

UPPSALA UNIVERSITET

That's odd...

Anomalous lifetimes in odd-mass Te

Ebba Ahlgren Cederlöf Annual Swedish Nuclear Physics Meeting 2024.01.11

Ebba Ahlgren Cederlöf | Swedish Nuclear Physics meeting

B(E2) and collectivity

Collectivity in Te

Odd mass isotopes

Aim

- Measure lifetimes of 15/2- and 19/2- states in ¹¹⁷Te and ¹¹⁹Te
- Calculate B_{4/2}

 $B(E2) \propto \frac{1}{\tau}$

- Plunger experiment
 - RDDS
 - DDCM

Investigate vibrational
nature of midshell Te

Recoil production

• Optimized for ¹¹⁸Te [1]

[1] Cederlöf, E.A. et al., Eur. Phys. J. A 59, 300 (2023)

- Beam energy: 75 MeV
- Beam current: 4 pnA

Fusion-evaporation reaction

Lifetime measurement

- RDDS technique
- DPUNS plunger
- 8 distances
 - x: 25 215 µm
 - ToF: 6 54 ps

Gamma-ray detection

Jurogam II

- 4 rings of HPGe detectors
 - Ring 1: 5 detectors
 - Ring 2: 10 detectors
 - Ring 3 and 4: not used
 - angles ~ 90° (small Doppler shifts)
- Efficiency @ 1.3 MeV: ~ 2 % (Ring 1 + 2)

Differential Decay Curve Method

Direct gate not always possible

Problem:

- 19/2- doublet in ¹¹⁹Te
- Direct gate not possible

Solution:

• "Indirect gate" on 23/2-

DDCM with indirect gate:

$$\tau(x) = \frac{\{C_{\mathrm{s}}, A_{\mathrm{u}}\}(x) - \overline{\delta} \cdot \{C_{s}, B_{u}\}(x)}{\frac{d}{dx} \{C_{\mathrm{s}}, A_{\mathrm{s}}\}(x)} \cdot \frac{1}{v},$$

$$\delta(x) = \frac{\{C_{\rm s}, A_{\rm u}\}(x) + \{C_{\rm s}, A_{\rm s}\}(x)}{\{C_{\rm s}, B_{\rm u}\}(x) + \{C_{\rm s}, B_{\rm s}\}(x)}.$$

Shifted Unshifted

Results 117 **Te**: $15/2^- \rightarrow 11/2^-$

Direct gate

--- Fitted in Napatau

$$\tau(x) = \frac{\{B_s, A_u\}(x)}{\frac{d}{dx}\{B_s, A_s\}(x)} \cdot \frac{1}{v}$$

Ebba Ahlgren Cederlöf | Swedish Nuclear Physics meeting

Results ¹¹⁹Te: $15/2^- \rightarrow 11/2^-$

Indirect gate

Challenges:

- Lifetime of 15/2- dependent on fit of $B_{\rm u}$
- Relatively low statistics
- Sensitive to the background subtraction

Discussion

- ¹¹⁸Te shows excellent agreement with the vibrational limit, while
- Neighbouring odd-mass ¹¹⁷Te and ¹¹⁹Te show surprisingly small $B_{4/2}$ values.

- Measured lifetimes in the $h_{11/2}$ band of $^{117}\mbox{Te}$ and $^{119}\mbox{Te}$ for the first time.
- Analysis is still ongoing.
 - Challenges: Low statistics and sensitivity to background subtraction.
- Results are preliminary pointing towards unusually low $B_{4/2}$ values.

Thank you for listening!