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Why is this a difficult problem

Why is this so difficult?
“Just write down all possible terms”
Same theory can look very different
Redundant terms

Simple example

Take an O(N) symmetric free field theory: Φ =

φ1
...
φN


g ∈ O(N): Φ → gΦ
L = 1

2∂µΦ
T∂µΦ− 1

2Φ
TΦ

Describes N noninteracting scalars of the same mass m
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Why is this a difficult problem: example

Take an O(N) symmetric field theory: Ψ =

ψ1
...
ψN


g ∈ O(N): Ψ → gΨ
Take the Lagrangian

L =
1
2∂µΨ

T∂µΨ− 1
2m2ΨTΨ+ λ∂µΨ

T∂µΨΨTΨ− λm2 (ΨTΨ
)2

+
1
2λ

2∂µΨ
T∂µΨ

(
ΨTΨ

)2
+ 4λ2ΨT∂µΨΨT∂µΨΨTΨ− 1

2λ
2m2 (ΨTΨ

)3

Describes N noninteracting scalars of the same mass m
Check it with Feynman diagrams if you like
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Why is this a difficult problem: example

Why are these two the same?
The two are related by Φ = Ψ

(
1 + λΨTΨ

)
Theorem in field theory: field redefinitions do not change the physics

Why didn’t you hear about it in (introductory) field theory?
In (obviously) renormalizable field theory: very little allowed
But also here: explains why CKM matrix with 9 parameters only gives you three
mixing angles and one phase

And there are even more things you can do
Important since in effective field theories you want to know how many free
parameters you have at a given order
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Chiral Perturbation Theory

Exploring the consequences of
the chiral symmetry of QCD
and its spontaneous breaking

using effective field theory techniques

Derivation from QCD:
H. Leutwyler,
On The Foundations Of Chiral Perturbation Theory,
Ann. Phys. 235 (1994) 165 [hep-ph/9311274]

For references to lectures see: http://www.thep.lu.se/∼bijnens/chpt.html
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Chiral Perturbation Theory

A general Effective Field Theory:
Relevant degrees of freedom
A powercounting principle (predictivity)
Has a certain range of validity

Chiral Perturbation Theory:
Degrees of freedom: Goldstone Bosons from spontaneous breaking of chiral
symmetry
Powercounting: Dimensional counting in momenta/masses
Breakdown scale: Resonances, so about Mρ.
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Chiral Symmetry

Chiral Symmetry

QCD: Nf light quarks: equal mass: interchange: gV ∈ SU(Nf )V :

q =

 q1
...

qNf

 → gV q

But LQCD =
∑

q=u,d,...
[i q̄LD/ qL + i q̄RD/ qR − mq (q̄RqL + q̄LqR)]

So if mq = 0 then SU(Nf )L × SU(Nf )R .
Spontaneous breakdown

〈q̄q〉 = 〈q̄LqR + q̄RqL〉 6= 0
SU(Nf )L × SU(Nf )R broken spontaneously to SU(Nf )V
Nf (Nf − 1) generators broken =⇒ Nf (Nf − 1) massless degrees of freedom
and interaction vanishes at zero momentum
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Goldstone Bosons

Power counting in momenta: Meson loops, Weinberg powercounting

rules one loop example

p2

1/p2

∫
d4p p4

(p2)2 (1/p2)2 p4 = p4

(p2) (1/p2) p4 = p4
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Goldstone Bosons

Full symmetry group: G
Unbroken symmetry group: H
Goldstone bosons live on the coset G/H
I will talk about two cases only:

SU(Nf )× SU(Nf )/SU(Nf ) with G/H ≈ SU(Nf )
SO(N)/SO(N − 1) with G/H = SN−1 (surface of N-dimensional sphere)

Parametrize by
U = exp

(
i
√

2
F M

)
with U†U = 1

U → gRUg†
L for (gL, gR) ∈ SU(N)L × SU(N)R

M = φiT i and T i the generators of SU(N)
φi are the N(N − 1) are the Goldstone Boson fields
ΦT = (φ0 . . . φN−1) /F with ΦTΦ = 1
Φ → gΦ for g ∈ SO(N)
φ1, . . . , φN−1 are the Goldstone Boson fields
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External field and spurions: example

