Using Quantum Annealing to Fold and Design HP Lattice Proteins

Lucas Knuthson ${ }^{1}$
Centre for Environmental and Climate Science (CEC), Lund University Nordic Lattice 2024 in Lund

With: Anders Irbäck, Sandipan Mohanty (Jülich), Carsten Peterson

Introduction

Quantum Annealing (D-Wave)
QPU
Hybrid
HP Lattice Proteins
Folding [Irbäck et al. 2022, PhysRevResearch.4.043013]
Mapping and Energy Function
Results: Hybrid
Results: QPU
Conclusion
Design [Irbäck et al. 2024, PhysRevResearch.6.013162]
Mapping and Energy Function
Results: Hybrid
Results: QPU
Conclusion
If I have time: Some QAOA

Quantum Computing

Replace bits $\{0,1\}^{n}$ with qubits \mid state $\rangle=\bigotimes_{i}^{n}\left(\alpha_{i}|0\rangle+\beta_{i}|1\rangle\right)$

Quantum Computing

Replace bits $\{0,1\}^{n}$ with qubits \mid state $\rangle=\bigotimes_{i}^{n}\left(\alpha_{i}|0\rangle+\beta_{i}|1\rangle\right)$
Main effort is to make gate-based quantum computers

$$
\left.|f\rangle=U_{n} \cdots U_{1} \mid \text { start }\right\rangle
$$

Quantum Computing

Replace bits $\{0,1\}^{n}$ with qubits \mid state $\rangle=\bigotimes_{i}^{n}\left(\alpha_{i}|0\rangle+\beta_{i}|1\rangle\right)$
Main effort is to make gate-based quantum computers

$$
\left.|f\rangle=U_{n} \cdots U_{1} \mid \text { start }\right\rangle
$$

Quantum annealing: $|f\rangle=\mathcal{T} \exp \left(\int_{0}^{T} H(t) d t\right)|s t a r t\rangle$, $H(t)=H_{P}(t / T)+H_{D}(1-t / T)$
H_{p} is the problem Hamiltonian, and H_{D} driver in which ground state we start in

Quantum Computing

Replace bits $\{0,1\}^{n}$ with qubits \mid state $\rangle=\bigotimes_{i}^{n}\left(\alpha_{i}|0\rangle+\beta_{i}|1\rangle\right)$
Main effort is to make gate-based quantum computers

$$
\left.|f\rangle=U_{n} \cdots U_{1} \mid \text { start }\right\rangle
$$

Quantum annealing: $|f\rangle=\mathcal{T} \exp \left(\int_{0}^{T} H(t) d t\right)|s t a r t\rangle$, $H(t)=H_{P}(t / T)+H_{D}(1-t / T)$
H_{p} is the problem Hamiltonian, and H_{D} driver in which ground state we start in

Guaranteed to find the ground state if $T \gg \max \frac{\langle g s(t)| \dot{H}|e(t)\rangle}{\left(E_{g s}(t)-E_{e}(t)\right)^{2}}$

Quantum Annealing: D-Wave

Want to solve optimization problems, $|f\rangle=\mathcal{T} \exp \left(\int_{0}^{T} H(t) d t\right)|s t a r t\rangle$.

Quantum Annealing: D-Wave

Want to solve optimization problems, $|f\rangle=\mathcal{T} \exp \left(\int_{0}^{T} H(t) d t\right)|s t a r t\rangle$.
We wish to find the ground state of $H_{P}=\sum_{i} h_{i} \sigma_{i}^{z}+\sum_{i j} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}$

Quantum Annealing: D-Wave

Want to solve optimization problems, $|f\rangle=\mathcal{T} \exp \left(\int_{0}^{T} H(t) d t\right)|s t a r t\rangle$.
We wish to find the ground state of $H_{P}=\sum_{i} h_{i} \sigma_{i}^{z}+\sum_{i j} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}$
Start in the ground state, $|+\rangle^{n}$, of $H_{D}=-\sum_{i} \sigma_{i}^{x}$

