SMRs – What will the impact be on ³H and ¹⁴C emissions?

LUND

UNIVERSITY

By Simon Brandt

Image credit: GE Hitachi Nuclear Energy

Background

- Electrification \rightarrow 70–160 % increase in energy usage by 2050
- Nuclear power one alternative \rightarrow
 - ~100 TWh
- Environmental Impact Assessment (EIA)
- ³H and ¹⁴C \rightarrow weak beta-emitters, but:
 - Relatively long half-lives (${}^{3}H = 12.3 \text{ a and } {}^{14}C = 5730 \text{ a}$)
 - Ease of assimilation in organic matter
- \rightarrow Largest dose-contributors from operational releases

Traditional LNPPs

- Where does ³H and ¹⁴C come from?
- PWRs and BWRs
- ~600-1500 MWe

What is an SMR?

- SMR = Small Modular Reactor
- SMRs have been suggeseted \rightarrow
- Rolls-Royce SMR & GE-Hitachi BWRX-300
- Design can vary drastically
- New technology or scaled-down proven technology
- General: lower power than traditional LNPPs
- <300 MWe
- Smaller plant footprint

BWRX-300. Credit: GE-Hitachi Nuclear Energy

Difference in emissions

- Smaller core-size
- Typical PWR/BWR core volume: ~39/64 m³
- BWRX-300 core volume (active): /19 m³
- \rightarrow larger surface area to volume ratio

Difference in emissions

- Larger surface area to volume ratio
 - \rightarrow higher neutron leakage
 - \rightarrow higher fission rate required in the reactor to achieve criticality
 - \rightarrow higher operational releases

"Simple" example

- Neutron leakage out of cylindrical PWR cores with 3 different geometries (based on 2-Group diffusion simulations):
- Core with heigth h and radius r
- Core with height h and radius 0.5r
- Core with height 0.5h and radius 0.5r
- Same volumetric power density assumed

Core dim (r, h)	Neutron leakage /Wscm ²	Ratio	Neutron leakage/Ws	Ratio
r, h	549.5	1	7.096e+8	1
0.5r, h	4572	8.32	2.51e+9	3.54
0.5r, 0.5h	9787	17.81	3.159e+9	4.45

What will we do?

- Not much publicized
- Not much focus on ^3H and ^{14}C
- Simulate core neutron flux for Rolls-Royce SMR and GE Hitachi BWRX-300 using Serpent → NEA-course in Paris
- Use calculated neutron flux for activation calculations in coolant Not sure how yet
- Estimate operational releases of ³H and ¹⁴C
- Calculate effect on releases from new nuclear power

Questions?

