Wavefunctions of deformed nuclei in the collective space DIVISION OF MATHEMATICAL PHYSICS - LUND UNIVERSITY

[Introduction](#page-1-0)

[Experiments](#page-4-0)

[Method](#page-5-0)

[Results](#page-8-0)

[Chromium-50](#page-8-0) [Neon-20](#page-11-0)

[Conclusion](#page-19-0)

Filip Agert

- Erik Kronkvist $\mathcal{L}_{\mathcal{A}}$
	- A project supervised by:

Wavefunctions of deformed nuclei in the collective space

- Gillis Carlsson
- Andrea Idini

How do we motivate the investigation of deformed nuclei?

Figure: from P. [M](#page-0-0)öller et.al (2012)

Filip Agert, Erik Kronkvist 30th October 2024 3/25

[Introduction](#page-1-0) **[Experiments](#page-4-0)** [Method](#page-5-0)

[Chromium-50](#page-8-0) [Neon-20](#page-11-0)

UNIVERSITY

[Introduction](#page-1-0)

- **[Experiments](#page-4-0)**
- [Method](#page-5-0)

- [Chromium-50](#page-8-0) [Neon-20](#page-11-0)
- [Conclusion](#page-19-0)

Laboratory frame

 \blacksquare Loses information about the nuclear deformation.

Problems of exploring deformed nuclei

- \blacksquare The nucleus is a superposition of intrinsic wave functions.
- Spherical symmetry
- $[\hat{L}^2, \hat{H}] = 0$

Intrinsic frame

- Well defined deformation.
- Can be found using approaches like the GCM.
- Symmetries are broken
- $[\hat{L}^2, \hat{H}] \neq 0.$

Quark Gluon Plasma at CERN

[Introduction](#page-1-0)

[Experiments](#page-4-0)

[Method](#page-5-0)

[Chromium-50](#page-8-0) [Neon-20](#page-11-0)

[Conclusion](#page-19-0)

- Extreme temperatures. m.
- Protons and neutrons \sim separates into quarks and gluons \rightarrow quark gluon plasma.
- Can be achieved through high-energy ion collisions \sim TeV.
- \blacksquare A way to probe the deformation of the nucleus.

Figure: from B. Bally (2022)

Deformation

[Introduction](#page-1-0)

[Experiments](#page-4-0)

[Method](#page-5-0)

[Results](#page-8-0)

[Chromium-50](#page-8-0) [Neon-20](#page-11-0)

The deformation of the nucleus can be shown intuitively in the (*β*2*, γ*)−plane

- $\gamma = 0^{\circ}$: Prolate shape
- $\gamma = 60^\circ$: Oblate shape
- 0 *< γ <* 60◦ : Triaxial shape

Figure: from M. Siciliano (2013)

Filip Agert, Erik Kronkvist 30th October 2024 6/25

GCM generating reference states

[Introduction](#page-1-0)

[Method](#page-5-0)

[Chromium-50](#page-8-0) [Neon-20](#page-11-0)

[Conclusion](#page-19-0)

- Generate basis states (reference state) with constraints from generator coordinates.
	- Deformation of the basis states is well defined
	- This is the intrinsic frame wave function
	- Each reference state has a unique combination of generator coordinates
- \blacksquare Find eigenvector using these basis states
- **These are the lab frame wave functions**
	- More in depth discussion of GCM by Jennifer Boström tommorow

GCM generator coordinates

[Experiments](#page-4-0)

[Method](#page-5-0)

[Results](#page-8-0)

[Chromium-50](#page-8-0) [Neon-20](#page-11-0)

[Conclusion](#page-19-0)

Generator coordinates: [*β*2*, γ, ∆*p*, ∆*n*,* j^x]

- Chromium-50: 192 reference states. $\mathcal{L}_{\mathcal{A}}$
- Neon-20: 191 reference states.

Chromium-50

Collective wavefunction of even spin yrast states $I = 0$ to $I = 14$

UNIVERSITY

Figure: From A. Idini et.al (2024)

Filip Agert, Erik Kronkvist 30th October 2024 9/25

Chromium-50 nuclear shell model

UNIVERSITY

Neon-20

Collective wavefunction of Yrast states

[Introduction](#page-1-0)

Average values and smearing of the generator coordinates

 $\overline{C} = \sum$ j

 $|g_j|^2C_j$

[Experiments](#page-4-0)

[Method](#page-5-0)

[Chromium-50](#page-8-0)

[Neon-20](#page-11-0)

Average value:

Standard deviation:

$$
\Delta C = \left\{ \left[\sum_j |g_j|^2 C_j^2 \right] - \left[\overline{C} \right]^2 \right\}^{1/2}
$$

 C_i collective coordinate and g_i collective coefficient for reference state j.

