Wavefunctions of deformed nuclei in the collective space division of mathematical physics - lund university

Introduction

- Experiments
- Method
- Results
- Chromium-50 Neon-20
- Conclusion

- Filip Agert
- Erik Kronkvist
 - A project supervised by:
- Gillis Carlsson
- Andrea Idini

How do we motivate the investigation of deformed nuclei?

Figure: from P. Möller et.al (2012)

Filip Agert, Erik Kronkvist

Neon-20

Introduction

Introduction

- Experiments
- Method

Results

- Chromium-50 Neon-20
- Conclusion

Laboratory frame

• Loses information about the nuclear deformation.

Problems of exploring deformed nuclei

- The nucleus is a superposition of intrinsic wave functions.
- Spherical symmetry
- $\hat{L}^{2}, \hat{H} = 0$

Intrinsic frame

- Well defined deformation.
- Can be found using approaches like the GCM.
- Symmetries are broken
- $[\hat{L}^2, \hat{H}] \neq 0.$

Quark Gluon Plasma at CERN

Introduction

Experiments

Method

Results

Chromium-50 Neon-20

Conclusion

- Extreme temperatures.
- Protons and neutrons separates into quarks and gluons → quark gluon plasma.
- \blacksquare Can be achieved through high-energy ion collisions \sim TeV.
- A way to probe the deformation of the nucleus.

Figure: from B. Bally (2022)

Deformation

Introduction

Experiments

Method

Results

Chromium-50 Neon-20

Conclusion

The deformation of the nucleus can be shown intuitively in the (β_2, γ) -plane

- $\gamma = 0^{\circ}$: Prolate shape
- $\gamma = 60^{\circ}$: Oblate shape
- $0^{\circ} < \gamma < 60^{\circ}$: Triaxial shape

Figure: from M. Siciliano (2013)

Filip Agert, Erik Kronkvist

30th October 2024 6/25

GCM generating reference states

Introduction

Experiments

Method

Results Chromium-50

Conclusion

- Generate basis states (reference state) with constraints from generator coordinates.
 - Deformation of the basis states is well defined
 - This is the intrinsic frame wave function
 - Each reference state has a unique combination of generator coordinates
- Find eigenvector using these basis states
- These are the lab frame wave functions
 - More in depth discussion of GCM by Jennifer Boström tommorow

GCM generator coordinates

Introduction

Experiments

Method

Results

Chromium-50 Neon-20

Conclusion

Generator coordinates: $[\beta_2, \gamma, \Delta_{\rho}, \Delta_n, j_x]$

- Chromium-50: 192 reference states.
- Neon-20: 191 reference states.

Chromium-50

Collective wavefunction of even spin yrast states I = 0 to I = 14

I = 4

Figure: From A. Idini et.al (2024)

Filip Agert, Erik Kronkvist

30th October 2024 9/25

Chromium-50 nuclear shell model

UNIVERSITY

Chromium-50 nuclear shell model

Filip Agert, Erik Kronkvist

UNIVERSITY

Neon-20

Collective wavefunction of Yrast states

Chromium-50

Neon-20

Conclusion

Filip Agert, Erik Kronkvist

0.50

Filip Agert, Erik Kronkvist

Average values and smearing of the generator coordinates

 $\overline{C} = \sum_{j} |g_j|^2 C_j$

Introduction

Experiments

Method

Results

Chromium-5

Neon-20

Conclusion

UNIVERSITY

Average value:

(

Standard deviation:

$$C_j$$
 collective coordinate and g_j collective coefficient for reference state j .

 $\Delta C = \left\{ \left[\sum_{i} |g_{j}|^{2} C_{j}^{2} \right] - \left[\overline{C} \right]^{2} \right\}^{1/2}$

Correlation energy

Experiment

Method

Results

Chromium-5

Neon-20

Conclusion

Correlation energy = $\overline{E} - \langle E \rangle$

where \overline{E} is the average energy and $\langle E \rangle$ is the energy of the eigenstate to the Hamiltonian.