Quark masses in the Lagrangian: qT = (u d s)
−
∑

q=u,d,s mq (qLqR + qRqL) =
−qLdiag(mu,md ,ms)qR − qRdiag(mu,md ,ms)qL

Not invariant under chiral symmetry
Make it invariant by defining a spurion (field) X → gRXg†

L
Write in QCD the term −qRXqL − qLX †qR instead of quark masses
Use now in the low-energy effective theory both U and χ = 2B0X
Method can be generalized to other cases
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External field method

Problem: Ward identities for fields that transform nonlinearly
Solution: Gasser, Leutwyler 84,85: use external field method and generate Green
functions of QCD currents/densities from those
with qT = (u d s · · · ):

LQCD = −1
4GµνGµν + qiγµ (Dµ − ivµ − iaµγ5) q − qsq + qiγ5pq

vµ, aµ, s, p are Nf × Nf matrices: the external fields
Chiral symmetry made local gL, gR ∈ SU(Nf )L × SU(Nf )R

qL,R −→ gL,RqL,R , X = s + ip −→ gR(s + ip)g†
L

`µ ≡ vµ − aµ −→ gL`µg†
L − i∂µgLg†

L, rµ ≡ vµ + aµ −→ gR rµg†
R − i∂µgRg†

R

s, p, `µ, rµ: external fields
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External field method

Define Green functions of QCD currents by functional derivatives w.r.t. the
external fields of

ZQCD(vµ, aµ, s, p) =
∫
[dqdqdG] exp

(
i
∫

d4xLQCD

)
Put in photons in vµ, quark masses in s,… by comparing with the Lagrangian
withose parts included
If dealing with other operators: add more external fields (spurions)
Now write theory with the Goldstone bosons φa:
ZChPT (vµ, aµ, s, p) =

∫
[dφa] exp

(
i
∫

d4xLChPT
)

LChPT has the same (chiral) symmetries as LQCD

Finally (proof follows from all singularities at low energies included this way,
the remainder can be Taylor expanded)
ZQCD(vµ, aµ, s, p) ≈ ZChPT (vµ, aµ, s, p)



Chiral
Lagrangians at
Higher Orders

Johan Bijnens

Introduction

Chiral
Perturbation
Theory

Building
blocks

Earlier

Constructing

Results

Conclusions

13/41

Building blocks: SU(Nf )L × SU(Nf )R → SU(Nf )V

We can now use a somewhat different notation: advantage only
transformations under the unbroken subgroup needed
Callan, Coleman, Wess, Zumino 1969

u = exp iφ/(
√

2F ) =
√

U −→ gRuh† = hug†
L

uµ ≡ i
(

u†(∂ − irµ)u − u(∂µ − i`µ)u†
)
−→ huµh†

Γµ =
1
2

(
u†(∂ − irµ)u + u(∂µ − i`µ)u†

)
−→ hΓµh† − ∂µhh†

Γµ can be used to define a covariant derivative
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Building blocks: SU(Nf )L × SU(Nf )R → SU(Nf )V

∇µΨ = ∂µΨ+ ΓµΨ for Ψ → hΨ
∇µX = ∂µX + [Γµ,X ] for X → hXh†

χ ≡ 2B0(s + ip) −→ gRχg†
L

FLµν = ∂µ`ν − ∂ν`µ − i [`µ, `ν ] −→ gLFLµνg†
L

FRµν = ∂µrν − ∂νrµ − i [rµ, rν ] −→ gRFRµνg†
R

χ± ≡ u†χu† ± uχ†u
f±µν = uFLµνu† ± u†FRµνu
Final building blocks all go as X −→ hXh†:
Order p1: uµ,∇µ; order p2 χ±, f±µν

〈uµ〉 = 〈f±µν〉 = 0
Other choices, purely left-handed,… transformations are possible
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Building blocks: SU(Nf )L × SU(Nf )R → SU(Nf )V

Transformations under discrete symmetries
P C h.c.

uµ −ε(µ)uµ uT
µ uµ

χ± ±χ± χT
± ±χ±

f±µν ±ε(µ)ε(ν)f±µν ∓f T
±µν f±µν

ε(0) = −ε(i = 1, 2, 3) = 1.
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Lagrangians: Lowest order

