Entanglement entropy in $\operatorname{SU}(\mathrm{N})$ lattice gauge theory: an update

Tobias Rindlisbacher ${ }^{1}$, Niko Jokela ${ }^{2}$, Kari Rummukainen ${ }^{2}$, and Ahmed Salami ${ }^{2}$ funded by the SNSF (grant no. 210064)
\boldsymbol{u}^{b}
${ }^{1}$ University of Bern, AEC \& Institute for Theoretical Physics, Bern, Switzerland
${ }^{2}$ University of Helsinki, Department of Physics \& Helsinki Institute of Physics, Helsinki, Finland

Nordic Lattice Meeting 2024, June 10-12, 2024

Introduction

What is entanglement?
\rightarrow Quantum physical implementation of conservation laws

Introduction

What is entanglement?

\rightarrow Quantum physical implementation of conservation laws

- Decay of spin-0 particle: $\quad s=0$

Introduction

What is entanglement?

\rightarrow Quantum physical implementation of conservation laws

- Decay of spin-0 particle: $\quad s=0 \longrightarrow s_{1}+s_{2}=0$

Introduction

What is entanglement?

\rightarrow Quantum physical implementation of conservation laws
■ Decay of spin-0 particle: $\quad s=0 \longrightarrow s_{1}+s_{2}=0$

- Pair creation from vacuum: $\quad s=0 \quad \longrightarrow \quad s_{1}+s_{2}=0$

Introduction

What is entanglement?

\rightarrow Quantum physical implementation of conservation laws
■ Decay of spin-0 particle: $\quad s=0 \longrightarrow s_{1}+s_{2}=0$

- Pair creation from vacuum: $\quad s=0 \quad \longrightarrow \quad s_{1}+s_{2}=0$

Introduction

What is entanglement?

\rightarrow Quantum physical implementation of conservation laws
■ Decay of spin-0 particle: $\quad s=0 \quad \longrightarrow \quad s_{1}+s_{2}=0$

- Pair creation from vacuum: $\quad s=0 \longrightarrow s_{1}+s_{2}=0$
- In a quantum field theory:

Introduction

What is entanglement?

\rightarrow Quantum physical implementation of conservation laws
■ Decay of spin-0 particle: $\quad s=0 \quad \longrightarrow \quad s_{1}+s_{2}=0$

- Pair creation from vacuum: $\quad s=0 \longrightarrow s_{1}+s_{2}=0$
- In a quantum field theory:

\rightarrow correlations

Introduction

What is entanglement entropy?

■ Preliminaries:
Hilbert space: \mathcal{H}, state vector: $|\psi\rangle \in \mathcal{H}$
Density matrix:

$$
\begin{aligned}
& \rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \quad, \quad\left|\psi_{i}\right\rangle \in \mathcal{H} \quad \forall i, \quad \sum_{i} p_{i}=1 \\
& \operatorname{tr}(\rho)=1
\end{aligned}
$$

pure state: $\rho=|\psi\rangle\langle\psi|$
$\rightarrow \quad \rho^{2}=\rho$ (projector) $\rightarrow \operatorname{tr}\left(\rho^{2}\right)=1$
mixed state: $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$
$\rightarrow \quad \rho^{2} \neq \rho$ (not projector) $\rightarrow \operatorname{tr}\left(\rho^{2}\right)<1$

Introduction

What is entanglement entropy?

■ Bipartite quantum system: $\quad \mathcal{H}_{A B}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
pick pure state: $\quad|\psi\rangle_{A B} \in \mathcal{H}_{A B}$
pick orthonormal bases: $|n\rangle_{A} \in \mathcal{H}_{A},|m\rangle_{B} \in \mathcal{H}_{B}$
$\rightarrow \quad|\psi\rangle_{A B}=\sum_{m n} a_{m n}|m\rangle_{A} \otimes|n\rangle_{B} \quad, \quad \sum_{m n}\left|a_{m n}\right|^{2}=1$
$\rightarrow \quad \rho_{A B}=|\psi\rangle_{A B}\langle\psi|=\sum_{m n k \mid} a_{m n} a_{k \mid}^{*}|m\rangle_{A}\langle k| \otimes|n\rangle_{B}\langle l|$ (notation: $|\psi\rangle_{C}\langle\psi|=|\psi\rangle_{C} \otimes_{C}\langle\psi|$)

Introduction

What is entanglement entropy?

