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next

• mapper Singh, Mémoli and Carlsson (2007)

• ball mapper D lotko (2019)

• new mapper-like techniques broaden the scope and
applicability of mapper-type algorithms to utilize additional
structure of data and visualize the maps between datasets.

• applications; games, materials, knots...

collaborators
• Mustafa Hajij, Jesse Levitt
• Pawel Dlotko, Davide

Gurnari



mapper motivation: reeb graph

• input M, f : M → R.
• equivalence relation x ∼ y , for
x , y ∈ M, iff:

• f (x) = f (y),
• x and y belong to the same

connected component of f −1(x).

• reeb graph quotient space M/∼.

f f

Cluster 1 Cluster 2

fCluster 1

Lens/height function Elements of a cover



mapper: singh , mémoli and carlsson (2007)

visualizing high dimensional data

• input: data, lens function, overlapping cover of R
• mapper graph: the nerve of the pullback cover of R to X

• addition (coloring) function

Point cloud Cover 1-dim nerve Coloring



ball mapper algorithm d lotko 2019

a more efficient way to obtain a cover

• input: Point cloud X and a single parameter ϵ > 0 (radius).

• step 1: landmarks Construct an ϵ-net of X is Y ⊂ X such
that for every x ∈ X there exist y ∈ Y such that d(x , y) ≤ ϵ.

• step 2: cover X ⊂
⋃
y∈Y

B(y , ϵ), therefore the collection of

balls centered at Y of a radius ϵ form a cover of X .

Landmarks Cover Ball Mapper Example



equivariant ball mapper

• input Point cloud X in metric space with a group G of
isometric automorphism acting on it.

• goal Lift this action to the ball mapper graph by insuring
that the set of landmarks respects the group action.

• how Add the whole orbit to the collection of landmarks.

• output Ball mapper graph with inherited symmetries.

tic tac toe endgame data

958 vectors in R9 representing 3 by 3 matrices with ±1 for x and o
and 0 for empty spots.



ball mapper: tic-tac-toe

• Data: Tic-Tac-Toe endgame data set consisting of 958
vectors in R9 representing 3 by 3 matrices.

• Ball mapper for ϵ = 2.5 colored by the wins of the first player
(red), loses (white), disjoint clusters (ties).



equivariant ball mapper: tic-tac-toe

• Equivariant BM colored by the wins of the first player (red),
loses (white), disjoint clusters (ties).

• Win, tie, and losses clusters are disjoint for ϵ < 3 as
symmetries of the board do not change the outcome.



tic-tac-toe: zoom in

• The wins cluster (left) and loses cluster (right) with color
denoting the orbits.

• Different orbits might have different lengths. Asymmetric
configurations have length 8 orbits.

• The maximally symmetric configuration has an orbit of length
1 -the only red node (left).



mappingmappers

• Mapper is a tool to build a model of a space X along with
visualizing a function f : X → R by coloring the output.

• input X ⊂ Rn and Y ⊂ Rm and a relation f ⊂ X × Y

• step 1 Construct BM graphs BMx(VX ,EX ), BMY (VY ,EY )

• step 2 Define a map f̃ : VX → V
[0,1]
Y , where V

[0,1]
Y denotes a

set of functions from VY to [0, 1] for every vertex w ∈ VY

f̃ (w) =
|B(w) ∩ f (B(v))|

|B(w)|
is the percentage of points in w that are in the image of the
points covered by the vertex v in G (X ).

• output coloring function on vertices of BMY for every vertex
v ∈ BMX .



relational ball mapper: superconductors

• Superconductor data, UC Irvine ML Repository. Size: 21263

1 Characteristics dataset: 81 features scaled, with a radius 2

2 Chemical composition dataset: sparse vectors in R86. ϵ is 0.25
for cosine similarity measure. Concentration of measure.

