Entanglement entropy in SU(N) lattice gauge theory: an update

Swiss National

Tobias Rindlisbacher¹, Niko Jokela², Kari Rummukainen², and Ahmed Salami²

funded by the SNSF (grant no. 210064)

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS ¹ University of Bern, AEC & Institute for Theoretical Physics, Bern, Switzerland
² University of Helsinki, Department of Physics & Helsinki Institute of Physics, Helsinki, Finland

Nordic Lattice Meeting 2024, June 10-12, 2024

What is entanglement?

→ Quantum physical implementation of conservation laws

What is entanglement?

- → Quantum physical implementation of conservation laws
 - Decay of spin-0 particle: s = 0

What is entanglement?

- → Quantum physical implementation of conservation laws
 - Decay of spin-0 particle: $s = 0 \longrightarrow s_1 + s_2 = 0$

What is entanglement?

- → Quantum physical implementation of conservation laws
 - Decay of spin-0 particle: $s = 0 \longrightarrow s_1 + s_2 = 0$
 - Pair creation from vacuum: $s = 0 \longrightarrow s_1 + s_2 = 0$

What is entanglement?

- → Quantum physical implementation of conservation laws
 - Decay of spin-0 particle: $s = 0 \longrightarrow s_1 + s_2 = 0$
 - Pair creation from vacuum: $s = 0 \longrightarrow s_1 + s_2 = 0$

What is entanglement?

- → Quantum physical implementation of conservation laws
 - Decay of spin-0 particle: $s = 0 \longrightarrow s_1 + s_2 = 0$
 - Pair creation from vacuum: $s = 0 \longrightarrow s_1 + s_2 = 0$
- In a quantum field theory:

What is entanglement?

- → Quantum physical implementation of conservation laws
 - Decay of spin-0 particle: $s = 0 \longrightarrow s_1 + s_2 = 0$
 - Pair creation from vacuum: $s = 0 \longrightarrow s_1 + s_2 = 0$
- In a quantum field theory:

→ correlations

What is entanglement entropy?

Preliminaries:

Hilbert space: \mathcal{H} , state vector: $|\psi
angle\in\mathcal{H}$

Density matrix:

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}| , |\psi_{i}\rangle \in \mathcal{H} \quad \forall i , \sum_{i} p_{i} = 1$$
 $tr(\rho) = 1$

pure state: $\rho = |\psi\rangle \langle \psi|$

$$\rightarrow \rho^2 = \rho \text{ (projector)} \rightarrow \text{tr}(\rho^2) = 1$$

mixed state: $ho = \sum_i | p_i | \psi_i
angle \langle \psi_i |$

 $ightarrow
ho^2
eq
ho$ (not projector) $ightarrow {
m tr} \left(
ho^2
ight) < 1$

What is entanglement entropy?

■ Bipartite quantum system: $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$

pick pure state: $|\psi\rangle_{AB} \in \mathcal{H}_{AB}$

pick orthonormal bases: $|n\rangle_{A} \in \mathcal{H}_{A}, \, |m\rangle_{B} \in \mathcal{H}_{B}$

→
$$|\psi\rangle_{AB} = \sum_{mn} a_{mn} |m\rangle_A \otimes |n\rangle_B$$
 , $\sum_{mn} |a_{mn}|^2 = 1$

$$\rightarrow \ \rho_{AB} = |\psi\rangle_{AB} \langle \psi| = \sum_{mnkl} a_{mn} a_{kl}^* |m\rangle_A \langle k| \otimes |n\rangle_B \langle l|$$

(notation: $|\psi\rangle_{\cal C}\langle\psi|=|\psi\rangle_{\cal C}\otimes_{\cal C}\langle\psi|$)

What is entanglement entropy?

■ Bipartite quantum system: $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$

pick pure state: $|\psi\rangle_{AB} \in \mathcal{H}_{AB}$

pick orthonormal bases: $|n\rangle_{A} \in \mathcal{H}_{A}, \, |m\rangle_{B} \in \mathcal{H}_{B}$

→
$$|\psi\rangle_{AB} = \sum_{mn} a_{mn} |m\rangle_A \otimes |n\rangle_B$$
 , $\sum_{mn} |a_{mn}|^2 = 1$

$$\rightarrow \ \rho_{AB} = |\psi\rangle_{AB} \langle \psi| = \sum_{mnkl} a_{mn} a_{kl}^* |m\rangle_A \langle k| \otimes |n\rangle_B \langle l|$$

Reduced density matrix:

$$ho_{A} = \mathrm{tr}_{B}(
ho_{AB}) = \sum_{\textit{mkl}} a_{\textit{ml}} a_{\textit{kl}}^{*} |m\rangle_{A} \langle k|$$

What is entanglement entropy?

