’ 
Problem: 
Digits
Number of Instances: 1797 

Attribute Information: 8x8 image of integer pixels in 
the range 0..16 

The data set contains images of hand-written digits: 
10 classes where each class refers to a digit. 

Note that Digits is a small problem, with a space of 
size , however, still very sparse23×64=192

From sklearn datasets



Processing and Problem Statement

Digits

• Our effective target function is if the image is a 6 or not. Instead of using  as the target function, we use 6ness as the target 
function (and so a range of values are possible for any image). The labeled data are given values of . 

• We run PCA to reduce down to  features, this makes it easy to calculate and to interpret the features/weights. 

• We scale the input by the maximum value of the full dataset. This is so that we fulfill the requirement . 

• We divide into validation (20%), test (30%) and train (50%). 

• We use an initialization where the inner biases are set from a uniform distribution scaled by , the outer bias is set to , the 

inner weights are set according to the a normal distribution scaled by  and the outer weights are set by a uniform 

distribution between  where  is the number of nodes. 

• We use SGD with a learning rate of  and a batch size of . We sometimes adjust the number of nodes, unless noted 
.
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Standard Shallow Neural Network

Digits

• We only allowed the network to train for 
4000 epochs with early stop (if we used 
GD instead of SGD it would continue to 
improve slowly to 4000 epochs). 

• This is an easy problem, we don’t see much 
sign of overtraining (especially for GD).

Accuracy Precision Sensitivity
Test (Initial) 87.6% 24.1% 13.5%
Train (Final) 98.7% 92.8% 92.8%
Test (Final) 97.0% 87.5% 80.9%

The empirically estimated generalization error is 
then 1.7% (accuracy), 5.3% (precision) and 12.1% 
(sensitivity).



Digits is very simple, very much 
a toy dataset.



Approximate Fourier transforms

Digits

• We use MC estimation to approximate the Fourier 
transform (Rather than a non-equispaced to 
equispaced/non-equispaced Fourier transform: NFFT/
NNFFT). 

• We find as expected that if we take what we think as the 
full frequency space, that most of it is consistent with 0 
(we can estimate the  due to the estimation). We can 
then look at the space and reduce what part of the 
space we use. 

• We can then draw out , ,  from the PDF defined by 
the approximate Fourier transform to use as an 
initialization weight in our network. 

• Interestingly, the neural network does well with low freq.

σ
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We focus on the lower 
frequencies



Barron Initialized Shallow Neural Network

Digits

• We only allowed the network to train for 4000 
epochs, but we include an early stop condition 
based on improvement of the validation sample. 

• We include a threshold  here, this 
doesn’t get the high frequency behavior. 

• We start close to minimal loss. But our 
generalization doesn’t improve if we train.

| ỹ | > 1.7

Accuracy Precision Sensitivity
Train (Initial) 90.4% 49.0% 90.4%
Test (Initial) 89.6% 47.5% 73.1%
Train (Final) 97.2% 90.3% 78.3%
Test (Final) 95.7% 93.9% 59.6%

The empirically estimated generalization error is then 
1.5% (accuracy), 3.6% (precision) and 18.7% (sensitivity).

Initialization is much better, but final is worse. 



Barron Initialized Shallow Neural Network

Digits

• We only allowed the network to train for 4000 
epochs with early stop (if we used GD instead of SGD 
it would continue to improve slowly to 4000 epochs). 

• We include a threshold  here, this doesn’t 
get all the high frequency behavior. 

• We need to increase  since we have 
higher high frequency contribution.

| ỹ | > 1.2

M = 80000

Accuracy Precision Sensitivity
Train (Initial) 92.3% 55.1% 91.6%
Test (Initial) 91.7% 55.1% 73.1%
Train (Final) 98.6% 97.3% 86.7%
Test (Final) 95.9% 87.5% 67.3%

The empirically estimated generalization error is then 
2.7% (accuracy), 9.8% (precision) and 19.4% (sensitivity).

Not highly optimized, but similar. This is not a great training example.



We know (part of) the reason 
Neural Networks generalize.



We know how (in one paradigm) the 
weights connect to the target function.



We can use our understanding of the Fourier 
representation of our target function to 

provide a prior on the initialization.



Applications of Fourier analytic Barron Space theory
Discussion of the Future

• Prototype exists that extends approximate Fourier transform to . 

• Improving Fourier analysis is very important for application. 

• Deep Neural Networks are similar but require more careful calculation. 

• There is a difference in the calculation for deep (2+ hidden layers) versus shallow. Only 
simple deep neural networks have been analyzed. 

• Future theory step is extension to Recurrent Neural Networks (possibly easier to calculate 
than DNN).

d ∼ 100

Publications in preparation.