• Hamidieh: map that relates two datasets and sends one cluster
in Ball Mapper of each dataset to multiple disconnected in the
other. Sets likely provide distinct and unrelated information.



mapper and very high dimensional data

• Let f : X → Y where X ⊂ RN , Y ⊂ Rn, and 0 ≪ n ≪ N.

• mapper Lenses with domains in Rn are more likely to
preserve essential information about the point cloud, and the
fact that having k intervals in each of n directions requires kn

cover elements

• mapper on ball mapper Construct Mapper of X using
• f as a lens function and
• Ball Mapper as an overlaping cover of f (X ) ⊂ Y ⊂ Rn.



mapper on ball mapper: illustration
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(A) The map between point clouds f : X → Y

(B) Ball Mapper for Y

(C) Cover of X obtained as a pullback of the cover of Y

(D) MonBM for X , labeled by cover elements in Y .



ball mapper: summary

• ball mapper provides a way to visualize high dimensional
data in any metric space that preserves proximity and depends
on data density.

• equivariant ball mapper provides tools for visualizing
data with observed or assumed isometries.
Challenging/impossible to achieve on Mapper.

• mapper on ball mapper (MoBM) hybrid between the two
algorithms. Extends the Mapper algorithm from 1-dimensional
to high dimensional lens functions in a computable way more
likely to preserve and reveal information about the input data.

• mappingmappers allows to visualize maps between high
dimensional data sets and enables comparison



Knots and links

knot is an equivalence class of smooth embeddings f : S1 → R3

Two knots are equivalent if they can be connected by an isotopy.



knots: why and how

how to distinguish knots?

Knot invariants: have the same value on isotopic knots but might
fail to distinguish all of them (incomplete).

• There are more than 50 knot invariants of various types
• numerical: components, linkings, colorings
• polynomial: Alexander, Jones, Kauffman, etc.
• algebraic: group of colorings, knot group, homology theories

such as Khovanov link, knot Floer, etc.

• Software: SnapPy, Knot Theory, KnotPlot, etc.

• Databases: Knot Atlas, KnotInfo, etc.

why

• Related to a number of questions in 3- and 4–dim topology

• Applications: biology, materials science, physics in S3.



polynomial knot invariants

• Alexander (q1/2 − q−1/2) · ∆L0(q) = ∆L+(q) − ∆L−(q)

• Jones polynomial:
• Skein relation (q1/2−q−1/2) · JL0(q) = q−1 · JL+(q)−q · JL−(q)
• Hecke algebra of the braid group
• Quantum field theory as the unknot normalized vacuum

expectation value of the Wilson loop operator in SU(2)
Chern–Simons gauge theory

• HOMFLY-PT: z · HL0(q) = a · HL+(q) − a−1 · HL−(q)

• Khovanov homology – categorification of the Jones polynomial

• Bar Natan and Van der Veen: ρ-polynomial



sample numerical invariants

• Minimal crossing number

• The signature σ(K ): computable from the Alexander module

σ(K ) is the signature of V+V T for V
Seifert form whose entries are linking
numbers of pushoffs of generators of
H1 of the Seifert surface.
Combinatorial formula for alternating
knots by Traczyk

σ(K ) = sA(D) − n+(D) − 1 = −sB(D) + n−(D) + 1

• Rasmussen s-invariant: defined using Lee spectral sequence on
Khovanov homology.



knot invariants: landscape

• distinguishing knots
Compare their invariants until you find an invariant that
distinguishes them!

• characterizing invariants
Given a knot invariant which is not complete, which knots can
it distinguish

• does it distinguish the unknot?
Is there a non-trivial knot with the same value of the invariant
as the unknot?

• genus, knot Floer homology, Khovanov homology can

• it is still an open question for the Jones polynomial



khovanov homology detects:

• The unknot: Kronheimer–Mrowka (2010)

• The unlink Hedden–Ni (2013), Batson–Seed (2015)

• The trefoils Baldwin–Sivek (2018)

• The Hopf link Baldwin–Sivek–Xie (2018)

• The connected sum of two Hopf links, the torus link T (2, 4)
Xie–Zhang (2019)

• Split links Lipshitz–Sarkar (2019)

• the torus link T (2, 6) Martin (2020)

• L6n1 Xie–Zhang (2020)

• L7n1, the connected sum of a trefoil and Hopf link
Li–Xie–Zhang (2020)



khovanov homology detects the figure-eight
knot 41

Theorem (Baldwin, Dowlin, Levine, Lidman, S.)