Correlation energy

[Experiments](#page-4-0)

[Method](#page-5-0)

[Results](#page-8-0)

[Chromium-50](#page-8-0)

[Neon-20](#page-11-0)

Correlation energy = $\overline{E} - \langle E \rangle$

where \overline{E} is the average energy and $\langle E \rangle$ is the energy of the eigenstate to the Hamiltonian.

[Introduction](#page-1-0)

[Experiments](#page-4-0)

[Method](#page-5-0)

[Results](#page-8-0)

[Chromium-50](#page-8-0)

[Neon-20](#page-11-0)

[Conclusion](#page-19-0)

Filip Agert, Erik Kronkvist 30th October 2024 16/25

[Introduction](#page-1-0)

[Experiments](#page-4-0)

[Method](#page-5-0)

[Results](#page-8-0)

[Chromium-50](#page-8-0)

[Neon-20](#page-11-0)

[Conclusion](#page-19-0)

Filip Agert, Erik Kronkvist 30th October 2024 17/25

[Introduction](#page-1-0)

[Experiments](#page-4-0)

[Method](#page-5-0)

[Results](#page-8-0)

[Chromium-50](#page-8-0)

[Neon-20](#page-11-0)

[Conclusion](#page-19-0)

Filip Agert, Erik Kronkvist 30th October 2024 18/25

[Introduction](#page-1-0)

[Experiments](#page-4-0)

[Method](#page-5-0)

[Results](#page-8-0)

[Chromium-50](#page-8-0)

[Neon-20](#page-11-0)

[Conclusion](#page-19-0)

Filip Agert, Erik Kronkvist 30th October 2024 19/25

Conclusion

[Introduction](#page-1-0) **[Experiments](#page-4-0)**

- [Method](#page-5-0)
- [Results](#page-8-0) [Chromium-50](#page-8-0)
- [Neon-20](#page-11-0)
- [Conclusion](#page-19-0)

- Altough nuclei with spin $I = 0$ are not deformed in the labframe, they can be considered so in the intrinsic frame.
- Chromium:
	- Deformation decreases with spin
- Neon: **The State**
	- **■** $β$ ₂ is more static and well defined than $γ$ which is more spread.
	- *β*² ∼ 0*.*35 ± 0*.*15
	- *γ* ∼ 16◦ ± 13◦
- Behaviour of correlation energy interesting for further investigation.

Neon-20

[Introduction](#page-1-0) [Experiments](#page-4-0) [Method](#page-5-0) [Results](#page-8-0) [Chromium-50](#page-8-0) [Neon-20](#page-11-0) [Conclusion](#page-19-0)

UNIVERSITY

$$
E_{rot}=\frac{\hbar^2 I(I+1)}{2\mathscr{I}}
$$

Larger $\beta_2 \implies$ larger $\mathscr{I} \implies$ lower E_{rot} Larger deformation (blue line) Smaller deformation (green line)

Angular momentum

Deformation

[Experiments](#page-4-0) [Method](#page-5-0)

[Results](#page-8-0)

[Chromium-50](#page-8-0) [Neon-20](#page-11-0)

[Conclusion](#page-19-0)

How can we couple the output of GCM to nuclear deformations?

 $\beta_{\mathsf{x}} \propto \frac{\langle r^2 Y_2^0 \rangle}{\langle r^2 \rangle}$ $\frac{f(2)}{\langle r^2 \rangle}$ $\beta_y \propto$ $\left\langle r^2 Y_2^2 + r^2 Y_2^{-2} \right\rangle$ $\langle r^2 \rangle$

$$
\beta_2 = \sqrt{\beta_{\rm x}^2 + \beta_{\rm y}^2} \quad \gamma = \arctan \frac{\beta_{\rm y}}{\beta_{\rm x}}
$$

(a) $Y_2^2 \propto \hat{Q}_{22}$ (b) Y

 $\hat{Q}_2^0 \propto \hat{Q}_{20}$

Filip Agert, Erik Kronkvist 30th October 2024 22/25

Table of average values Grid 1

[Introduction](#page-1-0)

[Experiments](#page-4-0)

[Method](#page-5-0)

[Results](#page-8-0)

[Chromium-50](#page-8-0) [Neon-20](#page-11-0)

[Conclusion](#page-19-0)

The values in this table correspond to the Yrast states (lowest energy) of the corresponding angular momentum in the first column.

Table 1: Statistical average value and standard deviation results for grid C

 JD

UNIVERSITY

[Introduction](#page-1-0) [Experiments](#page-4-0) [Method](#page-5-0) [Results](#page-8-0) [Chromium-50](#page-8-0) [Neon-20](#page-11-0) [Conclusion](#page-19-0)

Neon-20

Collective wavefunction of Yrast states

Grid without considering cranking.

Filip Agert, Erik Kronkvist 30th October 2024 24/25

Neon-20

Ground state comparison of the two grids

[Method](#page-5-0)

[Results](#page-8-0)

[Chromium-50](#page-8-0) [Neon-20](#page-11-0)

[Conclusion](#page-19-0)