■ Bipartite quantum system: $\quad \mathcal{H}_{A B}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
pick pure state: $\quad|\psi\rangle_{A B} \in \mathcal{H}_{A B}$
pick orthonormal bases: $|n\rangle_{A} \in \mathcal{H}_{A},|m\rangle_{B} \in \mathcal{H}_{B}$
$\rightarrow \quad|\psi\rangle_{A B}=\sum_{m n} a_{m n}|m\rangle_{A} \otimes|n\rangle_{B} \quad, \quad \sum_{m n}\left|a_{m n}\right|^{2}=1$
$\rightarrow \quad \rho_{A B}=|\psi\rangle_{A B}\langle\psi|=\sum_{m n k l} a_{m n} a_{k l}^{*}|m\rangle_{A}\langle k| \otimes|n\rangle_{B}\langle I|$

- Reduced density matrix:

$$
\rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=\sum_{m k l} a_{m l} a_{k l}^{*}|m\rangle_{A}\langle k|
$$

Introduction

What is entanglement entropy?

■ Bipartite quantum system: $\quad \mathcal{H}_{A B}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
pick pure state: $\quad|\psi\rangle_{A B} \in \mathcal{H}_{A B}$
pick orthonormal bases: $|n\rangle_{A} \in \mathcal{H}_{A},|m\rangle_{B} \in \mathcal{H}_{B}$
$\rightarrow \quad|\psi\rangle_{A B}=\sum_{m n} a_{m n}|m\rangle_{A} \otimes|n\rangle_{B} \quad, \quad \sum_{m n}\left|a_{m n}\right|^{2}=1$
$\rightarrow \quad \rho_{A B}=|\psi\rangle_{A B}\langle\psi|=\sum_{m n k l} a_{m n} a_{k l}^{*}|m\rangle_{A}\langle k| \otimes|n\rangle_{B}\langle I|$

- Reduced density matrix:

$$
\rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=\sum_{m k l} a_{m l} a_{k l}^{*}|m\rangle_{A}\langle k|
$$

\rightarrow in general mixed state $\Longrightarrow \operatorname{tr}\left(\rho_{A}^{2}\right)<1 \Longrightarrow$ entanglement

Introduction

What is entanglement entropy?

■ Bipartite quantum system: $\quad \mathcal{H}_{A B}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
pick pure state: $\quad|\psi\rangle_{A B} \in \mathcal{H}_{A B}$
pick orthonormal bases: $|n\rangle_{A} \in \mathcal{H}_{A},|m\rangle_{B} \in \mathcal{H}_{B}$
$\rightarrow \quad|\psi\rangle_{A B}=\sum_{m n} a_{m n}|m\rangle_{A} \otimes|n\rangle_{B} \quad, \quad \sum_{m n}\left|a_{m n}\right|^{2}=1$
$\rightarrow \quad \rho_{A B}=|\psi\rangle_{A B}\langle\psi|=\sum_{m n k l} a_{m n} a_{k l}^{*}|m\rangle_{A}\langle k| \otimes|n\rangle_{B}\langle I|$

- Reduced density matrix:

$$
\rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=\sum_{m k l} a_{m l} a_{k l}^{*}|m\rangle_{A}\langle k|
$$

\rightarrow in general mixed state $\Longrightarrow \operatorname{tr}\left(\rho_{A}^{2}\right)<1 \Longrightarrow$ entanglement
$\rightarrow|\psi\rangle_{A B}=|\psi\rangle_{A} \otimes|\psi\rangle_{B} \quad \Longrightarrow \quad \operatorname{tr}\left(\rho_{A}^{2}\right)=1 \quad \Longrightarrow$ no entanglement

Introduction

What is entanglement entropy?

■ Reduced density matrix:

$$
\begin{aligned}
\rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=\sum_{m k l} a_{m l} a_{k \mid}^{*}|m\rangle_{A}\langle k| \\
\operatorname{tr}\left(\rho_{A}^{2}\right)<1 \Rightarrow \text { entanglement } \Longleftrightarrow \operatorname{tr}\left(\rho_{A}^{2}\right)=1 \Rightarrow \text { no entanglement }
\end{aligned}
$$

Introduction

What is entanglement entropy?