Quantum Annealing: D-Wave Advantage

Newest Machine D-Wave Advantage has 5000+ qubits and 15-way connectivity

Quantum Annealing: D-Wave Advantage

Newest Machine D-Wave Advantage has 5000+ qubits and 15-way connectivity

Pure QPU solver: If the connectivity is higher than 15 , we create chains of physical qubits representing a logical bit

Quantum Annealing: D-Wave Advantage

Newest Machine D-Wave Advantage has 5000+ qubits and 15-way connectivity

Pure QPU solver: If the connectivity is higher than 15 , we create chains of physical qubits representing a logical bit

Hybrid quantum-classical solver: Subproblems sent as queries to the QPU

HP Lattice Proteins [Lau,Dill 1989]

Simplified protein model with two types of amino acids, H and P . Hs interact, and Ps do not. $E_{\mathrm{HP}}=-N_{\mathrm{HH}}$

HP Lattice Proteins [Lau,Dill 1989]

Simplified protein model with two types of amino acids, H and P . Hs interact, and Ps do not. $E_{\mathrm{HP}}=-N_{\mathrm{HH}}$

For 2D lattice, all sequences with unique ground state structures are known for chains with ≤ 30 amino acids

HP Lattice Proteins [Lau,Dill 1989]

Simplified protein model with two types of amino acids, H and P . Hs interact, and Ps do not. $E_{\mathrm{HP}}=-N_{\mathrm{HH}}$

For 2D lattice, all sequences with unique ground state structures are known for chains with ≤ 30 amino acids

Despite the simplicity, both folding (given a sequence find its ground state structure) and design (given a structure find a sequence that folds into that structure) are computationally difficult

Folding HP Lattice Proteins: Questions We Wanted to

 AnswerPrevious attempts used a turn-based encoding. Non-local interactions became difficult to implement. (short chains 6-9 amino acids)

Folding HP Lattice Proteins: Questions We Wanted to

 AnswerPrevious attempts used a turn-based encoding. Non-local interactions became difficult to implement. (short chains 6-9 amino acids)

Can we find a simpler mapping which is quadratic?

Folding HP Lattice Proteins: Questions We Wanted to

 AnswerPrevious attempts used a turn-based encoding. Non-local interactions became difficult to implement. (short chains 6-9 amino acids)

Can we find a simpler mapping which is quadratic?

We wanted to test the mapping on actual hardware

Folding: Mapping and Energy Function

Can we find a simpler mapping which is quadratic?

Folding: Mapping and Energy Function

Can we find a simpler mapping which is quadratic?

Choose a lattice and enumerate the beads in the sequence

Folding: Mapping and Energy Function

Can we find a simpler mapping which is quadratic?

Choose a lattice and enumerate the beads in the sequence
A spin $\sigma_{s}^{f} \in\{0,1\}$ is 1 if bead f is on site $s, N L^{2} / 2 \approx N^{2}$ spins

(a)

(b)

(c)

Folding: Mapping and Energy Function

Can we find a simpler mapping which is quadratic?

Choose a lattice and enumerate the beads in the sequence
A spin $\sigma_{s}^{f} \in\{0,1\}$ is 1 if bead f is on site $s, N L^{2} / 2 \approx N^{2}$ spins
Energy function takes the form $E=E_{H P}+\sum_{i=1}^{3} \lambda_{i} E_{i}$, with E_{i} being constraints to ensure a valid chain

(a)

(b)

(c)

Folding: Mapping and Energy Function

A spin $\sigma_{s}^{f} \in\{0,1\}$ is 1 if bead f is on site $s, E=E_{\mathrm{HP}}+\sum_{i=1}^{3} \lambda_{i} E_{i}$

(a)

(b)

(c)