Let K ⊂ S3 be a knot whose reduced Khovanov homology over Q
is 5-dimensional and is supported in a single δ-grading d. Then:

1 If d = 0, then K is the figure-eight knot.

2 If d ̸= 0, then, up to mirroring, d = 2 and K is a
• genus 2

• fibered

• strongly quasipositive knot

whose bigraded knot Floer homology over Q is isomorphic to
that of the torus knot T (2, 5).



comparing knot invariants

what are their discriminative powers?

• HOMFLYPT specializes to Jones and Alexander

• Link homology theories are stronger than the polynomials

• Khovanov homology of alternating knots is determined by the
Jones polynomial and signature (Shumakovitch)



knots are big data

Theorem (Ernst, Sumners ’87)

The number of distinct knots grows exponentially with the crossing
number.

crossings up to 17 18 19 20

no. of knots 1,701, 936 9,755,329 350×106 1,847,319,428

• Rolfsen’s table; Hoste, Thistlethwaite,
Weeks, Burton

• 10,718,938,763,889 knot diagrams for
up to 23 crossings (Sikora, Tuzun).
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big data techniques in knot theory

2019 Hughes: Neural network approach to predicting and
computing knot invariants.

2019 Jejjalaa, Karb, Parrikarb: Hyperbolic Volume of a Knot

2020 Ward, Rawdon: Data mining and deep learning

2021 Gukov, Halverson, Ruehle, Su lkowski: Learning to unknot.

2021 Davies, Velickovic, Buesing, Blackwell, Zheng, Tomasev,
Tanburn, Battaglia, Blundell, Juhasz, Lackenby, Williamson,
Hassabis, Kohli: Advancing mathematics by guiding human
intuition with AI.

2022 Craven, Hughes, Jejjala, Kar: Illuminating new and known
relations between knot invariants

2023 Gukov, Halverson, Manolescu, Ruehle: Searching for ribbons
with machine learning.



ai techniques in knot theory

• Predicting values and finding relations between knot invariants
• An inequality that relates the

signature, slope, volume, and
injectivity radius of hyperbolic
knots was discovered using ML.

• 200,000 experiments trying to
uncover pairwise and triple
correlations between invariants
measured by the accuracy of
the neural network prediction.

• Proving conjectures

2021 Detecting the unknot
1962-2023 Fox’s slice-ribbon conjecture: Every slice knot is ribbon.



knot point cloud construction

Input The coefficients of the one-variable polynomial invariant I of
a finite collection of knots

Step 1 Given a knot K and its single variable polynomial I (K ) extract
a vector of the coefficients

Step 2 Compute the minimal and maximal powers mint , maxt of the
variable denoted by t among all knots in K. Then the
maximal length of all such vectors is d = maxt −mint + 1.

Step 3 Add zeros on both sides of each vector of coefficients to
obtain a vector I (K )v ∈ Rd to ensure a correct alignment of
corresponding powers.



from polynomials to point clouds

Shift vectors so q0 is in the same position in every vector.

q−3 q−2 q−1 q0 q1 q2 q3 q4 q5 q6 q7

J(01) 0 0 0 1 0 0 0 0 0 0 0
J(mir(31)) 0 0 0 0 1 0 1 -1 0 0 0

J(41) 0 1 -1 1 -1 1 0 0 0 0 0
J(mir(51)) 0 0 0 0 0 1 0 1 -1 1 -1
J(mir(52)) 0 0 0 0 1 -1 2 -1 1 -1 0
J(mir(61)) 0 1 -1 2 -2 1 -1 1 0 0 0
J(mir(62)) 0 0 1 -1 2 -2 2 -2 1 0 0