■ Bipartite quantum system: $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$

pick pure state: $|\psi\rangle_{AB} \in \mathcal{H}_{AB}$

pick orthonormal bases: $|n\rangle_{A} \in \mathcal{H}_{A}, |m\rangle_{B} \in \mathcal{H}_{B}$

 $\rightarrow |\psi\rangle_{AB} = \sum_{mn} a_{mn} |m\rangle_A \otimes |n\rangle_B \quad , \quad \sum_{mn} |a_{mn}|^2 = 1$

→
$$\rho_{AB} = |\psi\rangle_{AB} \langle \psi| = \sum_{mnkl} a_{mn} a_{kl}^* |m\rangle_A \langle k| \otimes |n\rangle_B \langle l|$$

Reduced density matrix:

$$ho_{A}={
m tr}_{B}(
ho_{AB})=\sum_{mkl}a_{ml}a_{kl}^{*}|m
angle_{A}\langle k|$$

→ in general mixed state \implies tr(ρ_A^2) < 1 \implies entanglement

What is entanglement entropy?

■ Bipartite quantum system: $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$

pick pure state: $|\psi\rangle_{AB} \in \mathcal{H}_{AB}$

pick orthonormal bases: $|n\rangle_{A} \in \mathcal{H}_{A}, \, |m\rangle_{B} \in \mathcal{H}_{B}$

→
$$|\psi\rangle_{AB} = \sum_{mn} a_{mn} |m\rangle_A \otimes |n\rangle_B$$
 , $\sum_{mn} |a_{mn}|^2 = 1$

$$\rightarrow \ \rho_{AB} = |\psi\rangle_{AB} \langle \psi| = \sum_{mnkl} a_{mn} a_{kl}^* |m\rangle_A \langle k| \otimes |n\rangle_B \langle l|$$

Reduced density matrix:

$$ho_{A} = {
m tr}_{B}(
ho_{AB}) = \sum_{\textit{mkl}} a_{\textit{ml}} a_{\textit{kl}}^{*} |m
angle_{A} \langle k|$$

→ in general mixed state \implies tr $(\rho_A^2) < 1 \implies$ entanglement

$$\Rightarrow |\psi\rangle_{AB} = |\psi\rangle_A \otimes |\psi\rangle_B \implies \text{tr}(\rho_A^2) = 1 \implies \text{no entanglement}$$

What is entanglement entropy?

Reduced density matrix:

$$\begin{split} \rho_{A} &= \mathrm{tr}_{B}(\rho_{AB}) = \sum_{mkl} a_{ml} a_{kl}^{*} |m\rangle_{A} \langle k| \\ & \\ \mathrm{tr}(\rho_{A}^{2}) < 1 \quad \Rightarrow \quad \mathrm{entanglement} \quad \Longleftrightarrow \quad \mathrm{tr}(\rho_{A}^{2}) = 1 \quad \Rightarrow \quad \mathrm{no \ entanglement} \end{split}$$

What is entanglement entropy?

Reduced density matrix:

$$\begin{split} \rho_{A} &= \mathrm{tr}_{B}(\rho_{AB}) = \sum_{mkl} a_{ml} a_{kl}^{*} |m\rangle_{A} \langle k| \\ \hline \mathrm{tr}(\rho_{A}^{2}) < 1 \quad \Rightarrow \quad \mathrm{entanglement} \quad \Longleftrightarrow \quad \boxed{\mathrm{tr}(\rho_{A}^{2}) = 1 \quad \Rightarrow \quad \mathrm{no \ entanglement}} \end{split}$$

- Entanglement measures:
 - → Purity: $tr(\rho_A^2)$

→ Rényi entropies:
$$H_s(A) = -\frac{1}{s-1} \log \operatorname{tr}(\rho_A^s)$$
 , $s = 2, 3, ...$

→ Entanglement entropy:
$$S_{EE}(A) = -\lim_{s \to 1} \frac{\partial \log \operatorname{tr}(\rho_s^A)}{\partial s} = \lim_{s \to 1} \frac{\partial ((s-1)H_s(A))}{\partial s} = \lim_{s \to 1} H_s(A)$$

 $\boldsymbol{u}^{\scriptscriptstyle b}$

What is entanglement entropy?

Reduced density matrix:

$$\begin{split} \rho_{A} &= \mathrm{tr}_{B}(\rho_{AB}) = \sum_{mkl} a_{ml} a_{kl}^{*} |m\rangle_{A} \langle k| \\ \hline \mathrm{tr}(\rho_{A}^{2}) < 1 \quad \Rightarrow \quad \mathrm{entanglement} \quad \Longleftrightarrow \quad \boxed{\mathrm{tr}(\rho_{A}^{2}) = 1 \quad \Rightarrow \quad \mathrm{no \ entanglement}} \end{split}$$

- Entanglement measures:
 - → Purity: $tr(\rho_A^2)$

→ Rényi entropies:
$$H_s(A) = -\frac{1}{s-1} \log \operatorname{tr}(\rho_A^s)$$
 , $s = 2, 3, ...$

→ Entanglement entropy: $S_{EE}(A) = -\operatorname{tr}(\rho_A \log(\rho_A))$ (Von Neumann entropy)

UNIVERSITÄT Bern

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

SU(*N*) gauge theory on $N_s^{d-1} \times N_t$ lattice

Partition function: $Z(N_t, N_s) = \int \mathcal{D}[U] e^{-S_G[U]}$

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

SU(*N*) gauge theory on $N_s^{d-1} \times N_t$ lattice

Partition function: $Z(N_t, N_s) = \int \mathcal{D}[U] e^{-S_G[U]}$

→ Density matrix element:

 $\boldsymbol{u}^{\scriptscriptstyle b}$

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

SU(*N*) gauge theory on $N_s^{d-1} \times N_t$ lattice

Partition function: $Z(N_t, N_s) = \int \mathcal{D}[U] e^{-S_G[U]}$

 \rightarrow Divide lattice into two parts (A, B)

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

SU(*N*) gauge theory on $N_s^{d-1} \times N_t$ lattice

Partition function: $Z(N_t, N_s) = \int \mathcal{D}[U] e^{-S_G[U]}$

- → Divide lattice into two parts (A, B)
- → Reduced density matrix ρ_A for part A

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

SU(*N*) gauge theory on $N_s^{d-1} \times N_t$ lattice

Partition function: $Z(N_t, N_s) = \int \mathcal{D}[U] e^{-S_G[U]}$

- → Divide lattice into two parts (A, B)
- → Reduced density matrix ρ_A for part A

→ Entanglement entropy:

 $S_{EE} = -\operatorname{tr}_{A}(\rho_{A} \log \rho_{A})$ (how ?)

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

■ SU(*N*) gauge theory on $N_s^{d-1} \times N_t$ lattice

Partition function: $Z(N_t, N_s) = \int \mathcal{D}[U] e^{-S_G[U]}$

- → Divide lattice into two parts (A, B)
- → Reduced density matrix ρ_A for part A

→ Replica method for s-th Rényi entropy: $H_{s}(l, N_{t}, N_{s}) = \frac{1}{1-s} \log tr(\rho_{A}^{s}) = \frac{1}{1-s} \log \frac{Z_{c}(l, s, N_{t}, N_{s})}{Z^{s}(N_{t}, N_{s})}$ with "cut partition function" $Z_{c}(l, s, N_{t}, N_{s})$ $\rightarrow Z_{c}(l = 0, s, N_{t}, N_{s}) = Z^{s}(N_{t}, N_{s}) \quad \forall s \in \mathbb{N}$ $\rightarrow Z_{c}(l = N_{s}, s, N_{t}, N_{s}) = Z(s N_{t}, N_{s}) \quad \forall s \in \mathbb{N}$

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

→ Entanglement entropy (EE):

$$S_{EE}(l, N_t, N_s) = -\lim_{s \to 1} rac{\partial \log \operatorname{tr}(
ho_A^s)}{\partial s}$$

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

→ Entanglement entropy (EE):

$$\begin{split} S_{EE}(I, N_t, N_s) &= -\lim_{s \to 1} \frac{\partial \log \operatorname{tr}(\rho_A^s)}{\partial s} \\ &= -\left(\lim_{s \to 1} \frac{\partial \log Z_c(I, s, N_t, N_s)}{\partial s} - \log Z(N_t, N_s)\right) \\ &\approx -\log Z_c(I, 2, N_t, N_s) - (-2\log Z(N_t, N_s)) \\ &= -\log \operatorname{tr}(\rho_A^2) = H_2(I, N_t, N_s) \end{split}$$

 $\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

→ Entanglement entropy (EE):

$$\begin{split} S_{EE}(I, N_t, N_s) &= -\lim_{s \to 1} \frac{\partial \log \operatorname{tr}(\rho_A^s)}{\partial s} \\ &= -\left(\lim_{s \to 1} \frac{\partial \log Z_c(I, s, N_t, N_s)}{\partial s} - \log Z(N_t, N_s)\right) \\ &\approx \boxed{-\log Z_c(I, 2, N_t, N_s)} - (-2 \log Z(N_t, N_s)) \\ &= -\log \operatorname{tr}(\rho_A^2) = H_2(I, N_t, N_s) \end{split}$$

→ measure free energy difference

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

→ Entanglement entropy (EE):

$$\begin{split} S_{EE}(I, N_t, N_s) &= -\lim_{s \to 1} \frac{\partial \log \operatorname{tr}(\rho_A^s)}{\partial s} \\ &= -\left(\lim_{s \to 1} \frac{\partial \log Z_c(I, s, N_t, N_s)}{\partial s} - \log Z(N_t, N_s)\right) \\ &\approx -\log Z_c(I, 2, N_t, N_s) - \left(-2\log Z(N_t, N_s)\right) \\ &= -\log \operatorname{tr}(\rho_A^2) = H_2(I, N_t, N_s) \end{split}$$

→ measure free energy difference

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

→ Entanglement entropy (EE):

$$\begin{split} S_{EE}(I, N_t, N_s) &= -\lim_{s \to 1} \frac{\partial \log \operatorname{tr}\left(\rho_A^s\right)}{\partial s} \\ &= -\left(\lim_{s \to 1} \frac{\partial \log Z_c(I, s, N_t, N_s)}{\partial s} - \log Z(N_t, N_s)\right) \\ &\approx -\log Z_c(I, 2, N_t, N_s) - (-2\log Z(N_t, N_s)) \\ &= -\log \operatorname{tr}\left(\rho_A^2\right) = H_2(I, N_t, N_s) \end{split}$$

→ measure free energy difference

Issue: UV-divergent piece
$$\frac{S_{EE}}{|\partial A|} = \boxed{\frac{C_0}{\epsilon^2}} - \frac{C}{l^q} + \text{(finite)}$$