Folding: Mapping and Energy Function

A spin $\sigma_{s}^{f} \in\{0,1\}$ is 1 if bead f is on site $s, E=E_{H P}+\sum_{i=1}^{3} \lambda_{i} E_{i}$
$E_{\mathrm{HP}}=-\sum_{\left|f-f^{\prime}\right|>1} C\left(h_{f}, h_{f^{\prime}}\right) \sum_{\left\langle s, s^{\prime}\right\rangle} \sigma_{s}^{f} \sigma_{s^{\prime}}^{f^{\prime}}$

(a)

(b)

(c)

Folding: Mapping and Energy Function

A spin $\sigma_{s}^{f} \in\{0,1\}$ is 1 if bead f is on site $s, E=E_{\mathrm{HP}}+\sum_{i=1}^{3} \lambda_{i} E_{i}$

$$
\begin{aligned}
& E_{\mathrm{HP}}=-\sum_{\left|f-f^{\prime}\right|>1} C\left(h_{f}, h_{f^{\prime}}\right) \sum_{\left\langle s, s^{\prime}\right\rangle} \sigma_{s}^{f} \sigma_{s^{\prime}}^{f^{\prime}} \\
& E_{1}=\sum_{f}\left(\sum_{s} \sigma_{s}^{f}-1\right)^{2},
\end{aligned}
$$

(a)

(b)

(c)

Folding: Mapping and Energy Function

A spin $\sigma_{s}^{f} \in\{0,1\}$ is 1 if bead f is on site s, $E=E_{\mathrm{HP}}+\sum_{i=1}^{3} \lambda_{i} E_{i}$

$$
\begin{aligned}
& E_{\mathrm{HP}}=-\sum_{\left|f-f^{\prime}\right|>1} C\left(h_{f}, h_{f^{\prime}}\right) \sum_{\left\langle s, s^{\prime}\right\rangle} \sigma_{s}^{f} \sigma_{s^{\prime}}^{f^{\prime}} \\
& E_{1}=\sum_{f}\left(\sum_{s} \sigma_{s}^{f}-1\right)^{2}, \quad E_{2}=\frac{1}{2} \sum_{f_{1} \neq f_{2}} \sum_{s} \sigma_{s}^{f_{1}} \sigma_{s}^{f_{2}}
\end{aligned}
$$

(a)

(b)

(c)

Folding: Mapping and Energy Function

A spin $\sigma_{s}^{f} \in\{0,1\}$ is 1 if bead f is on site $s, E=E_{\mathrm{HP}}+\sum_{i=1}^{3} \lambda_{i} E_{i}$

$$
\begin{aligned}
& E_{\mathrm{HP}}=-\sum_{\left|f-f^{\prime}\right|>1} C\left(h_{f}, h_{f^{\prime}}\right) \sum_{\left\langle s, s^{\prime}\right\rangle} \sigma_{s}^{f} \sigma_{s^{\prime}}^{f^{\prime}} \\
& E_{1}=\sum_{f}\left(\sum_{s} \sigma_{s}^{f}-1\right)^{2}, \quad E_{2}=\frac{1}{2} \sum_{f_{1} \neq f_{2}} \sum_{s} \sigma_{s}^{f_{1}} \sigma_{s}^{f_{2}} \\
& E_{3}=\sum_{1 \leq f<N} \sum_{s} \sigma_{s}^{f} \sum_{\left|s^{\prime}-s\right|>1} \sigma_{s^{\prime}}^{f+1}
\end{aligned}
$$

(a)

(b)

(c)

Folding: Hybrid

Implement on hardware: Hybrid minimize $E=E_{\mathrm{HP}}+\sum_{i=1}^{3} \lambda_{i} E_{i}$

Folding: Hybrid

Implement on hardware: Hybrid minimize $E=E_{\mathrm{HP}}+\sum_{i=1}^{3} \lambda_{i} E_{i}$
100 runs for each sequence (10^{2} lattice, runtime 4 s) 100% hit rate

Folding: Hybrid

Implement on hardware: Hybrid minimize $E=E_{\mathrm{HP}}+\sum_{i=1}^{3} \lambda_{i} E_{i}$
100 runs for each sequence (10^{2} lattice, runtime 4 s) 100% hit rate
For comparison, classical SA with explicit chains and spins (run time $>4 \mathrm{~s}$)

