

Non-linear time-dependent modelling of heterogeneous nuclear reactors

Applications to Xenon oscillations in pressurized water reactors

Master's thesis in Physics

FREDRIK ÖHRLUND

DEPARTMENT OF PHYSICS CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2023 www.chalmers.se

Master's thesis presentation:

Non-linear time-dependent modelling of heterogeneous nuclear reactors Applications to Xenon oscillations in pressurized water reactors

Awarded the 2024 SKC Sigvard Eklund price for best master's thesis

Fredrik Öhrlund, MSc

Outline of Presentation

• My Master Thesis

5 min

Simulating a reactor

3 min

•Xenon-135

7 min

Thesis background

Territori alli, fotoggan internationan Territori El accurato Territori El accuratori El accuratori El accuratori El accuratori El accuratori El accuratori	
A the second sec	
 Internet and the set of the set	
project description	

From Page 1

- In thermal nuclear reactors, there is a fission product called Xenon-135
- Its well known in reactor physics that Xe-135 can cause "xenon oscillations"
- Xenon oscillations are expected to be a more frequent problem in the future
- The DREAM group at Chalmers is currently developing methods for predicting xenon-oscillations
- "This master thesis project aims at developing modelling capabilities that allow for the calculation of the three-dimensional time-dependence of the neutron flux in a nuclear reactor for the specific purpose of studying the xenon effect."
- Unlike proprietary software, will have full access to the source code

Problem definition

$$\frac{1}{v_1} \frac{\partial}{\partial t} \phi_1(\vec{\mathbf{r}}, t) = \left[\vec{\nabla} \cdot D_1(\vec{\mathbf{r}}, t) \vec{\nabla} + \nu \Sigma'_{f,1}(\vec{\mathbf{r}}, t) - \Sigma_{a,1}(\vec{\mathbf{r}}, t) - \Sigma_r(\vec{\mathbf{r}}, t) \right] \phi_1(\vec{\mathbf{r}}, t)
+ \nu \Sigma'_{f,2}(\vec{\mathbf{r}}, t) \phi_2(\vec{\mathbf{r}}, t)
+ \alpha_{1 \to 1}(\vec{\mathbf{r}}) (\phi_1(\vec{\mathbf{r}}, t) - \phi_{eq,1}(\vec{\mathbf{r}})) + \alpha_{2 \to 1}(\vec{\mathbf{r}}) (\phi_2(\vec{\mathbf{r}}, t) - \phi_{eq,2}(\vec{\mathbf{r}}))$$

From Page 2

To summarize the remaining 5 pages of the project description:

"Here is a long list of contraints and requirements...

... please solve these equations, using a computer...

... then...

... somehow perturb the system to generate xenon oscillations"

$$\begin{split} \frac{1}{v_1} \frac{\partial}{\partial t} \phi_1(\vec{\mathbf{r}},t) &= \left[\vec{\nabla} \cdot D_1(\vec{\mathbf{r}},t) \vec{\nabla} + \nu \Sigma'_{f,1}(\vec{\mathbf{r}},t) - \Sigma_{a,1}(\vec{\mathbf{r}},t) - \Sigma_r(\vec{\mathbf{r}},t) \right] \phi_1(\vec{\mathbf{r}},t) \\ &+ \nu \Sigma'_{f,2}(\vec{\mathbf{r}},t) \phi_2(\vec{\mathbf{r}},t) \\ &+ \alpha_{1\to 1}(\vec{\mathbf{r}}) (\phi_1(\vec{\mathbf{r}},t) - \phi_{eq,1}(\vec{\mathbf{r}})) + \alpha_{2\to 1}(\vec{\mathbf{r}}) (\phi_2(\vec{\mathbf{r}},t) - \phi_{eq,2}(\vec{\mathbf{r}})) \\ \frac{1}{v_2} \frac{\partial}{\partial t} \phi_2(\vec{\mathbf{r}},t) &= \Sigma_r(\vec{\mathbf{r}},t) \phi_1(\vec{\mathbf{r}},t) + \left[\vec{\nabla} \cdot D_2(\vec{\mathbf{r}},t) \vec{\nabla} - \Sigma_{a,2,wox}(\vec{\mathbf{r}},t) \right] \phi_2(\vec{\mathbf{r}},t) \\ &+ \alpha_{1\to 2}(\vec{\mathbf{r}}) (\phi_1(\vec{\mathbf{r}},t) - \phi_{eq,1}(\vec{\mathbf{r}})) + \alpha_{2\to 2}(\vec{\mathbf{r}}) (\phi_2(\vec{\mathbf{r}},t) - \phi_{eq,2}(\vec{\mathbf{r}})) \\ &- \sigma_X X(\vec{\mathbf{r}},t) \phi_2(\vec{\mathbf{r}},t) \\ &\frac{\partial}{\partial t} I(\vec{\mathbf{r}},t) &= \gamma_I \Sigma'_{f,1}(\vec{\mathbf{r}},t) \phi_1(\vec{\mathbf{r}},t) + \gamma_I \Sigma'_{f,2}(\vec{\mathbf{r}},t) \phi_2(\vec{\mathbf{r}},t) - \lambda_I I(\vec{\mathbf{r}},t) \\ &\frac{\partial}{\partial t} X(\vec{\mathbf{r}},t) &= \gamma_X \Sigma'_{f,1}(\vec{\mathbf{r}},t) \phi_1(\vec{\mathbf{r}},t) + \gamma_X \Sigma'_{f,2}(\vec{\mathbf{r}},t) \phi_2(\vec{\mathbf{r}},t) + \lambda_I I(\vec{\mathbf{r}},t) - \lambda_X X(\vec{\mathbf{r}},t) \\ &- \sigma_X X(\vec{\mathbf{r}},t) \phi_2(\vec{\mathbf{r}},t). \end{split}$$

$$\begin{split} \mathbf{XS INPUT DATA} \\ D_1(\vec{\mathbf{r}}) \quad D_2(\vec{\mathbf{r}}) \\ &\Sigma_{f,1}(\vec{\mathbf{r}}) \quad \nabla \Sigma_{f,2}(\vec{\mathbf{r}}) \\ &\Sigma_{r}(\vec{\mathbf{r}}) \end{split}$$

$$\begin{split} \mathbf{Xer}(\vec{\mathbf{r},t) = \sum_{r,r} (\vec{\mathbf{r},r)} \nabla \Sigma_{r,2}(\vec{\mathbf{r},r)} \\ &\Sigma_r(\vec{\mathbf{r},r) \end{matrix}$$

Problem definition

My workflow

Simulating a reactor

Xenon poisoning

Evolution chain of Xenon-135

Xenon poisoning

Xenon poisoning $\bullet \phi_1(\vec{r},t)$ $\phi_2(\vec{r},t)$ U-235 $\implies X(t) = \frac{\lambda_I}{\lambda_I - \lambda_X} \left(e^{-\lambda_X t} - e^{-\lambda_I t} \right) I_0 + e^{-\lambda_X t} X_0$ I-135 9000 8000 6.7 h 9.2 h Xe-135 7000 6000 5000 4000 3000 **Evolution chain of Xenon-135** 2000 fission 1000 0 20 100 120 160 40 60 80 140 180 ββ time [h] 135₁ ¹³⁵Cs 6.7 h 9.2 h (n, y) ¹³⁶Xe

Xenon poisoning

Fig. 4.10 Evolution of the poisoning due to ${}^{135}Xe$ after the start of the reactor (t=0), after a reactor scram (t=100 h), and after a reactor restart (t=130 h) (the horizontal dashed lines represent the equilibrium poisonings).

Xenon oscillations

Non-linear time-dependent modelling of heterogeneous nuclear reactors

Applications to Xenon oscillations in pressurized water reactors

Master's thesis in Physics

FREDRIK ÖHRLUND

DEPARTMENT OF PHYSICS CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2023 www.chalmers.se

Master's thesis presentation:

Non-linear time-dependent modelling of heterogeneous nuclear reactors

Awarded the 2024 SKC Sigvard Eklund price for best master's thesis

Fredrik Öhrlund, MSc

Highlight from the development process

Simulation to induce Xenon oscillations: Core-Averaged Quantities (dt = 900[s])

- Time-evolution is done with the Crank-Nicolson method,
- Asymptotically stable (A-stable)
- This means that the method is numerically stable for arbitrarily large time-steps...

From a certain perspective, this is not an error/mistake, but is in fact the correct solution according to Crank-Nicolson...

- When I handed in my thesis for grading and I had officially finished my work on the project, I still wasn't done with the problem.
- 1. Numerical oscillations fascinated me, wanted to find general solution.
- 2. Arbitrary XS-perturbation
- 3. Adaptive time-stepping
- So after I finished my thesis, I completely rewrote my entire code from scratch, and fixed/implemented points 1-3.
- It turned out that this required roughly as much time and effort as the entire original master's thesis project.
- Lines of code: 4485
- I would happily tell you everything about this!