

Hyperons in Neutron Stars and Mergers

Institute of Space Sciences CSIC IEEEC 9

Laura Tolós

Svenskt kärnfysikermöte 2024

30 October 2024 to 1 November 2024 Fysicum

Outline

- Hyperons and where to find them
- YN and YY interactions
- Hyperons in matter
- Hyperons and Neutron Stars: The Hyperon Puzzle
- Neutron Star Mergers
- Present and Future

Hyperons and where to find them

A hyperon is a baryon containing one or more strange quarks

Baryon	$I(J^P)$	Mass [MeV]	Quark Content
p	$1/2(1/2^+)$	938.27	uud
n	$1/2(1/2^+)$	939.56	udd
Λ	$0(1/2^+)$	1115.68	uds
Σ^+	$1(1/2^+)$	1189.37	uus
Σ^0	$1(1/2^+)$	1192.64	uds
Σ^{-}	$1(1/2^+)$	1197.45	dds
Ξ^0	$1/2(1/2^+)$	1314.86	uss
Ξ^-	$1/2(1/2^+)$	1321.71	dss
Ω^{-}	$0(3/2^+)$	1672.45	<i>SSS</i>

The study of hypernucleus allows for

- new spectroscopy

 information on strong and weak interactions between hyperons and nucleons

In Neutron Stars

YN and YY interactions

 Sechi-Zom et al Alexander et al
 Hauptman et al
 Paekenbrock

> Study strangeness in nuclear physics
> Provide input for hypernuclear physics and astrophysics

Scarce YN scattering data due to the short life of hyperons and the low-density beam fluxes

 ΛN and ΣN : < 50 data points ΞN very few events

NN: > 5000 data for E_{lab}<350 MeV

Data from hypernuclei:

- more than 40 ∧-hypernuclei
 (∧N attractive)
- few $\Lambda \Lambda$ hypernuclei
- $(\Lambda\Lambda$ weak attraction)
- few Ξ-hypernuclei
 (ΞN attractive)
- evidence of 1 Σ -hypernuclei ? (Σ N repulsive)

Data on femtoscopy!

Theoretical approaches to YN and YY

• Meson exchange models (Juelich/Nijmegen models)

To build YN and YY from a NN meson-exchange model imposing SU(3)_{flavor} symmetry Juelich: Holzenkamp, Holinde, Speth '89; Haidenbauer and Meißner '05 Niimegen: Maesen, Rijken, de Swart '89; Rijken, Nagels and Yamamoto '10

• Chiral effective field theory approach (Juelich-Bonn-Munich group)

To build YN and YY from a chiral effective Lagrangian similarly to NN

interaction

Juelich-Bonn-Munich: Polinder, Haidenbauer and Meißner '06; Haidenbauer, Petschauer, Kaiser, Meißner, Nogga and Weise '13 Kohno '10; Kohno '18

• Quark model potentials

To build YN and YY within constituent quark models

Fujiwara, Suzuki, Nakamoto '07 Garcilazo, Fernandez-Carames and Valcarce '07 '10

V_{low k} approach
 Garcilazo, Fernandez-Carames and Valcarce '07'10
 To calculate a "universal" effective low-momentum potential for YN and YY
 using RG techniques
 Schaefer, Wagner, Wambach, Kuo and Brown '06

• Lattice calculations (HALQCD/NPLQCD/BaSc)

To solve YN and YY interactions on the lattice

HALQCD: Ishii, Aoki, Hatsuda '07; Aoki, Hatsuda and Ishii '10; Aoki et al '12 **NPLQCD:** Beane, Orginos and Savage '11; Beane et al '12

YN scattering

$$T = V + V \frac{1}{E_0 - H_0 + i\eta} T$$

$$\sigma_{if} \propto |T_{if}|^2$$

latest data on YN scattering using new data from J-PARC and CLAS

Haidenbauer, Meißner, Nogga and Le '23

Femtoscopy (ALICE@LHC)

ALICE Collaboration, Nature 588 (2020) 232 Fabbietti, Mantovani-Sarti, Vazguez-Doce '21

k* (MeV/c)

ALICE, PRC (2019)

credit: A. Ramos

First combined analysis of low-energy femtoscopic and scattering data to constrain the s-wave scattering parameters of the Λp interaction

Ap interaction is overall less attractive!

Mihaylov, Haidenbauer and Mantovani-Sarti '24

Reactions: Emulsion of

Laboratories:

BNL, CERN, KEK, JLab, DA ϕ NE, GSI, FAIR 4 **Reactions:** Emulsion data -ray data (K^-, π^-) $K_{stop}^{-}, \pi^{-})$ (K_{stop}^{-}, π^{0}) **Physics aspects** (e.e'K⁺) Hypernuclear structure **AN strong force** (π^+, K^+) $\Lambda N \rightarrow NN$ weak force (π^{-}, K^{+})

Hypertriton lifetime puzzle

Hypernuclei

Expected $\tau({}^{3}_{\Lambda}H) = \tau(\Lambda)$

 \Leftrightarrow observed: $\tau({}^{3}_{\Lambda}H) < \tau(\Lambda)$

-

Conflicting measurements by STAR(2018) and ALICE(2019) of the hypertriton lifetime triggered the revived experimental and theoretical interest.

