

Recent highlights of the BESIII experiment

Swedish Nuclear Physics Meeting Lund, October 30- November 1, 2024

Karin Schönning, Uppsala University

Outline

- BESIII at BEPC-II
- Recent highlights:
 - Hadron structure
 - Hadron spectroscopy
 - Hadron interactions
 - Precision and rare processes

How does the strong interaction form visible matter form the fundamental quarks and gluons?

BESIII at BEPC-II

The Beijing Electron-Positron Collider (BEPC-II)

UPPSALA UNIVERSITET

RF. SR RF

- CMS energies within 2.0 4.95 GeV.
- Optimised in the τ-charm region
- Luminosity ~ 10^{33} cm⁻²s⁻¹

The Beijing Spectrometer (BESIII)

- Near 4π coverage
- Tracking, PID, Calorimetry

HADRON STRUCTURE WITH BESIII

Electromagnetic Form Factors (EMFFs)

Time-like form factors

- Are complex:
 - $-G_E(q^2) = |G_E(q^2)| \cdot e^{i\Phi_E}$, $G_M(q^2) = |G_M(q^2)| \cdot e^{i\Phi_M}$
 - Ratio $R = \frac{|G_E(q^2)|}{|G_M(q^2)|}$ accessible from baryon scattering angle.
 - $\Delta \Phi(q^2) = \Phi_M(q^2) \Phi_E(q^2)$ = phase between G_E and G_M \rightarrow Polarizes final state!
- Related to space-like EMFFs *via* dispersion relations. •
 - Nucleons: SL and TL accessible.
 - Hyperons: Only TL accessible, but also phase! $\Delta \Phi(q^2) \rightarrow o \leftrightarrow SL = TL$

First complete measurement of Λ EMFF

- New BESIII data at 2.396 GeV with 555 exclusive $\overline{\Lambda}\Lambda$ events in sample.
 - $R = |G_E/G_M| = 0.96 \pm 0.14 \pm 0.02$
 - $\Delta \Phi = 37^o \pm 12^o \pm 6^o$
 - $-\sigma = 118.7 \pm 5.3 \pm 5.1 \text{ pb}$

BESIII: Phys. Rev. Lett. 123, 122003 (2019)

- Most **precise** result on *R* and σ
- **First** conclusive result on $\Delta \Phi$

Complete decomposition of EMFFs

- First conclusive measurement of $\Delta \Phi$ in 2019^{*}.
- Dispersive calculations by Mangoni, Pacetti and Tommasi-Gustafsson**
 - Calculation of Λ charge radius
 - $\Delta \Phi$ only at one energy \rightarrow many solutions possible

New: Energy-dependent Λ Spin Analysis

Five data points within 2.386 < q < 3.08 GeV.

- The ratio $R = \left| \frac{G_E(q^2)}{G_M(q^2)} \right|$ fairly constant and consistent with 1.
- Rapid (~ 90°) change of the phase $\Delta \Phi$ between q~2.4 GeV and 2.6 GeV.

Article Open access Published: 11 October 2024

Extracting the femtometer structure of strange baryons using the vacuum polarization effect

The BESIII Collaboration

Nature Communications **15**, Article number: 8812 (2024) <u>Cite this article</u>

787 Accesses 118 Altmetric Metrics

At $q = M(J/\Psi)$, $e^+e^- \rightarrow \Sigma^0 \overline{\Lambda} + c.c.$ process is predominantly **electromagnetic** (c, d), since

- Strong processes (a,b) are suppressed by $\frac{m_d m_u}{a} \sim 10^{-3}$ due to isospin violation.
- Ratio between cross section at J/Ψ and at the continuum in agreement with expectations from EM processes, and with other EM transitions such as $e^+e^- \rightarrow \mu^+\mu^-$ and $e^+e^- \rightarrow \eta\pi^+\pi^-$.

At $q = M(J/\Psi)$, the cross section is enhanced by vacuum polarization.

First complete measuerement of the $\Sigma^0 \Lambda$ Transition EMFFs

High-precision EMFF measurement:

- $R = |G_E/G_M| = 0.860 \pm 0.029 \pm 0.010$
- $\Delta \Phi_1(\bar{\Lambda}\Sigma^0) = 1.011 \pm 0.094 \pm 0.010$ rad
- $\Delta \Phi_2(\Lambda \bar{\Sigma}^0) = 2.128 \pm 0.094 \pm 0.010$ rad

CP test: $\Delta \Phi_{CP} = |\pi - (\Delta \Phi_1 + \Delta \Phi_2)| = 0.003 \pm 0.133 \pm 0.014$ rad

*BESIII, Nature Comm., 15, 8812 (2024)

HADRON SPECTROSCOPY WITH BESIII

Hadron Spectroscopy

Unravelling the complexity of matter formed by the strong interaction...

