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Microscopic methods

• Nuclear structure calculation
• Calculate spectra
• Construct optical potential
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Possibilites of microscopic methods

• Predictive power
• Exotic nuclei

• Neutron-rich
• Radioactive beams

• Shell effects
• Spectroscopic factor shows the degree of single-particle

behaviour
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Method summary

• Method includes
• Collective modes
• Correlations
• Particle-hole excitations

• Explores the huge complete Hilbert space in a systematic way
• Gives wavefunction from which observables can be calculated
• Can be extended
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Generator Coordinate Method

• Generate a basis from one or more generator coordinates

|φ (x1, x2, . . . )〉

• Use a linear combination as ansatz∫
f (x1, x2, . . . ) |φ (x1, x2, . . . )〉 d~x

(discretized)
• Solve the Hill-Wheeler equation

Hh = EOh



Background Introduction to method Constructing an optical potential Results

Overview of method

• Fit an effective Hamiltonian to the results of an Energy
Density Functional (SLy4)

• Solve the effective Hamiltonian in mean field with pairing
(HFB) with constraints as generator coordinates

• Introduce randomized particle-hole excitations (similar to
temperature)

• Project the resulting HFB states to good quantum numbers
• Solve the resulting Hill-Wheeler equation

Ljungberg et al. Phys. Rev. C 106, 014314 (2022)
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Generator coordinates

• We proceed by solving a constrained HFB equation
• Generator coordinates used:

• deformation β, γ
• pairing strengths Gn, Gp

• cranking jx

• Results in a basis of HFB states
• Randomized particle-hole excitations
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Projection

• HFB breaks symmetries, e.g.
• Particle number
• Angular momentum

• Restore using projection
• Particle number

PN = 1
2π

∫ 2π

0
ei

(
N̂−N

)
θ dθ

• Angular momentum

P I
MK = 2I + 1

8π2

∫
DI

MK
∗ (Ω) R̂ (Ω) dΩ



Background Introduction to method Constructing an optical potential Results

Method summary

• Solution in terms of linear combination of projected HFB
states

• Includes
• Collective modes through generator coordinates
• Correlations through projection and mixing
• Particle-hole excitations through temperature

• Explores the Hilbert space through choice of generator
coordinates

• Gives wavefunction from which observables can be calculated
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Odd case

• Single quasiparticle excitation on each HFB state
• Then do the same thing:

• Project the resulting HFB+1qp states
• Same effective Hamiltonian
• Solve the resulting Hill-Wheeler equation

Gives
∣∣∣Ψ±

k

〉
for A± 1

• Spectroscopic amplitudes1〈
Ψ+

k

∣∣∣a†
α

∣∣∣Ψ0
〉

1Boström et al. J. Phys.: Conf. Ser. 2586 012080 (2023)
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Green’s function

Calculate the Green’s function

GI
α,β (E) =

∑
i

〈
Ψ0

∣∣∣aα

∣∣∣Ψ+I
i

〉 〈
Ψ+I

i

∣∣∣a†
β

∣∣∣Ψ0
〉

E −
(
E+I

i − E0
)

+ iη
+ holes
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Dyson equation

• Dyson equation for self-energy Σ (E)

G (E) = G0 (E) +G0 (E) Σ (E)G (E)

• Solved for Σ (E) as

Σ (E) = G0 (E)−1 −G (E)−1
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Non-local optical potential

• Construct the potential

Va,b (E) = Σ∞
a,b + Σa,b (E)

• Expressed in momentum-space

V
(
k, k′) =

N∑
a,b

Va,bψa (k)ψ∗
b

(
k′)

• Lippmann-Schwinger equation T = V + V GfreeT

• Phase shifts and cross-sections
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24Mg spectra

Ljungberg et al. Phys. Rev. C 106, 014314 (2022)
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25Mg spectroscopic factors (positive parity)

Calculated energies colored by spectroscopic factor, compared to
experimental energies as stars.
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Preliminary 24Mg neutron cross-sections
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Preliminary 24Mg differential neutron cross-section
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Summary

• Lack of important correlations in many cross-section
calculations

• Major step towards including many-body correlations in
deformed nuclei

• Paper in progress



Effective Hamiltonian

Ĥ = Ĥ0 + ĤQ + ĤP

• Ĥ0 – Single particle part
• ĤQ – Generalized quadrupole interaction
• ĤP – Uniform seniority pairing



Effective Hamiltonian fit (24Mg)



Hill-Wheeler equation after projection

• The Hill-Wheeler equation is constructed∑
j

Hijh
n
j = En

∑
j

Oijh
n
j

• Which gives the final wavefunctions∣∣∣ΨA
n

〉
=

∑
a,K

hn
aKP

I
MKP

ZPN |φa〉

• We can now evaluate matrix elements between these states



Completeness

To insert
∑

i

∣∣∣Ψ±I
i

〉 〈
Ψ±I

i

∣∣∣ in Green’s function

a†
α |Ψ0〉 =

∑
i

∣∣∣Ψ+I
i

〉 〈
Ψ+I

i

∣∣∣a†
α

∣∣∣Ψ0
〉

No guarantee that this holds



Completing

At E → ∞, correlations vanish → should approach HF

Gα,β (E) =
∑

i

σi,α
∗ σi,β

E − εi + iη
+

M∑
i

ci,α
∗ ci,β

E − ε′i + iη

(σi,α =
〈
Ψ±

i

∣∣a†
α

∣∣Ψ0
〉
)

As few as possible while still giving HF at E → ∞
• Completely determines spectroscopic factors and energies



Backbending for 48Cr

Ljungberg et al. Phys. Rev. C 106, 014314 (2022)



24Mg 0+ wavefunction beta-gamma plane

Related to probability amplitude



Signature selection



Preliminary 24Mg neutron cross-section



Preliminary 24Mg neutron cross-section



Imaginary part

η (E) = a

π

(E − EF)2

(E − EF)2 + b2



Spectroscopic amplitudes

〈
Ψ+

k

∣∣∣a†
α

∣∣∣Ψ0
〉

=∑
a b x K

(ha x K)∗ hb

〈
Φa

∣∣∣βxP
A+1P I

KMa†
αP

0
00P

A
∣∣∣Φb

〉
=

∑
a b x K

(ha x K)∗ hb

〈
Φa

∣∣∣βxa
†
α KP

0
00P

A
∣∣∣Φb

〉
a†

α K =
∑

l

(
Ua

α K,l

)∗
β†

l + V a
α K,lβl
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