Introduction

Experiments

Method

Results

Chromium-5

Neon-20

Conclusion

Ι	$\langle E angle$	Correlation energy	β_2	γ
0^{+}	-162.033299	9.473676	0.35	17.6°
			± 0.09	$\pm 13.6^{\circ}$
1^{+}	-155.316006	2.114562	0.32	16.2°
			± 0.07	$\pm 12.8^{\circ}$
2^{+}	-159.831035	7.097223	0.35	15.9°
			± 0.09	$\pm 13.1^{\circ}$
3^+	-155.375207	2.061610	0.33	14.1°
			± 0.09	$\pm 11.7^{\circ}$
4^{+}	-157.969636	5.117888	0.32	15.9°
			± 0.09	$\pm 13.3^{\circ}$
5^{+}	-154.189394	1.088491	0.30	16.6°
			± 0.10	$\pm 13.6^{\circ}$
6^{+}	-154.848582	2.494840	0.28	16.1°
			± 0.11	$\pm 13.0^{\circ}$

Filip Agert, Erik Kronkvist

30th October 2024 16/25

Introduction

Experiments

Method

Results

Chromium-5

Neon-20

Conclusion

Ι	$\langle E \rangle$	Correlation energy	β_2	γ
0^{+}	-162.033299	9.473676	0.35	17.6°
			± 0.09	$\pm 13.6^{\circ}$
1^{+}	-155.316006	2.114562	0.32	16.2°
			± 0.07	$\pm 12.8^{\circ}$
2^{+}	-159.831035	7.097223	0.35	15.9°
			± 0.09	$\pm 13.1^{\circ}$
3^+	-155.375207	2.061610	0.33	14.1°
			± 0.09	$\pm 11.7^{\circ}$
4^{+}	-157.969636	5.117888	0.32	15.9°
			± 0.09	$\pm 13.3^{\circ}$
5^{+}	-154.189394	1.088491	0.30	16.6°
			± 0.10	$\pm 13.6^{\circ}$
6^{+}	-154.848582	2.494840	0.28	16.1°
			± 0.11	$\pm 13.0^{\circ}$

Filip Agert, Erik Kronkvist

30th October 2024 17/25

Introduction

Experiments

Method

Results

Chromium-5

Neon-20

Conclusion

Ι	$\langle E angle$	Correlation energy	eta_2	γ
0^{+}	-162.033299	9.473676	0.35	17.6°
			± 0.09	$\pm 13.6^{\circ}$
1^{+}	-155.316006	2.114562	0.32	16.2°
			± 0.07	$\pm 12.8^{\circ}$
2^{+}	-159.831035	7.097223	0.35	15.9°
			± 0.09	$\pm 13.1^{\circ}$
3^{+}	-155.375207	2.061610	0.33	14.1°
			± 0.09	$\pm 11.7^{\circ}$
4^{+}	-157.969636	5.117888	0.32	15.9°
			± 0.09	$\pm 13.3^{\circ}$
5^{+}	-154.189394	1.088491	0.30	16.6°
			± 0.10	$\pm 13.6^{\circ}$
6^{+}	-154.848582	2.494840	0.28	16.1°
			± 0.11	$\pm 13.0^{\circ}$

Filip Agert, Erik Kronkvist

30th October 2024 18/25

Introduction

Experiments

Method

Results

Chromium-5

Neon-20

Conclusion

Ι	$\langle E \rangle$	Correlation energy	β_2	γ	
0^{+}	-162.033299	9.473676	0.35	17.6°	
			± 0.09	$\pm 13.6^{\circ}$	
1^{+}	-155.316006	2.114562	0.32	16.2°	
			± 0.07	$\pm 12.8^{\circ}$	
2^{+}	-159.831035	7.097223	0.35	15.9°	
			± 0.09	$\pm 13.1^{\circ}$	
3^{+}	-155.375207	2.061610	0.33	14.1°	
			± 0.09	$\pm 11.7^{\circ}$	
4^{+}	-157.969636	5.117888	0.32	15.9°	
			± 0.09	$\pm 13.3^{\circ}$	
5^{+}	-154.189394	1.088491	0.30	16.6°	
			± 0.10	$\pm 13.6^{\circ}$	
6^{+}	-154.848582	2.494840	0.28	16.1°	
			± 0.11	$\pm 13.0^{\circ}$	

Filip Agert, Erik Kronkvist

30th October 2024 19/25

Conclusion

Experiments

- Method
- Results
- Chromium-50 Neon-20
- Conclusion

- Altough nuclei with spin I = 0 are not deformed in the labframe, they can be considered so in the intrinsic frame.
- Chromium:
 - Deformation decreases with spin
- Neon:
 - \blacksquare β_2 is more static and well defined than γ which is more spread.
 - $\beta_2 \sim 0.35 \pm 0.15$
 - $~~~\gamma\sim 16^\circ\pm 13^\circ$
- Behaviour of correlation energy interesting for further investigation.