Recent data solved the puzzle?

Hyperons in matter Λ in dense matter

Υ

$$\begin{array}{c}
\mathbf{Y} \\
\mathbf{G} \\
\mathbf{\Lambda} \\
\mathbf{\Lambda} \\
\mathbf{\Lambda}
\end{array}$$

$$G = V + V \frac{Q_{\text{pauli}}}{E_0 - H_0} G$$

with new parametrization from combined analysis of scattering data and correlation functions

Mihaylov, Haidenbauer and Mantovani-Sarti '24

Hyperons and Neutron Stars

- produced in core collapse
 supernova explosions, usually
 observed as pulsars
- usually refer to compact objects with M≈1-2 M_☉ and R≈10-12 Km
- extreme densities up to 5-10 ρ_0 (n₀=0.16 fm⁻³ => ρ_0 =3•10¹⁴ g/cm³)
- magnetic field : B ~ 10 8..16 G
- temperature: T ~ 10 6...11 K
- observations: masses, radius, gravitational waves...

Masses

credit: P. Freire

Radius

NICER

X-rays from hot spots at the surface of rotating neutron stars PSR J0030+0451 PSR J0740+6620 PSR J0437-4715

Observations

GW170817

Abbot et al. (LIGO-VIRGO) '17 '18

..also GW190425, GW190814

What about Hyperons?

First proposed in 1960 by Ambartsumyan & Saakyan

Hyperon	Mass (MeV/c ²)
Λ	1115.57 ± 0.06
Σ^+	1189.37 ± 0.06
Σ^0	1192.55 ± 0.10
Σ^{-}	1197.50 ± 0.05
Ξ^0	1314.80 ± 0.8
Ξ^{-}	1321.34 ± 0.14
Ω^{-}	1672.43 ± 0.14

 $p \ e^- \rightarrow n \ \nu_e$

Traditionally neutron stars were modeled by a uniform fluid of neutron rich matter in β -equilibrium $n \rightarrow p \ e^- \ \overline{\nu}_e$

but more exotic degrees of freedom are expected, such as **hyperons**, due to:

- high value of density at the center and
- the rapid increase of the nucleon chemical potential with density

Hyperons might be present at $n \sim (2-3)n_0$!!!

β-stable hyperonic matter

 μ_N is large enough to make N->Y favorable

$$n + n \rightarrow n + \Lambda$$

$$p + e^{-} \rightarrow \Lambda + v_{e^{-}}$$

$$n + n \rightarrow p + \Sigma^{-}$$

$$n + e^{-} \rightarrow \Sigma^{-} + v_{e^{-}}$$

$$\mu_i = b_i \mu_n - q_i \mu_e$$
$$\sum_i x_i q_i = 0$$

The Hyperon Puzzle

Scarce (but improving) experimental information:

- data from several single Λ - and few Ξ - hypernuclei, and few double Λ hypernuclei

few YN scattering data
 (~ 50 points) due to
 difficulties in preparing
 hyperon beams and no
 hyperon targets available

- YN data from femtoscopy

The presence of hyperons in neutron stars is energetically probable as density increases. However, it induces a strong softening of the EoS that leads to maximum neutron star masses < 2M_☉

Solution?

- Stiffer YN and YY interactions
- hyperonic 3-body forces
- ➢ push of Y onset by ∆-isobars or meson condensates
- > quark matter below Y onset
- dark matter, modified gravity theories...

Neutron Star Mergers

Blacker, Kochankovski, Bauswein, Ramos and LT '24

Kochankovski, Ramos and LT '22

Bauswein and Stergioulas '15

check the thermal behaviour!!!

<u>conclusion</u>

hyperonic models lead to systematically higher frequencies by up to $\Delta f \sim 150$ Hz, being small but potentially sizeable

Space missions to study the interior of NS

constraints from pulse profile modelling of rotation-powered pulsars with eXTP

and multimessenger astronomy!

Present and Future

A lot of theoretical and experimental (scattering, femtoscopy, hypernuclei) effort has been invested to understand hyperon-nucleon and hyperon-hyperon interactions

The presence of hyperons in neutron stars is energetically probable as density increases. However, it induces a strong softening of the equation of state that leads to maximum neutron star masses $< 2M_{\odot}$ This is known as The Hyperon Puzzle.

Need of new routes to search for strangeness: neutron star mergers?

The future of hyperon physics relies on particle and nuclear experiments as well as X-ray and multimessenger astronomy

https://compose.obspm.fr/

S. Typel, M. Oertel, T. Klaehn, D. Chatterjee, V. Dexheimer, C. Ishizuka, M. Mancini, J. Novak, H. Pais, C.Providencia, A. Raduta, M. Servillat and L. Tolos **CompOSE Reference Manual, Eur. Phys. J. A 58 (2022) 11, 221**