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

→ Entanglement entropy (EE):

$$\begin{split} S_{EE}(I, N_t, N_s) &= -\lim_{s \to 1} \frac{\partial \log \operatorname{tr}(\rho_A^s)}{\partial s} \\ &= -\left(\lim_{s \to 1} \frac{\partial \log Z_c(I, s, N_t, N_s)}{\partial s} - \log Z(N_t, N_s)\right) \\ &\approx -\log Z_c(I, 2, N_t, N_s) - (-2 \log Z(N_t, N_s)) \\ &= -\log \operatorname{tr}(\rho_A^2) = H_2(I, N_t, N_s) \end{split}$$

→ measure free energy difference

Issue: UV-divergent piece
$$\frac{S_{EE}}{|\partial A|} = \frac{C_0}{\epsilon^2} - \frac{C}{l^q} + (finite)$$

→ Instead of EE, measure discrete derivative w.r.t. l > 0: $\frac{\partial S_{EE}(l', N_t, N_s)}{\partial l'} \Big|_{l'=l+1/2} \approx -\log Z_c(l+1, 2, N_t, N_s) - (-\log Z_c(l, 2, N_t, N_s))$

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

→ Entanglement entropy (EE):

$$\begin{split} S_{EE}(I, N_t, N_s) &= -\lim_{s \to 1} \frac{\partial \log \operatorname{tr}(\rho_A^s)}{\partial s} \\ &= -\left(\lim_{s \to 1} \frac{\partial \log Z_c(I, s, N_t, N_s)}{\partial s} - \log Z(N_t, N_s)\right) \\ &\approx -\log Z_c(I, 2, N_t, N_s) - (-2\log Z(N_t, N_s)) \\ &= -\log \operatorname{tr}(\rho_A^2) = H_2(I, N_t, N_s) \end{split}$$

→ measure free energy difference

Issue: UV-divergent piece $\frac{S_{EE}}{|\partial A|} = \frac{C_0}{\epsilon^2} - \frac{C}{I^q} + (finite)$

→ Instead of EE, measure discrete derivative w.r.t. l > 0: $\frac{\partial S_{EE}(l', N_t, N_s)}{\partial l'}\Big|_{l'=l+1/2} \approx \frac{1}{\log Z_c(l+1, 2, N_t, N_s)} - (-\log Z_c(l, 2, N_t, N_s))$

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

→ Entanglement entropy (EE):

$$\begin{split} S_{EE}(I, N_t, N_s) &= -\lim_{s \to 1} \frac{\partial \log \operatorname{tr}(\rho_A^s)}{\partial s} \\ &= -\left(\lim_{s \to 1} \frac{\partial \log Z_c(I, s, N_t, N_s)}{\partial s} - \log Z(N_t, N_s)\right) \\ &\approx -\log Z_c(I, 2, N_t, N_s) - (-2\log Z(N_t, N_s)) \\ &= -\log \operatorname{tr}(\rho_A^2) = H_2(I, N_t, N_s) \end{split}$$

→ measure free energy difference

Issue: UV-divergent piece $\frac{S_{EE}}{|\partial A|} = \frac{C_0}{\epsilon^2} - \frac{C}{l^q} + (finite)$

→ Instead of EE, measure discrete derivative w.r.t. l > 0: $\frac{\partial S_{EE}(l', N_t, N_s)}{\partial l'}\Big|_{l'=l+1/2} \approx -\log Z_c(l+1, 2, N_t, N_s) - (-\log Z_c(l, 2, N_t, N_s))$

Entanglement entropy on the lattice

- Measuring free energy differences:
 - → $I \rightarrow I + 1$ is non-local change \rightarrow overlap problem

Entanglement entropy on the lattice

- Measuring free energy differences:
 - → $I \rightarrow I + 1$ is non-local change \rightarrow overlap problem
- Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
 - → interpolating partition function:

$$Z_l^*(\alpha) = \int \mathcal{D}[U] \exp\left(-(1-\alpha) S_l[U] - \alpha S_{l+1}[U]\right), \text{ with } \alpha \in [0,1]$$

Entanglement entropy on the lattice

- Measuring free energy differences:
 - → $I \rightarrow I + 1$ is non-local change \rightarrow overlap problem
- Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
 - → interpolating partition function:

 $Z_{l}^{*}(\alpha) = \int \mathcal{D}[U] \exp\left(-(1-\alpha) \frac{S_{l}[U]}{S_{l}[U]} - \alpha S_{l+1}[U]\right), \text{ with } \alpha \in [0,1]$

Entanglement entropy on the lattice

- Measuring free energy differences:
 - → $I \rightarrow I + 1$ is non-local change \rightarrow overlap problem
- Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
 - → interpolating partition function:

$$Z_l^*(\alpha) = \int \mathcal{D}[U] \exp\left(-(1-\alpha) S_l[U] - \alpha S_{l+1}[U]\right), \text{ with } \alpha \in [0,1]$$

Entanglement entropy on the lattice

- Measuring free energy differences:
 - → $I \rightarrow I + 1$ is non-local change \rightarrow overlap problem
- Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
 - → interpolating partition function:

$$Z_l^*(\alpha) = \int \mathcal{D}[U] \exp\left(-(1-\alpha) \ S_l[U] \ -\alpha \ S_{l+1}[U] \ \right), \text{ with } \alpha \in [0,1]$$