■ Reduced density matrix:

$$
\begin{aligned}
& \rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=\sum_{m k l} a_{m l} a_{k \mid}^{*}|m\rangle_{A}\langle k| \\
& \operatorname{tr}\left(\rho_{A}^{2}\right)<1 \Rightarrow \text { entanglement } \Longleftrightarrow \operatorname{tr}\left(\rho_{A}^{2}\right)=1 \Rightarrow \text { no entanglement }
\end{aligned}
$$

■ Entanglement measures:
\rightarrow Purity: $\operatorname{tr}\left(\rho_{A}^{2}\right)$
$\rightarrow \quad$ Rényi entropies: $H_{s}(A)=-\frac{1}{s-1} \log \operatorname{tr}\left(\rho_{A}^{s}\right) \quad, \quad s=2,3, \ldots$
$\rightarrow \quad$ Entanglement entropy: $\quad S_{E E}(A)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s}=\lim _{s \rightarrow 1} \frac{\partial\left((s-1) H_{s}(A)\right)}{\partial s}=\lim _{s \rightarrow 1} H_{s}(A)$

Introduction

What is entanglement entropy?

■ Reduced density matrix:

$$
\begin{aligned}
& \rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=\sum_{m k l} a_{m l} a_{k \mid}^{*}|m\rangle_{A}\langle k| \\
& \operatorname{tr}\left(\rho_{A}^{2}\right)<1 \Rightarrow \text { entanglement } \Longleftrightarrow \operatorname{tr}\left(\rho_{A}^{2}\right)=1 \Rightarrow \text { no entanglement }
\end{aligned}
$$

■ Entanglement measures:
\rightarrow Purity: $\operatorname{tr}\left(\rho_{A}^{2}\right)$
$\rightarrow \quad$ Rényi entropies: $H_{s}(A)=-\frac{1}{s-1} \log \operatorname{tr}\left(\rho_{A}^{s}\right) \quad, \quad s=2,3, \ldots$
\rightarrow Entanglement entropy: $\quad S_{E E}(A)=-\operatorname{tr}\left(\rho_{A} \log \left(\rho_{A}\right)\right) \quad$ (Von Neumann entropy)

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\qquad

- $\operatorname{SU}(N)$ gauge theory on $N_{s}^{d-1} \times N_{t}$ lattice

Partition function: $Z\left(N_{t}, N_{s}\right)=\int \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]}$

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\qquad

- $\operatorname{SU}(N)$ gauge theory on $N_{s}^{d-1} \times N_{t}$ lattice

Partition function: $\quad Z\left(N_{t}, N_{S}\right)=\int \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]}$
\rightarrow Density matrix element:

$$
\left\langle\psi_{1}\right| \rho\left|\psi_{2}\right\rangle=\int_{\substack{U\left(\bar{x}, N_{t}\right)=\psi_{2}(\bar{x}) \\ U(\bar{x}, 0)=\psi_{1}(\bar{x})}} \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]}=
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\qquad

- $\operatorname{SU}(N)$ gauge theory on $N_{s}^{d-1} \times N_{t}$ lattice

Partition function: $\quad Z\left(N_{t}, N_{s}\right)=\int \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]}$
\rightarrow Divide lattice into two parts (A, B)

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\qquad
■ $\operatorname{SU}(N)$ gauge theory on $N_{s}^{d-1} \times N_{t}$ lattice
Partition function: $\quad Z\left(N_{t}, N_{s}\right)=\int \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]}$
\rightarrow Divide lattice into two parts (A, B)
$\rightarrow \quad$ Reduced density matrix ρ_{A} for part A

N_{s}

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\qquad
■ $\operatorname{SU}(N)$ gauge theory on $N_{s}^{d-1} \times N_{t}$ lattice
Partition function: $\quad Z\left(N_{t}, N_{s}\right)=\int \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]}$
$\rightarrow \quad$ Divide lattice into two parts (A, B)
$\rightarrow \quad$ Reduced density matrix ρ_{A} for part A

\rightarrow Entanglement entropy:
$S_{E E}=-\operatorname{tr}_{A}\left(\rho_{A} \log \rho_{A}\right) \quad$ (how ?)

$$
l=2
$$

$\longrightarrow x$

$$
-2
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

N_{s}
■ $\operatorname{SU}(N)$ gauge theory on $N_{s}^{d-1} \times N_{t}$ lattice
Partition function: $\quad Z\left(N_{t}, N_{S}\right)=\int \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]}$
$\rightarrow \quad$ Divide lattice into two parts (A, B)
$\rightarrow \quad$ Reduced density matrix ρ_{A} for part A

$$
\left\langle\psi_{A, 1}\right| \rho_{A}\left|\psi_{A, 2}\right\rangle=\left[\begin{array}{|c|c|c|c|c}
---\bar{r}_{B} \\
& & & & \bar{\psi}_{A, 2} \\
\hline & & & & \\
\hline & & & & \\
\hline & & \\
\hline & r_{B} & & \psi_{A, 1} \\
\hline
\end{array}\right.
$$