Meson spectroscopy at BESIII

Multiple ways to produce conventional and exotic mesons:

- Direct production of vector states
- Charmonium decays
- Two-photon scattering

BESI

*Phys. Rev. Lett. 133 (2024) 081901

Precise line-shape measurement of $e^+e^- \rightarrow D\overline{D}$

Spin-parity of the X(2370)

- Partial Wave Analysis of $J/\psi \rightarrow \gamma K_s K_s \eta'$
- Mass 2395 $\pm 11^{+26}_{-94}$ MeV/c², width $188^{+26+124}_{-94-33}$ MeV/c²
- Significance 11.7 σ
- $J^{PC} = 0^{-+}$ i.e. a pseudoscalar
- Produced in gluon-rich environment

*Phys. Rev. Lett. 132 (2024) 181901

HADRON INTERACTIONS

Hyperon-nucleon (YN) interaction

Why?

- Crucial component to predict properties of hypernuclei.
- Needed to understand the *hyperon puzzle* of neutron stars.

How?

- Hyperon femtoscopy
- Hypernuclear studies

```
 Secondary YN interactions
```


First study of $\Xi^0 n \to \Xi^- p$ in an $e^+ e^-$ experiment

*Phys. Rev. Lett. 130, 251902(2023) **Phys. Lett. B 633, p 214-218 (2006)

- Primary reaction $e^+e^- \rightarrow J/\Psi \rightarrow \Xi^0 \overline{\Xi}^0$
- Secondary Ξ^0 beam with $p_{\Xi} = 0.818 \text{ GeV/c}$
- Interaction mainly with 9Be in beam pipe
- 20 events observed
- $\sigma(\Xi^0 + {}^9Be \to \Xi^- + {}^8Be + p) = 22.1 \pm 5.3 \pm 4.5 \text{ mb}$
- Assuming 3 effective reaction neutrons**: $\sigma(\Xi^0 n \to \Xi^- p) = 7.4 \pm 1.8 \pm 1.5 \text{ mb}$

*Phys. Rev. Lett. 132, 231902 (2024)

HADRONIC EFFECTS IN PRECISION AND RARE PROCESSES

Precision tests of the Standard Model

- SM predicts very small violations of charge conjugation and parity (CP) symmetry.
- Sizeable CP violations prerequisite for *Baryogenesis* ← Sakharov criterion.
- Spin-carrying hyperons precision probe of CP symmetry.

Strong and weak CP tests in Σ^0 hyperon decays

- The electromagnetic decay $\Sigma^0 \rightarrow \Lambda \gamma$ decay probes the interference between
 - The parity-conserving amplitude (magnetic transition moment) and
 - The parity-violating amplitude (electric dipole transition moment, related to the neutron EDM)
 → If non-zero, it can indicate strong CP violation.
- The weak decay $\Lambda \rightarrow \pi^- p$ probes the interference between

Strong and weak CP tests in Σ^0 hyperon decays

 $A_{CP}^{\Sigma} = \alpha_{\Sigma} + \bar{\alpha}_{\Sigma}$

 $A_{CP}^{\Lambda} = \frac{\alpha_{\Lambda} + \alpha_{\Lambda}}{\alpha_{\Lambda} - \overline{\alpha}_{\Lambda}}$

*BESIII, Phys. Rev. Lett. 133 (2024), 101902

Parameter	This Letter	Previous results
$lpha_{J/\psi}$	$-0.4133 \pm 0.0035 \pm 0.0077$	-0.449 ± 0.022 [52]
$\Delta \Phi_{J/\psi}$ (rad)	$-0.0828 \pm 0.0068 \pm 0.0033$	
$\alpha_{\psi(3686)}$	$0.814 \pm 0.028 \pm 0.028$	0.71 ± 0.12 [52]
$\Delta \Phi_{w(3686)}$ (rad)	$0.512 \pm 0.085 \pm 0.034$	
α_{Σ^0}	$-0.0017 \pm 0.0021 \pm 0.0018$	
$\bar{\alpha}_{\Sigma^0}$	$0.0021 \pm 0.0020 \pm 0.0022$	
$lpha_{\Lambda}$	$0.730 \pm 0.051 \pm 0.011$	0.748 ± 0.007 [44]
\bar{lpha}_{Λ}	$-0.776 \pm 0.054 \pm 0.010$	-0.757 ± 0.004 [44]
A_{CP}^{Z}	$(0.4 \pm 2.9 \pm 1.3) \times 10^{-3}$	•••
A^{Λ}_{CP}	$(-3.0 \pm 6.9 \pm 1.5) \times 10^{-2}$	$(-2.5 \pm 4.8) \times 10^{-3}$ [2]