Folding: Hybrid

$E=E_{\mathrm{HP}}+\sum_{i=1}^{3} \lambda_{i} E_{i}$

Hybrid solver was insensitive to changes, no fine tuning needed

Folding: Hybrid

We also tried two longer sequences (without exact results) that have been extensively studied with classical methods

Folding: Hybrid

We also tried two longer sequences (without exact results) that have been extensively studied with classical methods

The lowest known energies were recovered with high probability, once the runtime was high enough

Folding: QPU only

Limited to short sequences

Folding: QPU only

Limited to short sequences

490, 00 attempts per sequence (annealing time 2 ms). Hit rate decays roughly exponentially

Folding: QPU only

Limited to short sequences
490, 00 attempts per sequence (annealing time 2 ms). Hit rate decays roughly exponentially

Longest sequence was 14 -beads on a 4^{2} grid

Folding: Conclusion

We found a mapping and energy function that works well for large proteins

Folding: Conclusion

We found a mapping and energy function that works well for large proteins
The hybrid outperforms our SA approaches

Folding: Conclusion

We found a mapping and energy function that works well for large proteins
The hybrid outperforms our SA approaches

The QPU is less impressive, with a roughly exponential decrease in hit rate with increasing system size

Design of HP Lattice Proteins: Questions We Wish to Answer

Can we find a protocol to design HP lattice proteins using QA?

Design of HP Lattice Proteins: Questions We Wish to Answer

Can we find a protocol to design HP lattice proteins using QA?

What is the source for the exponential decay?

Design: Procedure

Goal: find HP sequences that fold to a given target structure. Requires search in both sequence and structure spaces.

Design: Procedure

Goal: find HP sequences that fold to a given target structure. Requires search in both sequence and structure spaces.

Two-step procedure:
1 Seek sequences with minimum energy in the target structure
2 Test whether or nor the optimized sequence fold to the intended structure (using the folding mapping)
Step 1 is done at fixed number of Hs . Otherwise, the all-H sequence is a trivial solution.

Design: Sequence Optimization

The connectivity matrix of a target structure, $w_{i j}$ tells whether amino acid i and j are in contact $\left(w_{i j}=-1\right)$ or not $\left(w_{i j}=0\right)$

Design: Sequence Optimization

The connectivity matrix of a target structure, $w_{i j}$ tells whether amino acid i and j are in contact $\left(w_{i j}=-1\right)$ or not $\left(w_{i j}=0\right)$
s_{i} indicates if amino acid i is $\mathrm{H}(i=1)$ or $\mathrm{P}(i=0)$

Design: Sequence Optimization

The connectivity matrix of a target structure, $w_{i j}$ tells whether amino acid i and j are in contact $\left(w_{i j}=-1\right)$ or not $\left(w_{i j}=0\right)$
s_{i} indicates if amino acid i is $\mathrm{H}(i=1)$ or $\mathrm{P}(i=0)$

Find minimum-energy sequences for a given composition, N_{H}, by minimizing $E=\sum_{i j} w_{i j} s_{i} s_{j}+\lambda\left(\sum_{i} s_{i}-N_{\mathrm{H}}\right)^{2}$

Design: Sequence Optimization with Hybrid

Target structures with $N=30,50,64$.
a few different N_{H} values for each structure 100% success rate in all instances

Design: Sequence Optimization with Hybrid

Target structures with $N=30,50,64$.
a few different N_{H} values for each structure 100% success rate in all instances

$E=\sum_{i j} w_{i j} S_{i} S_{j}+\lambda\left(\sum_{i} S_{i}-N_{H}\right)^{2}$

Design: Folding with Hybrid

For every target, at least one sequence found with the intended structure as its unique ground state.

Design: Folding with Hybrid

For every target, at least one sequence found with the intended structure as its unique ground state.