\rightarrow Replica method for s-th Rényi entropy:
$H_{s}\left(I, N_{t}, N_{s}\right)=\frac{1}{1-s} \log \operatorname{tr}\left(\rho_{A}^{s}\right)=\frac{1}{1-s} \log \frac{Z_{c}\left(I, s, N_{t}, N_{s}\right)}{Z^{s}\left(N_{t}, N_{s}\right)}$
with "cut partition function" $Z_{C}\left(I, s, N_{t}, N_{s}\right)$

$$
\begin{aligned}
& \rightarrow \quad Z_{c}\left(I=0, s, N_{t}, N_{s}\right)=Z^{s}\left(N_{t}, N_{s}\right) \quad \forall s \in \mathbb{N} \\
& \rightarrow \quad Z_{c}\left(I=N_{s}, s, N_{t}, N_{s}\right)=Z\left(s N_{t}, N_{s}\right) \quad \forall s \in \mathbb{N}
\end{aligned}
$$

N_{s}

N_{s}

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s}
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
\begin{aligned}
& S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s} \\
&=-\left(\lim _{s \rightarrow 1} \frac{\partial \log Z_{c}\left(I, s, N_{t}, N_{s}\right)}{\partial s}-\log Z\left(N_{t}, N_{s}\right)\right) \\
& \approx-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)-\left(-2 \log Z\left(N_{t}, N_{s}\right)\right) \\
&=-\log \operatorname{tr}\left(\rho_{A}^{2}\right)=H_{2}\left(I, N_{t}, N_{s}\right)
\end{aligned}
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
\begin{aligned}
& S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s} \\
&=-\left(\lim _{s \rightarrow 1} \frac{\partial \log Z_{c}\left(I, s, N_{t}, N_{s}\right)}{\partial s}-\log Z\left(N_{t}, N_{s}\right)\right) \\
& \approx-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)-\left(-2 \log Z\left(N_{t}, N_{s}\right)\right) \\
&=-\log \operatorname{tr}\left(\rho_{A}^{2}\right)=H_{2}\left(I, N_{t}, N_{s}\right)
\end{aligned}
$$

\rightarrow measure free energy difference

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
\begin{aligned}
& S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s} \\
&=-\left(\lim _{s \rightarrow 1} \frac{\partial \log Z_{c}\left(I, s, N_{t}, N_{s}\right)}{\partial s}-\log Z\left(N_{t}, N_{s}\right)\right) \\
& \approx-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)-\left(-2 \log Z\left(N_{t}, N_{s}\right)\right) \\
&=-\log \operatorname{tr}\left(\rho_{A}^{2}\right)=H_{2}\left(I, N_{t}, N_{s}\right)
\end{aligned}
$$

\rightarrow measure free energy difference

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
\begin{aligned}
& S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s} \\
&=-\left(\lim _{s \rightarrow 1} \frac{\partial \log Z_{c}\left(I, s, N_{t}, N_{s}\right)}{\partial s}-\log Z\left(N_{t}, N_{s}\right)\right) \\
& \approx-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)-\left(-2 \log Z\left(N_{t}, N_{s}\right)\right) \\
&=-\log \operatorname{tr}\left(\rho_{A}^{2}\right)=H_{2}\left(I, N_{t}, N_{s}\right)
\end{aligned}
$$

\rightarrow measure free energy difference
Issue: UV-divergent piece $\frac{S_{E E}}{|\partial A|}=\frac{C_{0}}{\epsilon^{2}}-\frac{C}{\mid q}+($ finite $)$

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
\begin{aligned}
& S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s} \\
&=-\left(\lim _{s \rightarrow 1} \frac{\partial \log Z_{c}\left(I, s, N_{t}, N_{s}\right)}{\partial s}-\log Z\left(N_{t}, N_{s}\right)\right) \\
& \approx-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)-\left(-2 \log Z\left(N_{t}, N_{s}\right)\right) \\
&=-\log \operatorname{tr}\left(\rho_{A}^{2}\right)=H_{2}\left(I, N_{t}, N_{s}\right)
\end{aligned}
$$

\rightarrow measure free energy difference

$$
\text { Issue: UV-divergent piece } \frac{S_{E E}}{|\partial A|}=\frac{C_{0}}{\epsilon^{2}}-\frac{C}{\mid q}+(\text { finite })
$$