J(63) -1 2 -2 3 -2 2 -1 0 0 0 0



sample vectors in knot point clouds

Invariant Unknot Trefoil Data vector
Alexander 1 t−1 − 1 + t (0,1,-1,1,0)

Jones 1 t + t3 − t4 (0,0,0,0,0,1,0,1,-1)
HOMFLYPT 1 −a4 + 2a2 + a2z2 (-1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0)

Khovanov Q q−1 + q q−9t−3 + q−5t−2
(0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,

+q−3 + q−1
0,0,0,0,0,0,0,1,0,0,0,0,0,0)

• Values of several knot polynomials for the unknot and the trefoil
and the corresponding data vector.

• Note that for the 2-variable polynomial the matrix is flattened into a
vector; for the HOMFLYPT variable z is in rows, a in columns, and
for the Khovanov q is in rows and t in columns.

dataset rho Alexander Jones HOMFLY-PT Khovanov
dimension 15 17 51 152 3003



persistent pca: jones polynomial

• Dimensionality of the point cloud: The smallest value d for
which the normalized explained variance of the first d
principal components sums to more than 95% across all
considered orders (joint with M. Hajij and J. Levitt)

• PCA projection of the Jones polynomial data for up to 17
crossings to 3 dimensions colored by the knot signature.



explained variance for the jones polynomial

x-axis: the
log of the
bounding
norm of rj

y axis: θi,j

i : colors.

• Explained variance plotted against the crossing filtration is
remarkably level (left).

• Cumulative version showing that the more significant the
component, the more stable it is (right).



explained variance for torus Knots

Explained variance plotted
against the index of the
principal component (left).
The incremental summa-
tion plotted against the in-
dex of the principal compo-
nent (right).



persistent pca: alexander polynomial

• PCA projection of the Alexander polynomial data for up to 17
crossings to 2 dimensions colored by the knot signature to
highlight internal structure. Approximates 1D manifold.



ball mapper on jones data: stability

Knots up to 15, 16 and 17 crossings

Zooming in: Knots up to 17 crossings for ϵ = 50, 100, 200.



jones: local dimension



equivariant ball mapper: mirror knots

• Mirror mir(K ) of a knot K is obtained by switching all
positive and negative crossings in the knot diagram of K .

• A(mir(K ))(t) = A(K )(t) and J(mir(K ))(q) = J(K )(q−1)

• σ(mir(K )) = −σ(K )



garoufalidis conjecture

Theorem (Garoufalidis ’03)

For all simple knots up to 8 crossings and for all torus knots, the
colored Jones polynomial determines the signature of the knot.

• Conjectured for all simple knots.

• A knot K is simple, if all the roots
α ∈ ∆(K ) of the Alexander
polynomial where |α| = 1 have
multiplicity 1.

examine relations between jones and signature

Jones polynomial is colored for N=1.



jones vs. signature

• They can be small
{41,mir(11n19)} 0, 4

√
5

{mir(72), 11n88} 2, 6
√

17

• There can be multiple in a grouping
{mir(52), 11n57, 13n3082} 2, 6 3
{13n137, 13n627, 13n716, 13n1539,mir(13n1560), . . .} with
signature either 0, 4 and L2-norm equal to

√
509.1

• They can have the same number of crossings
{11n28, 11n64} 0, 4
{12n107, 12n171} 2, 6

• They can both be alternating
{12a802, 12a1242} 2, 6

√
215

113n627, 13n716 have identical signature, determinant, Alexander,
HOMFLYPT and Kauffman polynomials but different DT-codes



jones ball mapper

determinant alt vs. nonalt

signature signature mod 4



alexander data

determinant alt vs. nonalt

signature signature mod 4



mappingmappers: alexander vs. jones

• Mapper is a tool to build a model of a space X along with
visualizing a function f : X → R by coloring the output.