Previously studied sequences with $N=64$ and $N_{\mathrm{H}}=42$, the ground state is degenerate.

Design: Sequence Optimization with the QPU

The success rate decays rapidly

Design: Sequence Optimization with the QPU

The success rate decays rapidly

Potential error sources include (i) thermal noise, (ii) chain breaks, (iii) finite annealing time, (iv) control errors

Design: Sequence Optimization with the QPU

The success rate decays rapidly

Potential error sources include
(i) thermal noise, (ii) chain breaks, (iii) finite annealing time, (iv) control errors

Right shows the data without chain breaks and large energy gaps

Design: Sequence Optimization with the QPU - finite time

(a) Pure QPU hit rate against annealing time
(b) Success rates when integrating the time-dependent Schrödinger equation for different systems using a fixed annealing time

Design: Sequence Optimization with the QPU - finite time

(a) Pure QPU hit rate against annealing time
(b) Success rates when integrating the time-dependent Schrödinger equation for different systems using a fixed annealing time

No indication that finite annealing time explains the decay in success rate

Intermezzo: How does the D-Wave work?

D-Wave uses super-conducting flux qubits with a limited energy range

Intermezzo: How does the D-Wave work?

D-Wave uses super-conducting flux qubits with a limited energy range
Therefore, if you give a problem, $\sum_{i} h_{i} \sigma_{z}^{i}+\sum_{i j} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}$ with h_{i} s and/or $J_{i j}$ s outside this range, we rescale

Intermezzo: How does the D-Wave work?

D-Wave uses super-conducting flux qubits with a limited energy range
Therefore, if you give a problem, $\sum_{i} h_{i} \sigma_{z}^{i}+\sum_{i j} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}$ with h_{i} s and/or $J_{i j}$ s outside this range, we rescale

Remember the chains? Several strongly coupled qubits represent one logical qubit.

Intermezzo: How does the D-Wave work?

D-Wave uses super-conducting flux qubits with a limited energy range
Therefore, if you give a problem, $\sum_{i} h_{i} \sigma_{z}^{i}+\sum_{i j} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}$ with h_{i} s and/or $J_{i j}$ s outside this range, we rescale

Remember the chains? Several strongly coupled qubits represent one logical qubit. The chain coupling strength is often the largest $J_{i j}$ in the reformed problem

Design: Sequence Optimization with the QPU - control errors

Imperfect implementation if the problem Hamiltonian
$\tilde{H}_{P}=\sum_{i}\left(h_{i}+\delta h_{i}\right) \sigma_{z}^{i}+\sum_{i j}\left(J_{i j}+\delta J_{i j}\right) \sigma_{i}^{z} \sigma_{j}^{z}$
Assume $\delta h_{i}, \delta J_{i j}$ independent and Gaussian with std devs σ_{h} and σ_{J}

Design: Sequence Optimization with the QPU - control errors

Imperfect implementation if the problem Hamiltonian
$\tilde{H}_{P}=\sum_{i}\left(h_{i}+\delta h_{i}\right) \sigma_{z}^{i}+\sum_{i j}\left(J_{i j}+\delta J_{i j}\right) \sigma_{i}^{z} \sigma_{j}^{z}$
Assume $\delta h_{i}, \delta J_{i j}$ independent and Gaussian with std devs σ_{h} and σ_{J} D-Wave: $\sigma_{h}=x \max \left|h_{i}\right|$ and $\sigma_{J}=x \max \left|J_{i j}\right|, x=0.015$

Semi-quantitative agreement

Design: Conclusion

The hybrid quantum-classical method swiftly and consistently solves the lattice protein folding and design problems for system sizes that are non-trivial with classical methods.

Design: Conclusion

The hybrid quantum-classical method swiftly and consistently solves the lattice protein folding and design problems for system sizes that are non-trivial with classical methods.

The pure QPU results are less impressive. Control errors may have a significant impact on the success rate

Acknowledgements

Acknowledgements: All QA computations were done on the D-Wave Advantage System at the Jülich Supercomputing Centre, Germany.