→ measure
$$\langle S_{l+1} - S_l \rangle_{\alpha} = -\frac{\partial \log Z_l^*(\alpha)}{\partial \alpha}$$
 for $\alpha \in [0, 1]$

 $\boldsymbol{u}^{\scriptscriptstyle b}$

Entanglement entropy on the lattice

- Measuring free energy differences:
 - → $I \rightarrow I + 1$ is non-local change \rightarrow overlap problem
- Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
 - → interpolating partition function:

$$Z_l^*(lpha) = \int \mathcal{D}[U] \, \exp\Bigl(-(1-lpha) \, \, \mathcal{S}_l[U] \,\, -lpha \,\, \mathcal{S}_{l+1}[\,U] \,\, \Bigr),$$
 with $lpha \in [0,1]$

→ measure
$$\langle S_{l+1} - S_l \rangle_{\alpha} = -\frac{\partial \log Z_l^*(\alpha)}{\partial \alpha}$$
 for $\alpha \in [0, 1]$

→ interpolate and integrate:

$$\frac{\partial S_{\mathsf{EE}}(l', \mathsf{N}_{\mathsf{l}}, \mathsf{N}_{\mathsf{S}})}{\partial l'} \bigg|_{l'=l+1/2} \approx -\int_{0}^{1} \mathrm{d}\alpha \frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha} = \int_{0}^{1} \mathrm{d}\alpha \langle S_{l+1} - S_{l} \rangle_{\alpha}$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
 - → $I \rightarrow I + 1$ is non-local change \rightarrow overlap problem
- Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
 - → interpolating partition function:

$$Z_l^*(lpha) = \int \mathcal{D}[U] \exp\left(-(1-lpha) \ \mathcal{S}_l[U] \ -lpha \ \mathcal{S}_{l+1}[U] \
ight),$$
 with $lpha \in [0,1]$

→ measure
$$\langle S_{l+1} - S_l \rangle_{\alpha} = - \frac{\partial \log Z_l^*(\alpha)}{\partial \alpha}$$
 for $\alpha \in [0, 1]$

→ interpolate and integrate:

$$\frac{\partial S_{EE}(l', N_t, N_s)}{\partial l'} \bigg|_{l'=l+1/2} \approx -\int_0^1 \mathrm{d}\alpha \frac{\partial \log Z_l^*(\alpha)}{\partial \alpha} = \int_0^1 \mathrm{d}\alpha \langle S_{l+1} - S_l \rangle_\alpha$$

Issue: huge free energy barrier \rightarrow bad signal to noise ratio

data from [Y. Nakagawa et al. (2009)]

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
 - → $I \rightarrow I + 1$ is non-local change \rightarrow overlap problem
- Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
 - → interpolating partition function:

$$Z_l^*(lpha) = \int \mathcal{D}[U] \, \exp\Bigl(-(1-lpha) \, \, \mathcal{S}_l[U] \,\, -lpha \,\, \mathcal{S}_{l+1}[\,U] \,\, \Bigr),$$
 with $lpha \in [0,1]$

→ measure
$$\langle S_{l+1} - S_l \rangle_{\alpha} = - \frac{\partial \log Z_l^*(\alpha)}{\partial \alpha}$$
 for $\alpha \in [0, 1]$

→ interpolate and integrate:

$$\frac{\partial \mathcal{S}_{\textit{EE}}(l', \textit{N}_{\textit{t}}, \textit{N}_{\textit{s}})}{\partial l'} \bigg|_{l'=l+1/2} \approx -\int_{0}^{1} \mathrm{d}\alpha \frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha} = \int_{0}^{1} \mathrm{d}\alpha \langle \mathcal{S}_{l+1} - \mathcal{S}_{l} \rangle_{\alpha}$$

Issue: huge free energy barrier \rightarrow bad signal to noise ratio

data from [Y. Nakagawa et al. (2009)]

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
 - → $I \rightarrow I + 1$ is non-local change \rightarrow overlap problem
- Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
 - → interpolating partition function:

$$Z_l^*(lpha) = \int \mathcal{D}[U] \exp\left(-(1-lpha) \ \mathcal{S}_l[U] \ -lpha \ \mathcal{S}_{l+1}[U] \
ight), ext{ with } lpha \in [0,1]$$

→ interpolate and integrate:

$$\frac{\partial \mathcal{S}_{\textit{EE}}(l', \textit{N}_{\textit{l}}, \textit{N}_{\textit{s}})}{\partial l'} \bigg|_{l'=l+1/2} \approx -\int_{0}^{1} \mathrm{d}\alpha \frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha} = \int_{0}^{1} \mathrm{d}\alpha \langle \mathcal{S}_{l+1} - \mathcal{S}_{l} \rangle_{\alpha}$$

Issue: huge free energy barrier \rightarrow bad signal to noise ratio

→ $Z_l^*(\alpha)$ imposes simultaneously BC_A and BC_B on plaquettes P_1 , P_2 if $\alpha \neq 0, 1$.

How can we avoid (huge) free energy barriers?

