HiRep on GPUs

Sofie Martins, University of Southern Denmark Nordic Lattice Meeting 2024, Lund University

What is HiRep?

Higher **Rep**resentations of Wilson Fermions in F, ADJ, 2S, 2AS of SU(N) and SO(N) for any number of colors

$$D_m \psi(x) \equiv (D + m_0)\psi(x)$$

= $\left(\frac{4}{a} + m_0\right)\psi(x)$
- $\frac{1}{2a}\sum_{\mu} \left[\left(1 - \gamma_{\mu}\right)U^R(x,\mu)\psi(x+\mu)$
+ $\left(1 + \gamma_{\mu}\right)U^R(x - \mu,\mu)^{\dagger}\psi(x-\mu)\right]$

[Del Debbio et. al., 2010, 0805.2058, Phys. Rev. D.]

github.com/claudiopica/HiRep

Currently working on this with **Claudio Pica** and **Antonio Rago**

Previous contributions by Erik Kjellgren and Emiliano Molinaro

Implèmentation

 \sim

Features

Higher Representations of Wilson Fermions

- Fundamental, Adjoint, 2-index symmetric, 2index antisymmetric
- SU(N) and SO(N)

Symanzik-Improvement

- Clover-improvement
- exponentiated clover improvement
- Lüscher-Weisz Gauge Action

Efficient Configuration Generation

- Monomials: HMC, RHMC, Hasenbusch Acceleration, Twisted Mass
- A selection of inverters: Conjugate gradient, BiCGstab, $QMR\gamma_5$, ...
- Integrators: 2nd and 4th order Omelyan integrators, Leapfrog

<u>Measurements</u>

• Determination of spectrum for connected and disconnected contributions, Wilson flow, multi-level, glueballs, and many other features

GPU Acceleration

Higher Representations of Wilson Fermions

- Fundamental, Adjoint, 2-index symmetric, 2index antisymmetric
- SU(N) and SO(N)

<u>Symanzik-Improvement</u>

- Clover-improvement
- exponentiated clover improvement
- Lüscher-Weisz Gauge Action

Efficient Configuration Generation

- Monomials: HMC, RHMC, Hasenbusch Acceleration, Twisted Mass
- A selection of inverters: Conjugate gradient, BiCGstab, QMR γ_5 , ...
- Integrators: 2nd and 4th order Omelyan integrators, Leapfrog

<u>Measurements</u>

• Determination of spectrum for connected and disconnected contributions, Wilson flow, multi-level, glueballs, and many other features

Using Hirep – Have a look at our new documentation!

An efficient Wilson-Dirac operator on GPUs

An efficient Wilson-Dirac operator on GPUs

Software Quality

CI / code coverage

← ci

Separation SAP #409

G Summary

Jobs

vin-tests (2, FUND, -no-omp, -no-m...

run-tests (2, FUND, -no-omp, -no-m...

run-tests (2, FUND, -no-omp, -mpi, ...

run-tests (2, FUND, -no-omp, -mpi, ...

run-tests (2, ADJ, -no-omp, -no-mpi...

run-tests (2, ADJ, -no-omp, -no-mpi...

🕑 run-tests (2, ADJ, -no-omp, -mpi, -e...

🕑 run-tests (2, ADJ, -no-omp, -mpi, -n...

🕑 run-tests (3, FUND, -no-omp, -no-m...

vin-tests (3, FUND, -no-omp, -no-m...

run-tests (3, FUND, -no-omp, -mpi, ...

run-tests (3, FUND, -no-omp, -mpi, ...

Triggered via pull request 2 weeks ago Sofiemartins synchronize #101 Sofiemarti	status ns:SAP3 Success	Total duration 3m 0s				
ci.yml on: pull_request Matrix: run-tests ✓ 12 jobs completed Show all jobs						

Annotations

CI / code coverage

codecov (bot) commented 3 weeks ago • edited •

Codecov Report

All modified and coverable lines are covered by tests \checkmark

Project coverage is 49.26%. Comparing base (<u>7661b2d</u>) to head (<u>f78717b</u>).

...

Additional details and impacted files

Yiew full report in Codecov by Sentry.

Have feedback on the report? Share it here.

 \odot

The algorithm, SU(2) with adjoint fermions

[Del Debbio et. al., 2010, 0805.2058, Phys. Rev. D.] and references therein [SM et. al, 2024, 2405.19294, to appear in PoS]

The algorithm, SU(2) with adjoint fermions

Testing the 2nd order Omelyan Integrator

 $\Delta H \sim \Delta \tau^4$

Testing correctness of The algorithm

[Del Debbio et. al., 2010, 0805.2058, Phys. Rev. D.] and references therein

Validation runs (SU(2)F)

- Very chiral ensembles with Hasenbusch Acceleration
- Single trajectory benchmark test: 1 node on tursa replaces 14 nodes on DIaL3 for 48⁴ lattice
- Heavier validation run below: 36^4 Lattice for SU(2) with two fundamental flavors