QAOA: Gate-based optimization

QA: $|f\rangle=\mathcal{T} \exp \left(\int_{0}^{T} H(t) d t\right)|s t a r t\rangle$,
QAOA: use $\mathcal{T} \exp \left(\int_{0}^{T} H(t) d t\right) \approx$
$\exp \left(-i \gamma_{k} H_{P}\right) \exp \left(-i \beta_{k} H_{D}\right) \cdots \exp \left(-i \gamma_{1} H_{P}\right) \exp \left(-i \beta_{1} H_{D}\right)$ when $k \rightarrow \infty$

QAOA: Gate-based optimization

QA: $|f\rangle=\mathcal{T} \exp \left(\int_{0}^{T} H(t) d t\right)|s t a r t\rangle$,
QAOA: use $\mathcal{T} \exp \left(\int_{0}^{T} H(t) d t\right) \approx$
$\exp \left(-i \gamma_{k} H_{P}\right) \exp \left(-i \beta_{k} H_{D}\right) \cdots \exp \left(-i \gamma_{1} H_{P}\right) \exp \left(-i \beta_{1} H_{D}\right)$ when $k \rightarrow \infty$
run
$|f\rangle=\exp \left(-i \gamma_{k} H_{P}\right) \exp \left(-i \beta_{k} H_{D}\right) \cdots \exp \left(-i \gamma_{1} H_{P}\right) \exp \left(-i \beta_{1} H_{D}\right)|s t a r t\rangle$ and optimize $\vec{\gamma}$ and $\vec{\beta}$ classically

QAOA: Gate-based optimization

QA: $|f\rangle=\mathcal{T} \exp \left(\int_{0}^{T} H(t) d t\right)|s t a r t\rangle$,
QAOA: use $\mathcal{T} \exp \left(\int_{0}^{T} H(t) d t\right) \approx$
$\exp \left(-i \gamma_{k} H_{P}\right) \exp \left(-i \beta_{k} H_{D}\right) \cdots \exp \left(-i \gamma_{1} H_{P}\right) \exp \left(-i \beta_{1} H_{D}\right)$ when $k \rightarrow \infty$
run
$|f\rangle=\exp \left(-i \gamma_{k} H_{P}\right) \exp \left(-i \beta_{k} H_{D}\right) \cdots \exp \left(-i \gamma_{1} H_{P}\right) \exp \left(-i \beta_{1} H_{D}\right)|s t a r t\rangle$ and optimize $\vec{\gamma}$ and $\vec{\beta}$ classically

Free to choose \mid start \rangle and H_{D} (which causes transitions)

QAOA: Folding [Manuscript in preparation]

In collaboration with Leif Gellersen and Stefan Prestel

$$
\begin{aligned}
& E_{\mathrm{HP}}=-\sum_{\left|f-f^{\prime}\right|>1} C\left(h_{f}, h_{f^{\prime}}\right) \sum_{\left\langle s, s^{\prime}\right\rangle} \sigma_{s}^{f} \sigma_{s^{\prime}}^{f^{\prime}} \\
& E_{1}=\sum_{f}\left(\sum_{s} \sigma_{s}^{f}-1\right)^{2}, \quad E_{2}=\frac{1}{2} \sum_{f_{1} \neq f_{2}} \sum_{s} \sigma_{s}^{f_{1}} \sigma_{s}^{f_{2}} \\
& E_{3}=\sum_{1 \leq f<N} \sum_{s} \sigma_{s}^{f} \sum_{\left|s^{\prime}-s\right|>1} \sigma_{s^{\prime}}^{f+1}
\end{aligned}
$$

QAOA: Folding [Manuscript in preparation]