Meson production cross sections

Experimental input to the Hadron Vacuum Polarization (HVP) term a_{μ}^{HVP} in the calculation of $(g-2)_{\mu}$.

Summary

- BESIII i a multi-purpose experiment that covers the main four areas of hadron physics:
 - Hadron structure
 - Hadron spectroscopy
 - Hadron interactions
 - Precision and rare processes

The highlights presented here is a selection of last year's accomplishment – not exhaustive!

- Upgraded accelerator open new possibilities
- BESIII > 600 published papers
 - 116 in Physics Review Letters
 - 1 Nature, 2 Nature Phys. 1 Nature Comm.

Thanks for your attention!

STINT The Swedish Foundation for International Cooperation in Research and Higher Education

Backup

BESIII:

- $G_{osc}(p)^*$ and $G_{osc}(n)^*$, ** : same frequency, different phase: $\Delta D = D_p - D_n = 125^\circ \pm 12^\circ$
- First separation of G_E and G_M

SND: Smaller frequency for neutron oscillations***.

BESIII proton EMFFs:

Phys. Rev. D 91, 112004 (2015) Phys. Rev. D 99, 092002 (2019) Phys. Rev. Lett. 124, 042001 (2020) Phys. Lett. B 817, 136328 (2021) **BESIII neutron EMFFs:** BESIII, Nature Phys. 17, p 1200–1204 (2021) BESIII, Phys. Rev. Lett. 130, 151905 (2023) **SND:** Eur. Phys. J. C (2022) 82: 761

Complete decomposition of EMFFs

Production parameters of spin ¹/₂ baryons:

- Angular distribution parameter $\eta = \frac{\tau - R^2}{\tau + R^2}$ where $\tau = q^2/4M_B^2$

- Phase $\Delta \Phi$

Decay parameters for 2-body decays: α_1 and α_2 . If CP symmetry, $\alpha_1 = -\alpha_2 = \alpha$

Unpolarized part Polarized part Spin correlated part

$$W(\xi) = \frac{F_0(\xi) + \eta F_5(\xi)}{+ \alpha^2 (F_1(\xi) + \sqrt{1 - \eta^2} \cos(\Delta \Phi) F_2(\xi) + \eta F_6(\xi))} + \alpha \sqrt{1 - \eta^2} \sin(\Delta \Phi) (F_3(\xi) + F_4(\xi))$$

 $\mathscr{T}_0(\xi) = 1$

 $\mathscr{T}_{1}(\xi) = \sin^{2}\theta \sin\theta_{1} \sin\theta_{2} \cos\phi_{1} \cos\phi_{2} + \cos^{2}\theta \cos\theta_{1} \cos\theta_{2}$

 $\mathscr{T}_{2}(\xi) = \sin\theta\cos\theta(\sin\theta_{1}\cos\theta_{2}\cos\phi_{1} + \cos\theta_{1}\sin\theta_{2}\cos\phi_{2})$

 $\mathscr{T}_3(\xi) = \sin\theta\cos\theta\sin\theta_1\sin\phi_1$

 $\mathscr{T}_4(\xi) = \sin\theta\cos\theta\sin\theta_2\sin\phi_2$

 $\mathscr{T}_5(\xi) = \cos^2 \theta$

 $\mathscr{T}_6(\xi) = \cos\theta_1 \cos\theta_2 - \sin^2\theta \sin\theta_1 \sin\theta_2 \sin\phi_1 \sin\phi_2$

Theory interpretation

Dispersive calculations by Mangoni, Pacetti & Tomasi-Gustafsson*:

- Few data points → ambiguous solution
 - \rightarrow scenarios for phase value at q_{th}^2 and q_{asy}^2

Picture credit: *Mangoni *et al.*, Phys. Rev. D 104, 116016 (2021)