Nf = 2 and add for Nf = 3 φ(x) =


π0
√

2
+

η8√
6

π+ K+

π− − π0
√

2
+

η8√
6

K0

K− K̄0 −2 η8√
6

 .

p0: no building block exists
LO or p2: 〈uµuµ〉 , 〈∇µuµ〉 , 〈χ+〉 , 〈χ−〉,
use P and 〈uµ〉 = 0
L2 =

F 2
0
4 [〈uµuµ〉+ 〈χ+〉]

Usually in terms of U = u2 −→ gRUg†
L and DµU = ∂µU − irµU + iUlµ ,

L2 =
F 2

0
4
[〈

DµUDµU†〉+ 〈
χU† + Uχ†〉]
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Lagrangians: Lagrangian structure

2 flavour 3 flavour PQChPT/Nf flavour
p2 F ,B 2 F0,B0 2 F0,B0 2
p4 l ri , hr

i 7+3 Lr
i ,Hr

i 10+2 L̂r
i , Ĥr

i 11+2
p6 cr

i 52+4 C r
i 90+4 K r

i 112+3

p2: Weinberg 1966
p4: Gasser, Leutwyler 84,85
p6: JB, Colangelo, Ecker 99,00

à Li LEC = Low Energy Constants = ChPT parameters
à Hi : contact terms: value depends on definition of currents/densities
à Finite volume: no new LECs
à Other effects: (many) new LECs
à Many extensions classified: εµναβ , weak decays,…



Chiral
Lagrangians at
Higher Orders

Johan Bijnens

Introduction

Chiral
Perturbation
Theory

Building
blocks

Earlier

Constructing

Results

Conclusions

18/41

P ,C Hermitian conjugate (H)

Xi : a building block
P : enforce by having an even number of parity-odd blocks ( we assume no
εµναβ)
C and H relate the same building blocks

C (〈X1 . . .Xn〉) = ±〈XT
1 . . .XT

n 〉 = ±〈Xn . . .X1〉 ,

(〈X1 . . .Xn〉)† = 〈X †
n . . .X

†
1〉 = ±〈Xn . . .X1〉 ,

Oi −→ λC
± λ

h.c.
± Oj look at (±,±)

i = j

(+,+) : Oi = O+
i (−,+) : Oi = O−

i ,

(+,−) : Oi = iO+
i (−,−) : Oi = iO−

i .
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P ,C Hermitian conjugate (H)

j 6= i

(+,+) : Oi =
O+

i + iO−
i

2 , Oj =
O+

i − iO−
i

2 ,

(−,+) : Oi =
iO+

i +O−
i

2 , Oj =
−iO+

i +O−
i

2 ,

(+,−) : Oi =
iO+

i +O−
i

2 , Oj =
iO+

i −O−
i

2 ,

(−,−) : Oi =
O+

i + iO−
i

2 , Oj =
−O+

i + iO−
i

2 .

The final Lagrangian should only contain the monomials O+
i .
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Constraints

p2, p4, p6 were done essentially by hand
p8 way too many terms for that
use FORM
Cyclicity: use cyclic functions
Check all ways of relabelling indices explicitly
use Python to rewrite FORM output back into FORM commands
Easier to work with single term operators for all relations: rewriting in O+

i
done at the end
Done also for the anomalous case (like needed for π0 → γγ) up to p8
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Contact terms

Building blocks: χ, χ†,FLµν ,FRµν

all under same simple group lost
Covariant derivatives:

Dµχ = ∂µχ− irµχ+ iχ`µ
DρFLµν = ∂ρFLµν − i`ρχ+ iFLµν`ρ

DρFRµν = ∂ρFRµν − irρχ+ iFRµνrρ

P ,C ,H more tricky as well
If finite Nf : (Kaplan-Manohar)
new operator of order p2Nf −2, not singular for χ→ 0
χ̃ ≡

(
det(χ)χ−1)† −→ gR χ̃g†

L .