In collaboration with Leif Gellersen and Stefan Prestel

$$
\begin{aligned}
& E_{\mathrm{HP}}=-\sum_{\left|f-f^{\prime}\right|>1} C\left(h_{f}, h_{f^{\prime}}\right) \sum_{\left\langle s, s^{\prime}\right\rangle} \sigma_{s}^{f} \sigma_{s^{\prime}}^{f^{\prime}} \\
& E_{1}=\sum_{f}\left(\sum_{s} \sigma_{s}^{f}-1\right)^{2}, \quad E_{2}=\frac{1}{2} \sum_{f_{1} \neq f_{2}} \sum_{s} \sigma_{s}^{f_{1}} \sigma_{s}^{f_{2}} \\
& E_{3}=\sum_{1 \leq f<N} \sum_{s} \sigma_{s}^{f} \sum_{\left|s^{\prime}-s\right|>1} \sigma_{s^{\prime}}^{f+1}
\end{aligned}
$$

Each term in the above Hamiltonian gets its own gate $\left(\exp \left(-i \alpha_{i} H_{P}\right)\right)$. That is a lot of gates.

QAOA: Folding [Manuscript in preparation]

In collaboration with Leif Gellersen and Stefan Prestel

$$
\begin{aligned}
& E_{\mathrm{HP}}=-\sum_{\left|f-f^{\prime}\right|>1} C\left(h_{f}, h_{f^{\prime}}\right) \sum_{\left\langle s, s^{\prime}\right\rangle} \sigma_{s}^{f} \sigma_{s^{\prime}}^{f^{\prime}} \\
& E_{1}=\sum_{f}\left(\sum_{s} \sigma_{s}^{f}-1\right)^{2}, \quad E_{2}=\frac{1}{2} \sum_{f_{1} \neq f_{2}} \sum_{s} \sigma_{s}^{f_{1}} \sigma_{s}^{f_{2}} \\
& E_{3}=\sum_{1 \leq f<N} \sum_{s} \sigma_{s}^{f} \sum_{\left|s^{\prime}-s\right|>1} \sigma_{s^{\prime}}^{f+1}
\end{aligned}
$$

Each term in the above Hamiltonian gets its own gate $\left(\exp \left(-i \alpha_{i} H_{P}\right)\right)$. That is a lot of gates.

Make a graph with spins as nodes and the quadratic terms in $E_{i} \mathrm{~s}$ as edges

QAOA: Folding [Manuscript in preparation]

In collaboration with Leif Gellersen and Stefan Prestel

$$
\begin{aligned}
& E_{\mathrm{HP}}=-\sum_{\left|f-f^{\prime}\right|>1} C\left(h_{f}, h_{f^{\prime}}\right) \sum_{\left\langle s, s^{\prime}\right\rangle} \sigma_{s}^{f} \sigma_{s^{\prime}}^{f^{\prime}} \\
& E_{1}=\sum_{f}\left(\sum_{s} \sigma_{s}^{f}-1\right)^{2}, \quad E_{2}=\frac{1}{2} \sum_{f_{1} \neq f_{2}} \sum_{s} \sigma_{s}^{f_{1}} \sigma_{s}^{f_{2}} \\
& E_{3}=\sum_{1 \leq f<N} \sum_{s} \sigma_{s}^{f} \sum_{\left|s^{\prime}-s\right|>1} \sigma_{s^{\prime}}^{f+1}
\end{aligned}
$$

Each term in the above Hamiltonian gets its own gate $\left(\exp \left(-i \alpha_{i} H_{P}\right)\right)$. That is a lot of gates.

Make a graph with spins as nodes and the quadratic terms in $E_{i} s$ as edges
Remember that H_{D} causes transition. We choose an H_{D} that only move between sets of spins with no edges in common.