• Use MappingMappers to compare polynomial knot invariants.
Custom colored Alexander Ball Mapper (left) and Jones ball
mapper (right) region correspondence



mappingmappers vs. pca

• Correspondence between the Alexander polynomial point cloud
in R17 and the space of Jones polynomial point cloud R51.

• PCA explained: shared direction baased on the value of the
determinant of a knot.



mappingmappers: comparison

(a) HOMFLYPT (b) Jones (c) Khovanov

• HOMFLYPT and Khovanov ball mapper graphs colored by the
percentage of knots contained in the selected in the Jones ball
mapper graph.

• Analyze distrubitions of knots in star-like structures of ball
mapper graphs.



mapper on ball mapper: homflypt from jones

• Jones Ball Mapper graph colored by the cardinality of the fiber

• Color depends on the number of clusters of the Mapper on
Ball Mapper HOMFLYPT graph in the preimage of each node.



ml vs. ball mapper on jones and signature

Theorem (Hajij-Levitt-S.)

Given a knot K with the span of the Jones polynomial equal to s,
and Knn is the knot with Jones span less than s is the nearest
neighbor to K under the L2-norm, then the probability

P(σ(K ) = σ(Knn)) > 95%

where σ(K ) is the signature of the knot K.



theorems (re)discovered

SVM (Support machine
vector) algorithm that finds
a hyperplane in an N-
dimensional feature space
that distinctly classifies the
data points.

• The Alexander Ball Mapper graph colored by signature mod 4.

• linear svm classifier trained on the Alexander polynomial
data, get perfect separation with w = [1,−1, 1, . . . ,−1, 1].

• svm fails to converge on the Jones polynomial data

• mapping mappers suggests same holds for the Jones
polynomial



theorem rediscovered

• Folklore theorem attributed to many (Alexander, Conway,
Giller, written in paper of Przytycki and Traczyk) that the
Jones and Alexander polynomial essentially determine
signature mod 4.

• sign(∆K (−1)) = sign(JK (−1)) = (−1)
σ(K)
2



sampling issues

• The full data set is of infinite size

• Special families to check extrapolation or random generator

• Filtrations help extrapolation: norm filtration suffers from
batch size issues but crossing filtration is consistent

• The distribution of the l2-norms (total count vs. norm) for the
alternating (green), nonalternating (blue), and all (grey) knots
up to 12, 13, 14, 15, 16, and then 17 crossings.



genralization: jones vs. signature

2D PCA projection of the co-
efficients of Jones polynomials
for alternating knots with 15
crossing with determinant
greater than 553.
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classifier in predicting the
knot’s signature from its Jones
polynomial as a function of the
fraction of considered knots.



applications

• Credits: Nancy Chrimson and Virnau et al.

• Input: Knot from an experiment

• Compute polynomial time invariants such as signature and
determinant

• Find the region it belongs to in Jones for further relations

• Klotz, Andreson: writhe of the tight knot relates with
signature and s-invariant



mapper on ball mapper: knot invariants

BM graphs are 
covering a domain 

Knots

Hompfly-PT

Alexander Jones

(t-1,t1/2-t-1/2)(1,t1/2-t-1/2)

lenses lenses

Point cloud for conventional Mapper construction



mapper on ball mapper: jones vs. homflypt

(a) Jones BM (b) HOMFLY-PT BM

• Pullback from Jones to
HOMFLYPT with the two long
flares emerging indicating knots
with the same s-invariant but
not signature



what’s next...

• Statistical nature of the point clouds that arise from invariants
should reveal structures and relations that are difficult to see
using traditional theoretical and computational approaches.

• Which types of results can be (re)discovered, improved, or
illuminated using ML, Ball Mapper, and other big data tools?

• Random data and choice of data specific embedding and
metric

• Ball Mapper provides a set of TDA tools for exploring high
dimensional data, visualizing scalar–valued functions, and
comparing high dimensional data descriptors of a given
dataset based on proximity and density (local to global).



thank you

questions?