Nf = 2 : χ̃ =

(
x∗22 −x∗21
−x∗12 x∗11

)
,

Nf = 3 : χ̃ =

x∗22x∗33 − x∗23x∗32 x∗31x∗23 − x∗21x∗33 x∗21x∗32 − x∗31x∗22
x∗32x∗13 − x∗12x∗33 x∗11x∗33 − x∗31x∗13 x∗31x∗12 − x∗11x∗32
x∗12x∗23 − x∗22x∗13 x∗21x∗13 − x∗11x∗23 x∗11x∗22 − x∗12x∗21


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Sources of relations

Partial integration/total derivatives
Terms that can be removed by LO EOM/field redefinitions
“Commuting of partial derivatives”
Bianchi identity
Cayley Hamilton (for finite Nf )
Schouten identity
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Partial integration/Total derivatives

Partial integration can lead to very different looking terms
Main problem: how to make sure we have all of them
Solution: each partial derivative relation corresponds to a total derivative
Classify all invariant monomials as before but now with one free Lorentz index
Take ∂µ of those and it gives all partial integration relations
Example:

0 = ∂µ 〈∇µuνuνuαuα〉
= 〈∇µ∇µuνuνuαuα〉+ 〈∇µuν∇µuνuαuα〉

+ 〈∇µuνuν∇µuαuα〉+ 〈∇µuνuνuα∇µuα〉

Having all relations allows for many simplifications later
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Field redefinitions – LO equations of motion

The S-matrix does not change under a field redefinition: φ = φ′ + F (φ′) with
F (x → 0) → 0 fast enough.
In the functional integral: “just” a change of variables
For classifying a Lagrangian: equivalent to removing “equation of motion
terms”
Simple explanation in the one-flavour case
Works also if symmetries present
Need a concept of power-counting or otherwise ordering
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Field redefinitions – LO equations of motion

Use g to indicate orders

L =

(
1
2∂

µφ∂µφ− V0(φ)

)
+ g

[(
∂2φ+ V ′

0(φ)
)

V1EOM(φ, ∂φ) + V1(φ, ∂φ)
]
+O(g2)

Now define φ = φ′ + gV1EOM(φ′, ∂φ′)

L =

(
1
2∂

µφ′∂µφ
′ − V0(φ

′)

)
+ g

(
∂µφ∂µ(V0(φ

′)− V ′
0(φ

′)
)

V1EOM(φ′, ∂φ′)

+ g
(
∂2φ′ + V ′

0(φ
′)
)

V1EOM(φ′, ∂φ′) + gV1(φ
′, ∂φ′)

+O(g2) Note: O(g2) changed
After partial integration: EOM terms at O(g) cancel but changes at higher orders:
using EOM OK for classifying terms, not for doing calculations
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Field redefinitions vs EOM

Do order by order (include g2 changes from step 1)
φ′ = φ′′ + g2V2EOM(φ′′, ∂φ′′)

More than one field also works: use
φa = φa′ + gV a

1 ({φb′, ∂φb′})
What about symmetries?

L = L0 + gL1 + g2L2 + · · ·
Each Li is invariant under the symmetry
EOMa is derived by φa → φa + δφa where δφa must be compatible with the
symmetry
L0 → L0 + (δφaEOMa) means that δφaEOMa is invariant under the symmetry
EOM terms in Li are invariant under the symmetry and of the form
EOMaV a

i ({φb , ∂φb})
=⇒ φa = φ′ + g iV a

i ({φb′, ∂φb′}) are field transformations compatible with the
symmetry that remove the EOM terms
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Field redefinitions – LO equations of motion

So we use
∇µuµ − i

2

(
χ− − 1

Nf
〈χ−〉

)
= 0 .

take all operators, look for ∇µuµ and replace by above to get a relation
Example
operator: 〈χ+uρχ+∇ρ∇µuµ〉
relation: 0 = 〈χ+uρχ+∇ρ∇µuµ〉 − i

2〈χ+uρχ+∇ρχ−〉
+ i

2Nf
〈χ+uρχ+〉〈∇ρχ−〉

Since we have all operators, all partial integrations and all “commuting”: only
need to do it for “naked” ∇µuµ.
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“Commuting of partial derivatives”/Bianchi

Commuting:
f−µν −∇νuµ +∇µuν = 0
[∇µ,∇ν ]X = [Γµν ,X ]
Γµν = 1

4 [uµ, uν ]− i
2 f+µν

Bianchi
Bµνρ ≡ ∇µΓνρ +∇νΓρµ +∇ρΓµν = 0 .