QAOA: Folding [Manuscript in preparation]

In collaboration with Leif Gellersen and Stefan Prestel

$$
\begin{aligned}
& E_{\mathrm{HP}}=-\sum_{\left|f-f^{\prime}\right|>1} C\left(h_{f}, h_{f^{\prime}}\right) \sum_{\left\langle s, s^{\prime}\right\rangle} \sigma_{s}^{f} \sigma_{s^{\prime}}^{f^{\prime}} \\
& E_{1}=\sum_{f}\left(\sum_{s} \sigma_{s}^{f}-1\right)^{2}, \quad E_{2}=\frac{1}{2} \sum_{f_{1} \neq f_{2}} \sum_{s} \sigma_{s}^{f_{1}} \sigma_{s}^{f_{2}} \\
& E_{3}=\sum_{1 \leq f<N} \sum_{s} \sigma_{s}^{f} \sum_{\left|s^{\prime}-s\right|>1} \sigma_{s^{\prime}}^{f+1}
\end{aligned}
$$

QAOA: Folding [Manuscript in preparation]

In collaboration with Leif Gellersen and Stefan Prestel

$$
\begin{aligned}
& E_{\mathrm{HP}}=-\sum_{\left|f-f^{\prime}\right|>1} C\left(h_{f}, h_{f^{\prime}}\right) \sum_{\left\langle s, s^{\prime}\right\rangle} \sigma_{s}^{f} \sigma_{s^{\prime}}^{f^{\prime}} \\
& E_{1}=\sum_{f}\left(\sum_{s} \sigma_{s}^{f}-1\right)^{2}, \quad E_{2}=\frac{1}{2} \sum_{f_{1} \neq f_{2}} \sum_{s} \sigma_{s}^{f_{1}} \sigma_{s}^{f_{2}} \\
& E_{3}=\sum_{1 \leq f<N} \sum_{s} \sigma_{s}^{f} \sum_{\left|s^{\prime}-s\right|>1} \sigma_{s^{\prime}}^{f+1}
\end{aligned}
$$

We choose an H_{D} that only move between sets of spins with no edges in common.

QAOA: Folding [Manuscript in preparation]

In collaboration with Leif Gellersen and Stefan Prestel

$$
\begin{aligned}
& E_{\mathrm{HP}}=-\sum_{\left|f-f^{\prime}\right|>1} C\left(h_{f}, h_{f^{\prime}}\right) \sum_{\left\langle s, s^{\prime}\right\rangle} \sigma_{s}^{f} \sigma_{s^{\prime}}^{f^{\prime}} \\
& E_{1}=\sum_{f}\left(\sum_{s} \sigma_{s}^{f}-1\right)^{2}, \quad E_{2}=\frac{1}{2} \sum_{f_{1} \neq f_{2}} \sum_{s} \sigma_{s}^{f_{1}} \sigma_{s}^{f_{2}} \\
& E_{3}=\sum_{1 \leq f<N} \sum_{s} \sigma_{s}^{f} \sum_{\left|s^{\prime}-s\right|>1} \sigma_{s^{\prime}}^{f+1}
\end{aligned}
$$

We choose an H_{D} that only move between sets of spins with no edges in common.

There is such a Hamiltonian called the MIS-mixer

QAOA: Folding [Manuscript in preparation]

In collaboration with Leif Gellersen and Stefan Prestel

$$
\begin{aligned}
& E_{\mathrm{HP}}=-\sum_{\left|f-f^{\prime}\right|>1} C\left(h_{f}, h_{f^{\prime}}\right) \sum_{\left\langle s, s^{\prime}\right\rangle} \sigma_{s}^{f} \sigma_{s^{\prime}}^{f^{\prime}} \\
& E_{1}=\sum_{f}\left(\sum_{s} \sigma_{s}^{f}-1\right)^{2}, \quad E_{2}=\frac{1}{2} \sum_{f_{1} \neq f_{2}} \sum_{s} \sigma_{s}^{f_{1}} \sigma_{s}^{f_{2}} \\
& E_{3}=\sum_{1 \leq f<N} \sum_{s} \sigma_{s}^{f} \sum_{\left|s^{\prime}-s\right|>1} \sigma_{s^{\prime}}^{f+1}
\end{aligned}
$$

We choose an H_{D} that only move between sets of spins with no edges in common.

There is such a Hamiltonian called the MIS-mixer
If we combine this with divide-and-conquer methods we can do large proteins with few qubits and gates