\rightarrow Instead of EE, measure discrete derivative w.r.t. $I>0$:

$$
\begin{aligned}
& \left.\frac{\partial S_{E E}\left(I^{\prime}, N_{t}, N_{s}\right)}{\partial I^{\prime}}\right|_{I^{\prime}=I+1 / 2} \approx \\
& \quad-\log Z_{c}\left(I+1,2, N_{t}, N_{s}\right)-\left(-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)\right)
\end{aligned}
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
\begin{aligned}
& S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s} \\
&=-\left(\lim _{s \rightarrow 1} \frac{\partial \log Z_{c}\left(I, s, N_{t}, N_{s}\right)}{\partial s}-\log Z\left(N_{t}, N_{s}\right)\right) \\
& \approx-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)-\left(-2 \log Z\left(N_{t}, N_{s}\right)\right) \\
&=-\log \operatorname{tr}\left(\rho_{A}^{2}\right)=H_{2}\left(I, N_{t}, N_{s}\right)
\end{aligned}
$$

\rightarrow measure free energy difference

$$
\text { Issue: UV-divergent piece } \frac{S_{E E}}{|\partial A|}=\frac{C_{0}}{\epsilon^{2}}-\frac{C}{\mid q}+(\text { finite })
$$

\rightarrow Instead of $E E$, measure discrete derivative w.r.t. $I>0$:

$$
\begin{aligned}
& \left.\frac{\partial S_{E E}\left(I^{\prime}, N_{t}, N_{s}\right)}{\partial I^{\prime}}\right|_{I^{\prime}=I+1 / 2} \approx \\
& -\log Z_{c}\left(I+1,2, N_{t}, N_{s}\right)-\left(-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)\right)
\end{aligned}
$$

N_{s}

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
\begin{aligned}
& S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s} \\
&=-\left(\lim _{s \rightarrow 1} \frac{\partial \log Z_{c}\left(I, s, N_{t}, N_{s}\right)}{\partial s}-\log Z\left(N_{t}, N_{s}\right)\right) \\
& \approx-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)-\left(-2 \log Z\left(N_{t}, N_{s}\right)\right) \\
&=-\log \operatorname{tr}\left(\rho_{A}^{2}\right)=H_{2}\left(I, N_{t}, N_{s}\right)
\end{aligned}
$$

\rightarrow measure free energy difference

$$
\text { Issue: UV-divergent piece } \frac{S_{E E}}{|\partial A|}=\frac{C_{0}}{\epsilon^{2}}-\frac{C}{\mid q}+(\text { finite })
$$

\rightarrow Instead of EE, measure discrete derivative w.r.t. $I>0$:

$$
\begin{aligned}
& \left.\frac{\partial S_{E E}\left(I^{\prime}, N_{t}, N_{s}\right)}{\partial I^{\prime}}\right|_{I^{\prime}=I+1 / 2} \approx \\
& \quad-\log Z_{c}\left(I+1,2, N_{t}, N_{s}\right)-\left(-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)\right)
\end{aligned}
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem
■ Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
\rightarrow interpolating partition function:

$$
Z_{l}^{*}(\alpha)=\int \mathcal{D}[U] \exp \left(-(1-\alpha) S_{l}[U]-\alpha S_{l+1}[U]\right) \text {, with } \alpha \in[0,1]
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem
■ Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
\rightarrow interpolating partition function:

$$
Z_{l}^{*}(\alpha)=\int \mathcal{D}[U] \exp \left(-(1-\alpha) S_{l}[U]-\alpha S_{l+1}[U]\right) \text {, with } \alpha \in[0,1]
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem
- Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
\rightarrow interpolating partition function:

$$
Z_{l}^{*}(\alpha)=\int \mathcal{D}[U] \exp \left(-(1-\alpha) S_{l}[U]-\alpha S_{l+1}[U]\right) \text {, with } \alpha \in[0,1]
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem
■ Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
\rightarrow interpolating partition function:

$$
Z_{l}^{*}(\alpha)=\int \mathcal{D}[U] \exp \left(-(1-\alpha) S_{l}[U]-\alpha S_{l+1}[U]\right) \text {, with } \alpha \in[0,1]
$$

\rightarrow measure $\left\langle S_{l+1}-S_{l}\right\rangle_{\alpha}=-\frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha}$ for $\alpha \in[0,1]$