■ Instead of "blending" from BC_B to BC_A for all plaquettes

P_1 , P_2 simultaneously,

How can we avoid (huge) free energy barriers?

■ Instead of "blending" from BC_B to BC_A for all plaquettes

 $2N_t$

How can we avoid (huge) free energy barriers?

■ Instead of "blending" from BC_B to BC_A for all plaquettes

P1, P2 simultaneously,

How can we avoid (huge) free energy barriers?

■ Instead of "blending" from BC_B to BC_A for all plaquettes

P_1 , P_2 simultaneously,

How can we avoid (huge) free energy barriers?

■ Instead of "blending" from BC_B to BC_A for all plaquettes

P1, P2 simultaneously,

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_B to BC_A for all plaquettes
 - P1, P2 simultaneously,
- interpolate by deforming entangling surface.

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_B to BC_A for all plaquettes
 - P1, P2 simultaneously,

 N_s

■ interpolate by deforming entangling surface.

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_B to BC_A for all plaquettes
 - P1, P2 simultaneously,
- interpolate by deforming entangling surface.

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_B to BC_A for all plaquettes
 - P1, P2 simultaneously,
- interpolate by deforming entangling surface.

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_B to BC_A for all plaquettes
 - P1, P2 simultaneously,
- interpolate by deforming entangling surface.

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_B to BC_A for all plaquettes
 - P_1 , P_2 simultaneously,
- interpolate by deforming entangling surface.
 - → Examples for specific ordering:
 - → in (2+1) dimensions

⁶ Universität Bern

How can we avoid (huge) free energy barriers?

 N_s P_2 N_t B₂ r_{B_2} $2N_t$ TR. N_t B₁ T_B l = 3

How can we avoid (huge) free energy barriers?

How can we avoid (huge) free energy barriers?

Examples for specific ordering: in (2+1) dimensions

■ Instead of "blending" from BC_B to BC₄ for all plaquettes

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_B to BC_A for all plaquettes
 - P_1 , P_2 simultaneously,
- interpolate by deforming entangling surface.
 - → Examples for specific ordering:
 - → in (2+1) dimensions

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_B to BC_A for all plaquettes
 - P_1 , P_2 simultaneously,
- interpolate by deforming entangling surface.
 - → Examples for specific ordering:
 - → in (2+1) dimensions

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_B to BC_A for all plaquettes
 - P_1 , P_2 simultaneously,
- interpolate by deforming entangling surface.
 - → Examples for specific ordering:
 - → in (2+1) dimensions

How can we avoid (huge) free energy barriers?

- \blacksquare Instead of "blending" from $\mathrm{BC}_{\textit{B}}$ to $\mathrm{BC}_{\textit{A}}$ for all plaquettes
 - P_1 , P_2 simultaneously,
- interpolate by deforming entangling surface.
 - → Examples for specific ordering:
 - → in (3+1) dimensions

How can we avoid (huge) free energy barriers?

- \blacksquare Instead of "blending" from $\mathrm{BC}_{\textit{B}}$ to $\mathrm{BC}_{\textit{A}}$ for all plaquettes
 - P_1 , P_2 simultaneously,
- interpolate by deforming entangling surface.
 - → Examples for specific ordering:
 - → in (3+1) dimensions

How can we avoid (huge) free energy barriers?

- \blacksquare Instead of "blending" from $\mathrm{BC}_{\textit{B}}$ to $\mathrm{BC}_{\textit{A}}$ for all plaquettes
 - P_1 , P_2 simultaneously,
- interpolate by deforming entangling surface.
 - → Examples for specific ordering:
 - → in (3+1) dimensions

How can we avoid (huge) free energy barriers?

- \blacksquare Instead of "blending" from $\mathrm{BC}_{\textit{B}}$ to $\mathrm{BC}_{\textit{A}}$ for all plaquettes
 - P_1 , P_2 simultaneously,
- interpolate by deforming entangling surface.
 - → Examples for specific ordering:
 - → in (3+1) dimensions

How can we avoid (huge) free energy barriers?

- \blacksquare Instead of "blending" from $\mathrm{BC}_{\textit{B}}$ to $\mathrm{BC}_{\textit{A}}$ for all plaquettes
 - P_1 , P_2 simultaneously,
- interpolate by deforming entangling surface.
 - → Examples for specific ordering:
 - → in (3+1) dimensions

How can we avoid (huge) free energy barriers?

- \blacksquare Instead of "blending" from $\mathrm{BC}_{\textit{B}}$ to $\mathrm{BC}_{\textit{A}}$ for all plaquettes
 - P_1 , P_2 simultaneously,
- interpolate by deforming entangling surface.
 - → Examples for specific ordering:
 - → in (3+1) dimensions

How can we avoid (huge) free energy barriers?

- \blacksquare Instead of "blending" from $\mathrm{BC}_{\textit{B}}$ to $\mathrm{BC}_{\textit{A}}$ for all plaquettes
 - P_1 , P_2 simultaneously,
- interpolate by deforming entangling surface.
 - → Examples for specific ordering:
 - → in (3+1) dimensions

How can we avoid (huge) free energy barriers?