Performance on NVIDIA GPUs

Profiling

2ms	+902,5n		+903ms	+903,5ms	+904ms	+904,5ms	+905ms	+905,5ms	+906ms
1									
Z2Z	bo	_Z21Dphi	_gpu_inner_kernell13	suNf_hspinord12hr_c	omplex_tlZ21Dphi_	_gpu_inner_kernell13_s	uNf_hspinord12hr_cor	nplex_tld Z2 Z	_Z21Dph
		_Z21Dphi	i_gpu_inner_kernell13	suNf_hspinord12hr_c	omplex_tlZ21Dphi_	_gpu_inner_kernell13_s	uNf_hspinord12hr_cor	nplex_tld	_Z21Dph
_Z24	box_t							_Z24	box
_Z24	box							_Z24	box
<u> </u>									
			I						
		MPI_Sen	drecv [605,791	MPI_Sendrecv	/ [532,2				MPI_Sen
			has had	hillib	ntin, III), IIII), IIII),				

32^4, SU(3), fermions in the fundamental representation

HiRep on LUMI-G

Cray compiler toolchains

Use WITH GPU and 1. WITH NEW GEOMETRY for GPU support Use COMMS NONBLOCKING (only on 2. LUMI-G!) for the fastest communications Use mpicc compiler wrapper and replace 3. the underlying C++ compiler with hipcc Use –offload-arch=gfx90a in GPUFLAGS 4. and LDFLAGS

NG = 2REPR = REPR FUNDAMENTALGAUGE GROUP = GAUGE SUNMACR0 += BC_T_PERIODIC MACRO += BC_X_PERIODIC MACRO += BC Y PERIODIC MACRO += BC_Z_PERIODIC MACRO += UPDATE EO MACRO += NDEBUGMACRO += CHECK_SPINOR_MATCHING MACRO += IO FLUSH MACRO += WITH MPI MACRO += WITH GPU MACR0 += WITH_NEW_GEOMETRY MACR0 += FIXED STRIDE MACRO += WITH EXPCLOVER MACR0 += CUDA_CHECK_ERROR MACRO += HIPMACRO += COMMS NONBLOCKING **ENV = MPICH_CC=hipcc** CC = qccMPICC = ccCFLAGS = -Wall - 03NVCC = mpicc GPUFLAGS = -w --offload-arch=gfx90aINCLUDE =LDFLAGS = --offload-arch=qfx90a

HiRep selects the GPUs itself (using hwloc)

- Compile with hwloc if possible
- Select –ntasks-per-node not –ntasks for multi-node jobs
- Do not use a wrapper script that pins the processes to the visible GPUs

```
#!/bin/bash -l
#SBATCH --job-name=test_hmc
#SBATCH --output=out/hmc.out%j
#SBATCH --error=err/hmc.err%j
#SBATCH --partition=small-g
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=8
#SBATCH --gpus-per-node=8
#SBATCH --time=3-00:00:00
#SBATCH --account=<project>
```

```
module load LUMI partition/G
module load PrgEnv-cray
module load craype-accel-amd-gfx90a
export LC_CTYPE=en_US.UTF-8
export LC_ALL=en_US.UTF-8
export PATH=$PATH:`pwd`/Make/
export MPICH_CC=hipcc
```

export OMP_NUM_THREADS=1
export MPICH_GPU_SUPPORT_ENABLED=1

srun -n 16 ./hmc -i input_file.in -o output_file.out

Blocking and Nonblocking communications

Local lattice - 32⁴ - 48⁴

Global lattice - 48⁴ - 96x48³

Outlook

Domain decomposition

0	\bigcirc	0	\bigcirc	\circ	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0
0	•	•	•	•	•	0	•	•	•	•	0	0	•	•	•	•	•	0	•	•	•	•	0
0	•	•	•	٠	•	0	•	•	•	•	0	0	٠	٠	٠	•	•	0	•	•	•	•	0
0	•	•	•	•	•	0	•	•	•	•	0	0	•	•	•	•	•	0	•	•	•	•	0
\bigcirc	•	•	•	•	•	0	•	•	•	•	0	0	•	•	•	•	•	0	•	•	•	•	0
0	0	0	\circ	0	\circ	0	0	0	0	0	0	\bigcirc	\bigcirc	\bigcirc	\circ	0	\odot	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	•	•	•	•	0	0	•	•	•	•	•	0	•	•	•	•	0	•	٠	•	•	•	\bigcirc
0	•	•	•	•	0	0	•	•	•	•	•	0	•	•	•	•	0	0	٠	•	•	•	\circ
0	•	•	•	•	0	0	•	•	•	•	•	0	•	•	•	•	0	•	•	•	•	•	0
0	•	•	•	•	0	•	•	•	•	•	•	0	•	•	•	•	0	•	•	•	•	•	\circ
0	0	0	0	0	0	0	\circ	\bigcirc	\bigcirc	0	0	0	0	0	0	0	0	0	\circ	0	\circ	\bigcirc	0

[M. Lüscher, 2004, hep-lat/0310048, Comput. Phys. Commun.]

Domain Decomposition

[SM et. al, 2024, 2405.19294, to appear in PoS]

[M. Lüscher, 2004, hep-lat/0310048, Comput. Phys. Commun.]

Conclusion

- A new version of HiRep is available that supports GPU acceleration
- The software is correct and scales well
- More features are on the way, for example domain decomposition and measurements

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement Nº813942.

Testing, development, and benchmarking was done on

- LUMI-G using allocations provided by the Danish eInfrastructure Consortium (DeiC-SDU-N5-2024055)
- UCloud DeiC Interactive HPC system managed by the eScience Center at the University of Southern Denmark

Backup

Performance on NVIDIA GPUs

Large–N improved kernel
 Standard kernel