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem
■ Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
\rightarrow interpolating partition function:

$$
Z_{I}^{*}(\alpha)=\int \mathcal{D}[U] \exp \left(-(1-\alpha) S_{l}[U]-\alpha S_{l+1}[U]\right) \text {, with } \alpha \in[0,1]
$$

\rightarrow measure $\left\langle S_{l+1}-S_{l}\right\rangle_{\alpha}=-\frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha}$ for $\alpha \in[0,1]$
\rightarrow interpolate and integrate:

$$
\left.\frac{\partial S_{E E}\left(I^{\prime}, N_{t}, N_{s}\right)}{\partial I^{\prime}}\right|_{l^{\prime}=I+1 / 2} \approx-\int_{0}^{1} \mathrm{~d} \alpha \frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha}=\int_{0}^{1} \mathrm{~d} \alpha\left\langle S_{l+1}-S_{l}\right\rangle_{\alpha}
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem
- Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
\rightarrow interpolating partition function:

$$
Z_{I}^{*}(\alpha)=\int \mathcal{D}[U] \exp \left(-(1-\alpha) S_{l}[U]-\alpha S_{I+1}[U]\right) \text {, with } \alpha \in[0,1]
$$

\rightarrow measure $\left\langle S_{I+1}-S_{l}\right\rangle_{\alpha}=-\frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha}$ for $\alpha \in[0,1]$
\rightarrow interpolate and integrate:

$$
\left.\frac{\partial S_{E E}\left(I^{\prime}, N_{t}, N_{s}\right)}{\partial I^{\prime}}\right|_{I^{\prime}=I+1 / 2} \approx-\int_{0}^{1} \mathrm{~d} \alpha \frac{\partial \log Z_{I}^{*}(\alpha)}{\partial \alpha}=\int_{0}^{1} \mathrm{~d} \alpha\left\langle S_{I+1}-S_{I}\right\rangle_{\alpha}
$$

Issue: huge free energy barrier \rightarrow bad signal to noise ratio

data from [Y. Nakagawa et al. (2009)]

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem
■ Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
\rightarrow interpolating partition function:

$$
Z_{I}^{*}(\alpha)=\int \mathcal{D}[U] \exp \left(-(1-\alpha) S_{l}[U]-\alpha S_{I+1}[U]\right) \text {, with } \alpha \in[0,1]
$$

\rightarrow measure $\left\langle S_{I+1}-S_{l}\right\rangle_{\alpha}=-\frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha}$ for $\alpha \in[0,1]$
\rightarrow interpolate and integrate:

$$
\left.\frac{\partial S_{E E}\left(I^{\prime}, N_{t}, N_{s}\right)}{\partial I^{\prime}}\right|_{I^{\prime}=I+1 / 2} \approx-\int_{0}^{1} \mathrm{~d} \alpha \frac{\partial \log Z_{I}^{*}(\alpha)}{\partial \alpha}=\int_{0}^{1} \mathrm{~d} \alpha\left\langle S_{I+1}-S_{I}\right\rangle_{\alpha}
$$

Issue: huge free energy barrier \rightarrow bad signal to noise ratio

data from [Y. Nakagawa et al. (2009)]

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:

\rightarrow measure $\left\langle S_{I+1}-S_{l}\right\rangle_{\alpha}=-\frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha}$ for $\alpha \in[0,1]$
\rightarrow interpolate and integrate:

$$
\left.\frac{\partial S_{E E}\left(I^{\prime}, N_{t}, N_{s}\right)}{\partial I^{\prime}}\right|_{I^{\prime}=I+1 / 2} \approx-\int_{0}^{1} \mathrm{~d} \alpha \frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha}=\int_{0}^{1} \mathrm{~d} \alpha\left\langle S_{I+1}-S_{I}\right\rangle_{\alpha}
$$

Issue: huge free energy barrier \rightarrow bad signal to noise ratio

$\rightarrow Z_{l}^{*}(\alpha)$ imposes simultaneously BC_{A} and BC_{B} on plaquettes P_{1}, P_{2} if $\alpha \neq 0,1$.

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,

N_{s}

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.

N_{s}

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in $(2+1)$ dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in $(2+1)$ dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in $(2+1)$ dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in $(2+1)$ dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (2+1) dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (2+1) dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in $(2+1)$ dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation

Free-energy plateau

- Why does the free energy initially not change?

Entangling surface deformation

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.

Entangling surface deformation

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.

Entangling surface deformation

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?

Entangling surface deformation

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?

Entangling surface deformation

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?

Entangling surface deformation

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?