- \blacksquare Instead of "blending" from $\mathrm{BC}_{\textit{B}}$ to $\mathrm{BC}_{\textit{A}}$ for all plaquettes
 - P_1 , P_2 simultaneously,
- interpolate by deforming entangling surface.
 - → Examples for specific ordering:
 - → in (3+1) dimensions

How can we avoid (huge) free energy barriers?

- \blacksquare Instead of "blending" from $\mathrm{BC}_{\textit{B}}$ to $\mathrm{BC}_{\textit{A}}$ for all plaquettes
 - P_1 , P_2 simultaneously,
- interpolate by deforming entangling surface.
 - → Examples for specific ordering:
 - → in (3+1) dimensions

Free-energy plateau

Why does the free energy initially not change?

Free-energy plateau

■ Why does the free energy initially not change?

Free-energy plateau

Why does the free energy initially not change?

Change of temp. BC over spatial link $(x_1 \rightarrow x_2) \Leftrightarrow P_1, P_2$ swap their upper links.

→ Trivial if to-be-swapped links can be gauge transformed individually.

Free-energy plateau

Why does the free energy initially not change?

- → Trivial if to-be-swapped links can be gauge transformed individually.
 - → When is this possible?

Free-energy plateau

Why does the free energy initially not change?

- → Trivial if to-be-swapped links can be gauge transformed individually.
 - → When is this possible?

Free-energy plateau

Why does the free energy initially not change?

- → Trivial if to-be-swapped links can be gauge transformed individually.
 - → When is this possible?

Free-energy plateau

Why does the free energy initially not change?

- → Trivial if to-be-swapped links can be gauge transformed individually.
 - → When is this possible?

Free-energy plateau

Why does the free energy initially not change?

Change of temp. BC over spatial link $(x_1 \rightarrow x_2) \Leftrightarrow P_1, P_2$ swap their upper links.

- → Trivial if to-be-swapped links can be gauge transformed individually.
 - → When is this possible?

Free-energy plateau

Why does the free energy initially not change?

Change of temp. BC over spatial link $(x_1 \rightarrow x_2) \Leftrightarrow P_1, P_2$ swap their upper links.

- → Trivial if to-be-swapped links can be gauge transformed individually.
 - → When is this possible?

Free-energy plateau

Why does the free energy initially not change?

Change of temp. BC over spatial link $(x_1 \rightarrow x_2) \Leftrightarrow P_1, P_2$ swap their upper links.

- → Trivial if to-be-swapped links can be gauge transformed individually.
 - → When is this possible?

Free-energy plateau

Why does the free energy initially not change?

Change of temp. BC over spatial link $(x_1 \rightarrow x_2) \Leftrightarrow P_1, P_2$ swap their upper links.

- → Trivial if to-be-swapped links can be gauge transformed individually.
 - → When is this possible?

Only if either for x_1 or x_2 all adjacent spatial link have same BC.

Free-energy plateau

Why does the free energy initially not change?

Change of temp. BC over spatial link $(x_1 \rightarrow x_2) \Leftrightarrow P_1, P_2$ swap their upper links.

- → Trivial if to-be-swapped links can be gauge transformed individually.
 - → When is this possible?

Only if either for x_1 or x_2 all adjacent spatial link have same BC.

Avoiding remnant free energy barriers

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
 - → example for (2+1)d lattice:

l =0.12 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 b 0 0 b 0 0 5 b

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
 - → example for (2+1)d lattice:

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
 - → example for (2+1)d lattice:

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
 - → example for (2+1)d lattice:

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
 - → example for (2+1)d lattice:

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
 - → example for (2+1)d lattice:

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
 - → example for (2+1)d lattice:

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
 - → example for (2+1)d lattice:

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
 - → example for (2+1)d lattice:

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
 - → example for (2+1)d lattice:

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions ($V_s = N_x N_s^2$ with $N_x = 8$, $N_s = 7$).

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions:

comparison of boundary update methods: non-tilted lattice \longleftrightarrow tilted lattice

เป็

Avoiding remnant free energy barriers

- Tilt lattice with respect to principal directions of "torus"
 - → SU(5) in (3+1) dimensions:

comparison of boundary update methods: non-tilted lattice \leftrightarrow tilted lattice \leftrightarrow local derivative

 $\boldsymbol{u}^{\mathsf{b}}$

Remaining problems

Single link overlap problem

 BC swap over single non-perpendicular spatial link becomes difficult for N > 3

 $p(B \rightarrow A) \sim e^{\frac{\beta}{N} \operatorname{Retr}(P_{1,A}+P_{2,A}) - \frac{\beta}{N} \operatorname{Retr}(P_{1,B}+P_{2,B})}$

Remaining problems

Single link overlap problem

 BC swap over single non-perpendicular spatial link becomes difficult for N > 3

 $p(B \rightarrow A) \sim e^{\frac{\beta}{N} \operatorname{Retr}(P_{1,A}+P_{2,A}) - \frac{\beta}{N} \operatorname{Retr}(P_{1,B}+P_{2,B})}$

■ modified SU(2) sub-group heat-bath update:

Remaining problems

Single link overlap problem

 BC swap over single non-perpendicular spatial link becomes difficult for N > 3

 $p(B \rightarrow A) \sim e^{\frac{\beta}{N} \operatorname{Retr}(P_{1,A}+P_{2,A}) - \frac{\beta}{N} \operatorname{Retr}(P_{1,B}+P_{2,B})}$

