

# Anomalous $B_{4/2}$ in the Osmium isotopic chain



Irene Zanon

Royal Institute of Technology





Nuclear Physics Meeting 2024 - I. Zanon

1

# The $B_{4/2}$ anomaly



$$R_{4/2} = \frac{E_X(4^+)}{E_X(2^+)} > 2$$
$$B_{4/2} = \frac{B(E2; 4^+ \to 2^+)}{B(E2; 2^+ \to 0^+)} > 1$$



$$R_{4/2} > 2 \& B_{4/2} > 1$$
  
for collective nuclei

# The $B_{4/2}$ anomaly









# $B_{4/2}$ anomaly in Os

#### Seniority-like scenario;

[B. Cederwall et al., PRL 121 (2018)]

#### IBM calculation: triaxial rotor;

[Y. Zhang et al., PLB 834 (2022)]

#### No shape change;

[T. Grahn et al., PRC 94 (2016), A. Goasduff et al., PRC 100 (2019)]





### $B_{4/2}$ anomaly in Os

$$B_{4/2} = \frac{B(E2; 21/2^+ \to 17/2^+)}{B(E2; 17/2^+ \to 13/2^+)}$$

- B<sub>4/2</sub> = 0.79(16) in <sup>169</sup>Os [W. Zhang et al., PLB 820 (2022)]
- Same trend of the even isotopes
- > Role of unpaired neutron?



#### <sup>167</sup>Os study case



FE Reaction: <sup>78</sup>Kr(<sup>92</sup>Mo,2pn)<sup>167</sup>Os @ 360 MeV





#### Experimental setup





#### Recoil-alpha tagging





#### RDDS method







 $Ratio = \frac{D}{(IF + D)}$ 

Depends on:

- the speed;
- the distance;
- the lifetime!

#### 01/11/24



### The 17/2<sup>+</sup> state



#### The 17/2<sup>+</sup> state



| Ring                        | τ [ps]                  |                     |
|-----------------------------|-------------------------|---------------------|
| Ring O                      | 20(3)                   |                     |
| Ring 1                      | 22(2)                   |                     |
|                             |                         | 0                   |
|                             |                         | 40                  |
|                             |                         |                     |
| Agreement with $\tau = 200$ | previous data:<br>4) ps |                     |
| O'Donnel et al.,            | PRC 79 (2009)           |                     |
|                             |                         | 0 1 10 100          |
|                             |                         | Time of Flight [ps] |

Nuclear Physics Meeting 2024 - I. Zanon

#### The 21/2<sup>+</sup> state





Nuclear Physics Meeting 2024 - I. Zanon

#### The 21/2<sup>+</sup> state



| Ring     | τ [ps]    |                     |
|----------|-----------|---------------------|
| Ring 0   | 6.4(1.8)  |                     |
| Ring 1   | 5.6(1.4)  | 0.2                 |
|          |           |                     |
|          |           | 20 -                |
|          |           |                     |
| Agreemen | t between |                     |
| the tw   | o rings   |                     |
|          |           |                     |
|          |           | 1 10 100            |
|          |           | Time of Flight [ps] |



#### The 25/2<sup>+</sup> and 29/2<sup>+</sup> state



# The B<sub>4/2</sub> ratio



| Transition                  | τ [ps] | B(E2) [W.u.] |
|-----------------------------|--------|--------------|
| $17/2^+ \rightarrow 13/2^+$ | 22(1)  | 107(10)      |
| $21/2^+ \rightarrow 17/2^+$ | 6(1)   | 52(9)        |



# The $B_{4/2}$ ratio

- R<sub>4/2</sub> constant around 2.5, small staggering effect;
- B(E2; 17/2<sup>+</sup> → 13/2<sup>+</sup>) constant as a function of neutrons;
- B(E2; 21/2<sup>+</sup> → 17/2<sup>+</sup>) decreases with the number of neutrons;
- $B_{4/2}$  ratio follows a similar trend as the even equivalent.





#### Total Routhian Surface calculations



- For even-N isotopes  $(\pi, \alpha) = (+, 0)$  configuration corresponding to g.s.
- For odd-N isotopes  $(\pi, \alpha) = (+, 1/2)$  configuration corresponding to  $i_{13/2}$  yrast band
- Calculation performed at  $\hbar\omega$ =0.00 MeV and  $\hbar\omega$ =0.12 MeV