Bµνρ =
1
4

([
uρ, f−µν

]
+
[
uµ, f−νρ

]
+
[
uν , f−ρµ

])
− i

2

(
∇ρf+µν +∇µf+νρ +∇ν f+ρµ

)
Generate all terms including Bµνλ

∇ρBµνλ not needed: we have all p.i. relations
DµFLνρ + DµFLνρ + DµFLνρ = 0 (and L ↔ R)
follow from “Commuting” and Bianchi for Γµν
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Cayley-Hamilton relations

Any matrix A satistfies its own characteristic polynomial:
p(λ) ≡ det (λI − A) , and p(A) = 0 .
Expand in 1/λ using p(λ) = λn exp {tr [ln(I − A/λ)]}
The expansion has no terms negative in λ and stops at λn

This leads to the relations

n = 1 : A − I 〈A〉 = 0

n = 2 : A2 − A 〈A〉 − 1
2 I

〈
A2〉+ 1

2 I 〈A〉2 = 0

n = 3 : A3 − A2 〈A〉 − 1
2A

〈
A2〉+ 1

2A 〈A〉2 − 1
3 I

〈
A3〉

+
1
2 I 〈A〉

〈
A2〉− 1

6 I 〈A〉3 = 0

The last terms with I always are related to det(A).
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Cayley-Hamilton relations

Make more useful by A = B + C + · · ·
n = 2: A = B + C , only keep terms with B and C :
{B,C} = B 〈C〉+ C 〈B〉+ 〈BC〉 − 〈B〉 〈C〉 .
n = 3 and 〈B〉 = 〈C〉 = 〈D〉 = 〈E〉 = 0 use A = B + C + D, multiply by E
and take trace∑
6 perm

〈BCDE〉 =
∑

3 perm
〈BC〉 〈DE〉 .

Simply taking the trace of the relations does not give any new results, that is
satisfied automatically.
When implementing: use B,C , . . . as building blocks and products of building
blocks
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Schouten identity

No fully antisymmetric tensor with five indices in four dimensions
We have assumed no εµναβ : only relevant when have 5 different indices, so
just from p10

Very relevant for the anomalous case including εµναβ
It’s never clear whether more relations exist in this way

can you determine all LECs from explicit Green functions (or experiment)
Number of terms can be determined from “Hilbert series” (very mathematical)
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What to keep

Preferentially keep/remove (as much as possible):
1 Keep maximal number of independent contact terms
2 Remove terms that vanish when external fields vanish
3 Remove terms with covariant derivatives in favour of those involving external

fields.
4 Remove terms that contribute to processes with a low number of mesons,

count occurrences of uµ, χ− and f−µν .
5 Scalar-pseudoscalar external fields are placed before those with only

vector-axial-vector external fields.
6 Keep terms with lower number of flavour traces. This is to make the large Nc

counting of the monomials explicit, only leading in Nc is equivalent to keeping
only single trace monomials.

Still leaves a choice to be made which to keep
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Technically

FORM for the main part: generating all terms and relations.
equivalent terms produced by FORM, using Python rewritten back into
FORM.
Identical relations removed using FORM
Final number of independent relations done with Gaussian elimination (sparse
matrix methods) with gmp exact arithmetic
Main restriction: memory size, not CPU time (but grows very fast with order)
Up to 50 000 monomials, 200 000 relations
JB, Nils Hermansson-Truedsson, Si Wang, JHEP 01 (2019) 102 [1810.06834] p8 normal
JB, Nils Hermansson-Truedsson Joan Ruiz-Vidal, JHEP 01(2024)009 [12310.2054] p8 anomalous
JB, Sven Bjarke Gudnason, Jiahui Yu, Tiantian Zhang, JHEP 05 (2023) 061 [2212.07901]
Testing Hilbert series for O(N) model in many dimensions and up to p12
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Results: p8 normal all