■ modified SU(2) sub-group heat-bath update:

$$\begin{split} & {
m SU(2)}
ightarrow p_{
m acc} \sim 0.3 \ & {
m SU(3)}
ightarrow p_{
m acc} \sim 0.2 \ & {
m SU(5)}
ightarrow p_{
m acc} \sim 0.005 \end{split}$$

→ Worm-like update:

$$\begin{split} & {\rm SU(2)}
ightarrow p_{
m acc} \sim 0.45 \ & {\rm SU(3)}
ightarrow p_{
m acc} \sim 0.35 \ & {\rm SU(5)}
ightarrow p_{
m acc} \sim 0.1 \end{split}$$

Worm-like BC update

0 pick permutation $\sigma \in \Pi(1, \ldots, s)$, set i = 1

while true:

Worm-like BC update

0 pick permutation $\sigma \in \Pi(1, \ldots, s)$, set i = 1

while true:

1 randomly choose $\delta i = \pm 1$ and set $i' = i + (\delta i - 1)/2$

if $(i = 1 \text{ and } \delta i < 0)$ or $(i = s \text{ and } \delta i > 0)$: end worm

Worm-like BC update

0 pick permutation $\sigma \in \Pi(1, \ldots, s)$, set i = 1

while true:

1 randomly choose $\delta i = \pm 1$ and set $i' = i + (\delta i - 1)/2$

if (i = 1 and $\delta i < 0$) or (i = s and $\delta i > 0$): end worm

2 randomly pick a link U from staple of $P_{\sigma(i')}$

Worm-like BC update

0 pick permutation $\sigma \in \Pi(1, \ldots, s)$, set i = 1

while true:

1 randomly choose $\delta i = \pm 1$ and set $i' = i + (\delta i - 1)/2$

if (*i* = 1 and $\delta i < 0$) or (*i* = *s* and $\delta i > 0$): end worm

2 randomly pick a link U from staple of $P_{\sigma(i')}$

Worm-like BC update

0 pick permutation $\sigma \in \Pi(1, \ldots, s)$, set i = 1

while true:

1 randomly choose $\delta i = \pm 1$ and set $i' = i + (\delta i - 1)/2$

if (i = 1 and $\delta i < 0$) or (i = s and $\delta i > 0$): end worm

- 2 randomly pick a link U from staple of $P_{\sigma(i')}$
- 3 compute one-link integral over *U* for BC_B and BC_A (one-link int. with Cayley-Hamilton: [TR (2024)]) with probab. $p(\delta i) = \min(1, (Z_A/Z_B)^{\delta i})$: N change BC for $P_{\sigma(i')}$ and set $i = i + \delta i$

Worm-like BC update

0 pick permutation $\sigma \in \Pi(1, \ldots, s)$, set i = 1

while true:

1 randomly choose $\delta i = \pm 1$ and set $i' = i + (\delta i - 1)/2$

if (i = 1 and $\delta i < 0$) or (i = s and $\delta i > 0$): end worm

- 2 randomly pick a link U from staple of $P_{\sigma(i')}$
- 3 compute one-link integral over *U* for BC_B and BC_A (one-link int. with Cayley-Hamilton: [TR (2024)]) with probab. $p(\delta i) = \min(1, (Z_A/Z_B)^{\delta i})$: N change BC for $P_{\sigma(i')}$ and set $i = i + \delta i$
- 4 generate new value for U

(using heat-bath dist. w.r.t. current BC)

Worm-like BC update

0 pick permutation $\sigma \in \Pi(1, \ldots, s)$, set i = 1

while true:

1 randomly choose $\delta i = \pm 1$ and set $i' = i + (\delta i - 1)/2$

if (i = 1 and $\delta i < 0$) or (i = s and $\delta i > 0$): end worm

- 2 randomly pick a link U from staple of $P_{\sigma(i')}$
- 3 compute one-link integral over *U* for BC_B and BC_A (one-link int. with Cayley-Hamilton: [TR (2024)]) with probab. $p(\delta i) = \min(1, (Z_A/Z_B)^{\delta i})$: N change BC for $P_{\sigma(i')}$ and set $i = i + \delta i$
- 4 generate new value for U

(using heat-bath dist. w.r.t. current BC)

(move choice probab. factors have been omitted)

Remnant "single cube" free energy barrier?

- For $\ell > 2$ non-monotonic change in free energy during BC change for single spatial cube
 - → auto-correlation issue?
 - → can it be avoided?

UNIVERSITÄT BERN

Conclusions & outlook

Conclusions

- Entangling surface deformation method with tilted lattice and/or local derivative essentially avoids free energy barriers in determination of entanglement measures (Rényi and entropies) in SU(N) lattice gauge theories.
- **EXAMPLA** Remnant "single cube" free energy barrier can show up for $\ell > 2$.
- Worm-like update for temporal BC flip over spatial link results in higher acceptance rates.

Outlook

- Some ideas to overcome the "single cube" free energy barriers.
- Extended worm-like update over more than one spatial link at a time?
- Applications ...

Thank you!

D UNIVERSITÄT BERN