Entangling surface deformation

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?

Entangling surface deformation

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?

Entangling surface deformation

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?

Entangling surface deformation

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?
Only if either for x_{1} or x_{2} all adjacent spatial link have same BC.

$\rightarrow x$

$$
l=2
$$

Entangling surface deformation

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?
Only if either for x_{1} or x_{2} all adjacent spatial link have same BC.

Entangling surface deformation

Avoiding remnant free energy barriers

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
\rightarrow example for $(2+1)$ d lattice:

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
\rightarrow example for $(2+1)$ d lattice:

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
\rightarrow example for $(2+1)$ d lattice:

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
\rightarrow example for $(2+1)$ d lattice:

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
\rightarrow example for $(2+1)$ d lattice:

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
\rightarrow example for $(2+1)$ d lattice:

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
\rightarrow example for $(2+1)$ d lattice:

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
\rightarrow example for $(2+1)$ d lattice:

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
\rightarrow example for $(2+1) d$ lattice:

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
\rightarrow example for $(2+1) d$ lattice:

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=8, N_{s}=7\right)$.

Entangling surface deformation

Avoiding remnant free energy barriers

■ Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions:
comparison of boundary update methods: non-tilted lattice \longleftrightarrow tilted lattice

Entangling surface deformation

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions:
comparison of boundary update methods: non-tilted lattice \longleftrightarrow tilted lattice \longleftrightarrow local derivative

UNIVERSITÅT

Remaining problems

Single link overlap problem

- BC swap over single non-perpendicular spatial link becomes difficult for $N>3$ $p(B \rightarrow A) \sim \mathrm{e}^{\frac{\beta}{N}} \operatorname{Retr}\left(P_{1, A}+P_{2, A}\right)-\frac{\beta}{N} \operatorname{Re} \operatorname{tr}\left(P_{1, B}+P_{2, B}\right)$

Remaining problems

Single link overlap problem

- BC swap over single non-perpendicular spatial link becomes difficult for $N>3$

$$
p(B \rightarrow A) \sim \mathrm{e}^{\frac{\beta}{N}} \operatorname{Retr}\left(P_{1, A}+P_{2, A}\right)-\frac{\beta}{N} \operatorname{Re} \operatorname{tr}\left(P_{1, B}+P_{2, B}\right)
$$

- modified $\operatorname{SU}(2)$ sub-group heat-bath update:

$$
\begin{aligned}
& \mathrm{SU}(2) \rightarrow p_{\mathrm{acc}} \sim 0.3 \\
& \mathrm{SU}(3) \rightarrow p_{\mathrm{acc}} \sim 0.2 \\
& \mathrm{SU}(5) \rightarrow p_{\mathrm{acc}} \sim 0.005
\end{aligned}
$$

Remaining problems

Single link overlap problem

- BC swap over single non-perpendicular spatial link becomes difficult for $N>3$

$$
p(B \rightarrow A) \sim \mathrm{e}^{\frac{\beta}{N}} \operatorname{Retr}\left(P_{1, A}+P_{2, A}\right)-\frac{\beta}{N} \operatorname{Re} \operatorname{tr}\left(P_{1, B}+P_{2, B}\right)
$$

- modified SU(2) sub-group heat-bath update:

$$
\begin{aligned}
& \mathrm{SU}(2) \rightarrow p_{\mathrm{acc}} \sim 0.3 \\
& \mathrm{SU}(3) \rightarrow p_{\mathrm{acc}} \sim 0.2 \\
& \mathrm{SU}(5) \rightarrow p_{\mathrm{acc}} \sim 0.005
\end{aligned}
$$

\rightarrow Worm-like update:

$$
\begin{aligned}
& \mathrm{SU}(2) \rightarrow p_{\mathrm{acc}} \sim 0.45 \\
& \mathrm{SU}(3) \rightarrow p_{\mathrm{acc}} \sim 0.35 \\
& \mathrm{SU}(5) \rightarrow p_{\mathrm{acc}} \sim 0.1
\end{aligned}
$$

Remaining problems

Worm-like BC update

0 pick permutation $\sigma \in \Pi(1, \ldots, s)$, set $i=1$ while true:

Remaining problems

Worm-like BC update

0 pick permutation $\sigma \in \Pi(1, \ldots, s)$, set $i=1$
while true:
1 randomly choose $\delta i= \pm 1$ and set $i^{\prime}=i+(\delta i-1) / 2$ if ($i=1$ and $\delta i<0$) or $(i=s$ and $\delta i>0)$: end worm