Neon-20

Method

Results

Chromium-50 Neon-20

Conclusion

Deformation

Introduction Experiments Method

Results

Chromium-50 Neon-20

Conclusion

How can we couple the output of GCM to nuclear deformations?

 $\beta_x \propto \frac{\langle r^2 Y_2^0 \rangle}{\langle r^2 \rangle} \quad \beta_y \propto \frac{\langle r^2 Y_2^2 + r^2 Y_2^{-2} \rangle}{\langle r^2 \rangle}$

$$\beta_2 = \sqrt{\beta_x^2 + \beta_y^2}$$
 $\gamma = \arctan \frac{\beta_y}{\beta_x}$

(a) $Y_2^2 \propto \hat{Q}_{22}$

Filip Agert, Erik Kronkvist

(b) $Y_2^0 \propto \hat{Q}_{20}$

30th October 2024 22/25

Experiments

Method

Results

Chromium-50 Neon-20

Conclusion

Table of average values $_{\rm Grid\ 1}$

The values in this table correspond to the Yrast states (lowest energy) of the corresponding angular momentum in the first column.

Table 1: Statistical average value and standard deviation results for grid C

Ι		Е	Correlation E	ω	Δ	β_2	γ	j _x
0+	$\overline{A_i}(\Gamma)$	-152.559623	9.473676	0.46	1.02	0.35	17.6°	1.06
	$\Delta A(\Gamma)$	± 2.722149		± 0.27	± 0.12	± 0.09	$\pm 13.6^{\circ}$	± 1.12
1+	$\overline{A_i}(\Gamma)$	-153.201444	2.114562	0.46	1.03	0.32	16.2°	2.18
	$\Delta A_i(\Gamma)$	± 2.093619		± 0.26	± 0.11	± 0.07	$\pm 12.8^{\circ}$	± 1.59
2+	$\overline{A_i}(\Gamma)$	-152.733812	7.097223	0.50	1.02	0.35	15.9°	1.22
	$\Delta A_i(\Gamma)$	± 2.636391		± 0.28	± 0.11	± 0.09	$\pm 13.1^{\circ}$	± 1.23
3+	$\overline{A_i}(\Gamma)$	-153.313597	2.061610	0.50	1.01	0.33	14.1°	1.48
	$\Delta A_i(\Gamma)$	± 1.983384		± 0.26	± 1.03	± 0.09	$\pm 11.7^{\circ}$	± 1.39
4+	$\overline{A_i}(\Gamma)$	-152.851748	5.117888	0.54	1.02	0.32	15.9°	1.86
	$\Delta A_i(\Gamma)$	± 2.431483		± 0.28	± 0.11	± 0.09	±13.3°	± 1.79
5+	$\overline{A_i}(\Gamma)$	-153.100904	1.088491	0.52	1.00	0.30	16.6°	2.04
	$\Delta A_i(\Gamma)$	± 1.985209		± 0.28	± 0.10	± 0.10	$\pm 13.6^{\circ}$	± 1.81
6+	$\overline{A_i}(\Gamma)$	-152.353740	2.494840	0.66	1.03	0.28	16.1°	3.24
	$\Delta A_i(\Gamma)$	± 2.182303		± 0.30	± 0.11	± 0.11	$\pm 13.0^{\circ}$	± 2.30

Introduction Experiments

Method

Results

Chromium-50 Neon-20

Conclusion

Neon-20

Collective wavefunction of Yrast states

Grid without considering cranking.

Filip Agert, Erik Kronkvist

Neon-20

Ground state comparison of the two grids

Method

Results

Chromium-50 Neon-20

Conclusion

Filip Agert, Erik Kronkvist