Nf Nf = 3 Nf = 2
Total Contact Total Contact Total Contact

p2 2 0 2 0 2 0
p4 13 2 12 2 10 3
p6 115 3 94 4 56 4
p8 1862 22 1254 21 475 23

Table: Number of monomials in the minimal basis for the case with all external fields
included. Also listed is how many of them are contact terms. Our results agree with the
known ones for p2, p4, p6.
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Results: p8 normal only vector-axial-vector

Nf Nf = 3 Nf = 2
Total Contact Total Contact Total Contact

p2 1 0 1 0 1 0
p4 7 1 6 1 5 1
p6 59 2 44 2 27 2
p8 963 15 591 13 238 11

Table: Number of monomials in the minimal basis for the case with no scalar or
pseudoscalar external fields included. Also listed is how many of them are contact terms.

Note: tested using Green functions at p6

P. Ruiz-Femenía and M. Zahiri-Abyaneh, 1507.00269
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Results:p8 normal no external fields; by meson number

#mesons Nf Nf = 3 Nf = 2
p2 4 1 1 1
p4 4 4 3 2
p6 4 4 3 2

6 15 8 3
p8 4 6 5 3

6 60 31 9
8 69 20 4

Table: Number of monomials in the minimal basis for the case with no external fields
included that produce vertices starting at the given number of mesons.
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Results: p8 anomalous

〈
f µν+

〉
= 0 Nf Nf = 5 Nf = 4 Nf = 3 Nf = 2

Total Total Total Total Total
Full 999 998 950 705 92

No χ± 565 564 525 369 0
No f µν± 79 79 73 45 2
Only uµ 36 36 31 16 0

Number of monomials in the obtained minimal basis. Case
〈
f µν+

〉
= 0, which

means that the singlet non-zero trace physically relevant for Nf = 2 is not included.
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Results:p8 anomalous

〈
f µν+

〉
6= 0 Nf Nf = 5 Nf = 4 Nf = 3 Nf = 2

Full 1210 1209 1161 892 211
No χ± 702 701 662 486 77
No f µν± 79 79 73 45 2
Only uµ 36 36 31 16 0

Number of monomials in the obtained minimal basis when
〈
f µν+

〉
6= 0. Again we

include the cases where only a subset of the external field building blocks
contribute.
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Hilbert series

Uses group theory and conformal field theory to obtain the number of
operators at a given level
“plethystic exponential”
By summing characters of a representation over all group elements you can
get the dimension of the representation
L. Graf et al., 2, 12, 117, 1959, 45171, 1170086, …, JHEP 01 (2021) 142 [2009.01239]

Agreed with our p8

Can this be checked more?
Yes: do the O(N) model in various dimensions and up to p12 by also explicitly
constructing the Lagrangians
JB, Sven Bjarke Gudnason, Jiahui Yu, Tiantian Zhang, JHEP 05 (2023) 061 [2212.07901]
Testing Hilbert series for O(N) model in many dimensions and up to p12
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O(N) model Hilbert series and explicit construction

nd D N #terms
2 ≥2 ≥2 1
4 ≥2 2 1

≥3 2
6 2 2 1

≥3 3
≥3 2 2

3 4
≥4 5

8 2 2 3
3 8

≥4 9
3 2 4

3 12
≥4 15

≥4 2 4
3 13
4 16

≥5 17

nd D N #terms
10 2 2 3

3 14
≥4 16

3 2 7
3 34
4 48

≥5 49
4 2 7

3 38
4 55

≥5 58
≥5 2 8

3 39
4 57
5 60

≥6 61

nd D N #terms
12 2 2 7

3 34
4 45

≥5 46
3 2 17

3 114
4 185

≥5 193
4 2 20

3 147
4 253
5 275

≥6 276
5 2 21

3 153
4 264
5 289

≥6 292
≥6 2 21

3 154
4 265
5 291
6 294

≥7 295

Table: Type 1 # terms up to nd = 12, Hilbert series method and explicit construction
method.
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Conclusions

Constructing higher order Lagrangians is possible but not entirely trivial,
especially to get a minimal one.
Hilbert series allows for determining the number of terms independently
Ongoing: constructing higher order Lagrangians including nonleptonic weak
and electromagnetic interactions (more spurions)
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