Remaining problems

Worm-like BC update

0 pick permutation $\sigma \in \Pi(1, \ldots, s)$, set $i=1$
while true:
1 randomly choose $\delta i= \pm 1$ and set $i^{\prime}=i+(\delta i-1) / 2$ if ($i=1$ and $\delta i<0$) or ($i=s$ and $\delta i>0$): end worm
2 randomly pick a link U from staple of $P_{\sigma\left(i^{\prime}\right)}$

Remaining problems

Worm-like BC update

0 pick permutation $\sigma \in \Pi(1, \ldots, s)$, set $i=1$
while true:
1 randomly choose $\delta i= \pm 1$ and set $i^{\prime}=i+(\delta i-1) / 2$ if $(i=1$ and $\delta i<0)$ or $(i=s$ and $\delta i>0)$: end worm
2 randomly pick a link U from staple of $P_{\sigma\left(i^{\prime}\right)}$

Remaining problems

Worm-like BC update

0 pick permutation $\sigma \in \Pi(1, \ldots, s)$, set $i=1$
while true:
1 randomly choose $\delta i= \pm 1$ and set $i^{\prime}=i+(\delta i-1) / 2$ if ($i=1$ and $\delta i<0$) or ($i=s$ and $\delta i>0$): end worm
2 randomly pick a link U from staple of $P_{\sigma\left(i^{\prime}\right)}$
3 compute one-link integral over U for B_{B} and $B C_{A}$ (one-link int. with Cayley-Hamilton: [TR (2024)]) with probab. $p(\delta i)=\min \left(1,\left(Z_{A} / Z_{B}\right)^{\delta i}\right)$: change BC for $P_{\sigma\left(i^{\prime}\right)}$ and set $i=i+\delta i$

Remaining problems

Worm-like BC update

0 pick permutation $\sigma \in \Pi(1, \ldots, s)$, set $i=1$
while true:
1 randomly choose $\delta i= \pm 1$ and set $i^{\prime}=i+(\delta i-1) / 2$

$$
\text { if }(i=1 \text { and } \delta i<0) \text { or }(i=s \text { and } \delta i>0) \text { : end worm }
$$

2 randomly pick a link U from staple of $P_{\sigma\left(i^{\prime}\right)}$
3 compute one-link integral over U for B_{B} and $B C_{A}$ (one-link int. with Cayley-Hamilton: [TR (2024)]) with probab. $p(\delta i)=\min \left(1,\left(Z_{A} / Z_{B}\right)^{\delta i}\right)$: change BC for $P_{\sigma\left(i^{\prime}\right)}$ and set $i=i+\delta i$
4 generate new value for U (using heat-bath dist. w.r.t. current BC)

Remaining problems

Worm-like BC update

0 pick permutation $\sigma \in \Pi(1, \ldots, s)$, set $i=1$
while true:
1 randomly choose $\delta i= \pm 1$ and set $i^{\prime}=i+(\delta i-1) / 2$

$$
\text { if }(i=1 \text { and } \delta i<0) \text { or }(i=s \text { and } \delta i>0) \text { : end worm }
$$

2 randomly pick a link U from staple of $P_{\sigma\left(i^{\prime}\right)}$
3 compute one-link integral over U for BC_{B} and BC_{A} (one-link int. with Cayley-Hamilton: [TR (2024)]) with probab. $p(\delta i)=\min \left(1,\left(Z_{A} / Z_{B}\right)^{\delta i}\right)$: change BC for $P_{\sigma\left(i^{\prime}\right)}$ and set $i=i+\delta i$
4 generate new value for U
(using heat-bath dist. w.r.t. current BC)
(move choice probab. factors have been omitted)

Remaining problems

Remnant "single cube" free energy barrier?

■ For $\ell>2$ non-monotonic change in free energy during BC change for single spatial cube
\rightarrow auto-correlation issue?
\rightarrow can it be avoided?

Conclusions \& outlook

Conclusions

- Entangling surface deformation method with tilted lattice and/or local derivative essentially avoids free energy barriers in determination of entanglement measures (Rényi and entropies) in $\mathrm{SU}(N)$ lattice gauge theories.
- Remnant "single cube" free energy barrier can show up for $\ell>2$.
- Worm-like update for temporal BC flip over spatial link results in higher acceptance rates.

Outlook

■ Some ideas to overcome the "single cube" free energy barriers.

- Extended worm-like update over more than one spatial link at a time?
- Applications ...