#### Total Routhian Surface calculations





#### Total Routhian Surface calculations

|                   | ħω [MeV] | β <sub>2</sub> | γ     | B(E2) <sub>th</sub> [W.u.] | B(E2) <sub>exp</sub> [W.u.] |
|-------------------|----------|----------------|-------|----------------------------|-----------------------------|
| <sup>167</sup> Os | 0.00     | 0.155          | 3.1°  | 95                         | 107(10)                     |
|                   | 0.12     | 0.155          | 8.1°  | 96                         | 52(9)                       |
| <sup>168</sup> Os | 0.00     | 0.157          | 0.6°  | 60                         | 74(13)                      |
|                   | 0.12     | 0.158          | -3.1° | 86                         | 25(13)                      |
| <sup>169</sup> Os | 0.00     | 0.168          | 2.2°  | 112                        | 104(15)                     |
|                   | 0.12     | 0.168          | 2.3°  | 116                        | 82(12)                      |
| <sup>170</sup> Os | 0.00     | 0.173          | 0.8°  | 73                         | 97(9)                       |
|                   | 0.12     | 0.174          | -3.6  | 105                        | 38 <sup>+13</sup> -7        |



#### The B<sub>4/2</sub> ratio anomaly

| 58 -       |                                                               |        |       |       |       |          |                  |          |       |       |       |       | 1     |       |                  |       |       |          |              |         |       |       |       |         |       |
|------------|---------------------------------------------------------------|--------|-------|-------|-------|----------|------------------|----------|-------|-------|-------|-------|-------|-------|------------------|-------|-------|----------|--------------|---------|-------|-------|-------|---------|-------|
|            |                                                               |        |       |       |       | 116La    | 117La            | 118La    | 119La | 120La | 121La | 122La | 123La | -     | <sup>108</sup> S | n: (  | ).86  | 6(10     | )            | 114     | Te:   | 0.8   | 4(1   | 2)      |       |
|            |                                                               |        | 112Ba | 113Ba | 114Ba | 115Ba    | 116Ba            | 117Ba    | 118Ba | 119Ba | 120Ba | 121Ba | 122Ba |       | <sup>112</sup> S | n: C  | ).39  | (6)      |              | 112     | Xe:   | 0.3   | 5(7   | ')      |       |
| 56 —       |                                                               |        | 4445- | 4426- | 4426- | 4445-    | 445.5-           | 4465-    | 4476- | 4405- | 4405- | 4205- | 1216- |       | <sup>114</sup> S | n: (  | ).52  | 2(7)     |              | 114     | Xe:   | 0.7   | 1(7   | ,<br>') |       |
|            |                                                               |        | 11105 | 11205 | 113CS | 114CS    | 115CS            | 116CS    | 117Cs | 118Cs | 119Cs | 12005 | 12105 |       |                  |       |       | ,        |              |         |       | •••   | -('   | /       |       |
| # (7) 54 - | 108Xe                                                         | 109Xe  | 110Xe | 111Xe | 112Xe | 113Xe    | 114Xe            | 115Xe    | 116Xe | 117Xe | 118Xe | 119Xe | 120Xe |       |                  |       |       |          |              |         |       |       |       |         |       |
| Prot       | 1071                                                          | 1081   | 109I  | 110I  | 111I  | 1121     | 113I             | 114I     | 115I  | 1161  | 1171  | 118I  | 1191  |       |                  |       |       |          |              | 178Pb   | 179Pb | 180Pb | 181Pb | 182Pb   | 183Pb |
| 50         | 106Te                                                         | 107Te  | 108Te | 109Te | 110Te | 111Te    | 112Te            | 113Te    | 114Te | 115Te | 116Te | 117Te | 118Te |       |                  |       |       |          | 176TI        | 177TI   | 178TI | 179TI | 180TI | 181TI   | 182TI |
| 52         | 4055h                                                         | ADCCH  | 10755 | 4005h | 10055 | 1405h    | 44456            | 44256    | 44264 | 4445h | 44556 | 44654 | 44765 |       |                  |       |       |          |              |         |       |       |       |         |       |
|            | 10550                                                         | 10650  | 10750 | 10820 | 10920 | 11050    | 11150            | 11250    | 11350 | 11450 | 11550 | 11650 | 11750 | )Hg   | 171Hg            | 172Hg | 173Hg | 174Hg    | 175Hg        | 176Hg   | 177Hg | 178Hg | 179Hg | 180Hg   | 181Hg |
| 50 —       | 104Sn                                                         | 105Sn  | 106Sn | 107Sn | 108Sn | 109Sn    | 1105n            | 111Sn    | 112Sn | 113Sn | 114Sn | 115Sn | 116Sn | Au    | 170Au            | 171Au | 172Au | 173Au    | 174Au        | 175Au   | 176Au | 177Au | 178Au | 179Au   | 180Au |
| -          | <br>54                                                        | <br>55 | 56    | 57    | 58    | 59<br>Ne | 60<br>eutron (N) | 61<br>)# | 62    | 63    | 64    | 65    | 66    | BPt   | 169Pt            | 170Pt | 171Pt | 172Pt    | 173Pt        | 174Pt   | 175Pt | 176Pt | 177Pt | 178Pt   | 179Pt |
|            |                                                               |        |       |       |       |          |                  |          | Рк    | 166Ir | 167Ir | 168Ir | 169Ir | 170Ir | 171Ir            | 172Ir | 173Ir | 174Ir    | 175Ir        | 176Ir   | 177Ir | 178Ir |       |         |       |
| Γ          | 166144 0 22451 1600 0 724461                                  |        |       |       |       |          |                  | ]        |       |       |       |       |       |       |                  |       |       |          |              |         |       |       |       |         |       |
|            | 100  VV: 0.33(5) $100  US: 0.79(16)$                          |        |       |       |       |          |                  | 76 -     | 165Os | 166Os | 167Os | 168Os | 169Os | 170Os | 171Os            | 172Os | 173Os | 174Os    | 175Os        | 176Os   | 177Os |       |       |         |       |
|            | <sup>16</sup> <b>Os: 0.49(10)</b> <sup>170</sup> Os: 0.39(10) |        |       |       |       |          |                  |          | 164Re | 165Re | 166Re | 167Re | 168Re | 169Re | 170Re            | 171Re | 172Re | 173Re    | 174Re        | 175Re   | 176Re |       |       |         |       |
|            | <sup>168</sup> Os: 0.34(19) <sup>172</sup> Pt: 0.55(19)       |        |       |       |       |          |                  | 163W     | 164W  | 165W  | 166W  | 167W  | 168W  | 169W  | 170W             | 171W  | 172W  | 173W     | 174W         | 175W    |       |       |       |         |       |
| L          |                                                               |        |       |       |       |          |                  |          |       |       |       |       | 89    | 90    | 91               | 92    | 93    | 94<br>Ne | 95<br>95 (N) | 96<br># | 97    | 98    | 99    | 100     | 101   |

