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Outline of Presentation

* My Master Thesis 5 min

* Simulating a reactor 3 min

e Xenon-135 7 min



Thesis background
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In thermal nuclear reactors, there is a fission product called Xenon-135
Its well known in reactor physics that Xe-135 can cause ”xenon oscillations”
Xenon oscillations are expected to be a more frequent problem in the future

The DREAM group at Chalmers is currently developing methods for predicting
xenon-oscillations

”This master thesis project aims at developing modelling capabilities that allow
for the calculation of the three-dimensional time-dependence of the neutron

flux in a nuclear reactor for the specific purpose of studying the xenon effect.”

Unlike proprietary software, will have full access to the source code



Problem definition
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To summarize the remaining 5 pages of the project description:

”Here is a long list of contraints and requirements...

... please solve these equations, using a computer...

... then...

... somehow perturb the system to generate xenon oscillations”
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My workflow
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Wrote a steady-state solver

Wrote a time-integration solver

. . Implemented CRB perturbations Non-linear time-dependent modelling of
Xenon oscillations Generated some xenon oscillations heterogeneous nuclear reactors

Applications to Xenon oscillations in pressurized water reac-
tors
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Simulating a reactor ........

Electric Sweden AB
Figure Credit: Swedish Academic

Initiative in radiation and Nuclear
Technology research and development
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a Continuous-energy Monte Carlo neutron and photon transpott code

~17 million




Simulating a reactor
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Jacobian Sparsity Pattern

Simulating a reactor

Homogeneous

nodes \\ - T
A0 N

dz = nonzeros = 5,477,373

e 1. InvertJacobian 1000-10000

C\ / times per simulation N
51% ‘ Characteristic

” _ - " _ Time-scales:
243712 [“u(51)
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(_, j>_ ~10ns Time-scales spanning
Do (T, 1) | L g ms ~1011

! ~1h
X (I‘, t) | 2. Extremely stiff dynamics ->

-> Numerical oscillations




Xenon poisoning

Evolution chain of Xenon-135
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Xenon poisoning
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Xenon poisoning
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Xenon poisoning
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Xenon poisoning

Figure Credit:

C. Demaziere, ”Physics of Nuclear Reactors”, p. 179
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Fig. 4.10  Evolution of the poisoning due to 133 ye after the start of the reactor (t=0),
after a reactor scram (t=100 h), and after a reactor restart (t=130 h) (the
horizontal dashed lines represent the equilibrium poisonings).



Xenon oscillations
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Simulation to induce Xenon oscillations: Core-Averaged Quantities (dt = 900(s])
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, Simulation to induce Xenon oscillations: Axial Shape Index (dt = 900[s])
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Jacobian Sparsity Pattern

Simulating a reactor

Homogeneous

nodes \\ | T
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dz = nonzeros = 5,477,373 |
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* Real example from my code: Solve Ax=Db
« A\b (MatLab): 125s

 |LU(A) + GMRES(A,b) 0.11s

1 - * 1136x speedup

1.25 1

075 | ¢ Thetotal run-time of a simulation becomes
b1 (t) —a(t) —I(t) —X(2) . 2 days 6 hours
| e 180s
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Highlight from the development process

Simulation to induce Xenon oscillations: Core-Averaged Quantities (dt = 900[s])
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* Time-evolutionis done with the
Crank-Nicolson method,

|« Asymptotically stable (A-stable)

* This means that the method is
numerically stable for arbitrarily
large time-steps...
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Simulation to induce even worse Numerical oscillations (dt = 900(s])
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When | handed in my thesis for grading and | had officially finished my work
on the project, | still wasn’t done with the problem.

. Numerical oscillations fascinated me, wanted to find general solution.
. Arbitrary XS-perturbation
. Adaptive time-stepping

So after | finished my thesis, | completely rewrote my entire code from
scratch, and fixed/implemented points 1-3.

It turned out that this required roughly as much time and effort as the
entire original master’s thesis project.
Lines of code: 4485

| would happily tell you everything about this!
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