#### Conclusions



#### <u>Results:</u>

- <sup>167</sup>Os successfully populated in the FE reaction;
- Lifetimes of 17/2<sup>+</sup>, 21/2<sup>+</sup>, 25/2<sup>+</sup> measured;
- B<sub>4/2</sub> < 1 observed;
- Comparison with TRS calculations.

#### Future perspective:

- Ground-state band of <sup>167</sup>Os
- Lifetime measurements in <sup>166</sup>Os



# Thank you for your attention

I. Zanon<sup>a</sup>, M. Doncel<sup>a</sup>, B. Cederwall<sup>b</sup>, T. Grahn<sup>c</sup>, A. Illana<sup>d</sup>, G. Appagere<sup>a</sup>, K. Auranen<sup>c</sup>, T. Bäck<sup>b</sup>, V. Bogdanoff<sup>c</sup>, A.D. Briscoe<sup>c,e</sup>, E.A. Cederlöf<sup>b,f</sup>, G. González Briz<sup>g</sup>, P.T. Greenlees<sup>c</sup>, R. Jashbhai Makwana<sup>g</sup>, H. Joukainen<sup>c</sup>, R. Julin<sup>c</sup>, H. Jutila<sup>c</sup>, D. Knežević<sup>h,i</sup>, J. Louko<sup>c</sup>, M. Luoma<sup>c</sup>, A. McCarter<sup>e</sup>, B.S. Nara Singh<sup>j</sup>, J. Pakarinen<sup>c</sup>, A. M. Plaza<sup>c,e</sup>, P. Rahkila<sup>c</sup>, P. Ruotsalainen<sup>c</sup>, J. Sarén<sup>c</sup>, C.M. Sullivan<sup>e</sup>, P.-E. Tegnér<sup>a</sup>, E. Uusikylä<sup>c</sup>, J. Uusitalo<sup>c</sup>, G. Zimba<sup>c</sup>

> <sup>a</sup>Department of Physics, Stockholm University, Roslagstullsbacken 21, 10691 Stockholm, Sweden <sup>b</sup>Department of Physics, KTH Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm, Sweden <sup>c</sup>Accelerator Laboratory, Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland. <sup>d</sup>Grupo de Física Nuclear and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, E-28040 Madrid, Spain <sup>e</sup>Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom <sup>f</sup>Department of Physics and Astronomy, Uppsala University, 751 20 Box 516, Uppsala, Sweden <sup>g</sup>Departamento de Física Fundamental, Universidad de Salamanca, Salamanca, Spain <sup>h</sup>Institute of Physics Belgrade, Pregrevica 118, 11080 Zemun, Serbia <sup>i</sup>Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany. <sup>j</sup>School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK