Atomic data requirements for Non-LTE modelling of Kilonovae

Ricardo F. Silva

CompAS 25

Lund, Sweden

KILONOVA

- → Opacity of the ejecta dominated by photon absorption by atomic lines
- → Kilonova light curve and spectra modeling strongly depends on **atomic opacities**

NUCLEOSYNTHESIS SITES

LTE modelling (first few days):

→ energy levels and E1 radiative transitions

required:

Saha & Boltzmann equations

→ bolometric light curves: grey opacities from uncalibrated data good enough

→ spectral models: use of calibrated atomic data essential for line identification and obtaining the relevant spectral features

NLTE modelling (after a few days):

 \rightarrow requires additional atomic data: electron-ion impact cross sections, photoionisation ϑ recombination cross sections, forbidden (M1 and E2) transitions

 \rightarrow due to lack of atomic data only possible using approximations

Credit: A. Flörs

Significant progress on the atomic structure side since 2017!

We now have:

- All relevant energy levels and transitions/opacities for r-process elements
- Data for multiple ionisation stages (neutral to ~4 times ionised)
- Individual important ions investigated in detail
- Calculations from several atomic structure codes
- Most of the data publicly available

Kasen+13, Kasen+17 AUTOSTRUCTURE - Lanthanides Fontes+20, Fontes+22 Los Alamos Atomic Physics and Plasma Code - Lanthanides and Actinides (I-IV) Tanaka +20, Domoto+22, Banerjee+23, Kato+24 HULLAC - Multiple *r*-process elements (I - IX) Gaigalas+19, Gaigalas+20, Radžiūtė+20, Radžiūtė+21 GRASP - Multiple lanthanides Carvajal +22, Deprince+22, Deprince+25 HFR - Multiple Lanthanides and Actinides, Silva+22, Flörs+23, Silva+25, Flörs+25 GSI + LIP FAC all lanthanides (II, III, IV) calibrated to experimental data

. . .

Energy levels

Recombination rates

Central potential → Wavefunctions

Calibration

Radiative rates (M1, E2 transitions)

Radiative rates (E1 transitions)

Electron-impact excitation rates

Detail in the modelling

ATOMIC CODES

General use codes - multiple atomic processes

- Usually user-input dependent parameters
- Able to calculate a large number of processes
- Limited accuracy
- Fast and efficient
 - 100 000+ levels and transitions in hours/days
- E.g. FAC, Hullac, Autostructure , Los Alamos Suite, JAC ...

High accuracy structure codes

- Fully *ab-initio* using MC(D)HF or MBPT approaches
- Focused on structure and some radiative properties
- High accuracy
- Computationally demanding
 - Can take months for large scale calculations depending on the ion
- E.g. GRASP*, ATSP*, MCDFGME*, AMBIT, CI-MBPT...

*Can be (usually) coupled to R-matrix codes for computation of other properties

Method - FAC

- Allows for a complete set of data for plasma modelling with speed and utility in mind
 Structure, radiative and collisional processes
- Uses a Dirac-Fock-Slater Hamiltonian with a local central potential, computed for a fictitious mean configuration (FMC) with fractional occupation numbers
 - \succ Orthogonality is ensured automatically \rightarrow Speed increase
 - \succ Potential not optimized for a single configuration \rightarrow Accuracy issues
 - ➤ Choice of FMC is mostly arbitrary and usually constructed by hand → Major source of uncertainty

FAC (CURRENT IMPLEMENTATION) Badnel (ASOS 23), Gu 23, private com.

FAC takes a DHS like potential

$$V(r) = \sum_{\beta} \omega_{\beta} Y^{0}_{\beta\beta}(r) - a \frac{3}{2} \left[\frac{24}{\pi} \rho(r) \right]^{1/3}$$
$$\rho(r) = \frac{1}{4\pi r^{2}} \sum_{\alpha} \omega_{\alpha} \rho_{\alpha\alpha}$$

with
$$rV(r) \to N$$
 as $r \to \infty$
 $V(r) = \min\left(V(r), \frac{N-1}{r}\right)^*_{\text{Latter (1955)}}$

*differences in recent FAC versions comes from different cut-off formalisms introduced

User input:

- 1. User provides a set of configurations (and weights) and the (weighted) mean of the occupation numbers ω_{α} over all the configurations is taken
- 2. User provides a set of occupation number ω_{α} via a fictitious mean configuration (FMC)

Optimization procedure

- 1. Get a set of initial points
- 2. Fit a surrogate model for a specific loss function
- 3. Compute acquisition function dynamically chosen between EI, PI and GP-UCB
- 4. Evaluate new point
- 5. Repeat 2. 4. until convergence of loss function evaluation (exploitation) or chosen number of iterations (exploration)
- 6. Make recommendation

Example optimization for 1 parameter (4f) (5d, 6s, 6p) fixed at (0.357,0.0714,0.0714)

Optimization procedure

- 1. Get a set of initial points
- 2. Fit a surrogate model for a specific loss function
- 3. Compute acquisition function dynamically chosen between EI, PI and GP-UCB
- 4. Evaluate new point
- 5. Repeat 2. 4. until convergence of loss function evaluation (exploitation) or chosen number of iterations (exploration)
- 6. Make recommendation

Systematic Bayesian Optimization for Atomic Structure Calculations of Heavy Elements RFS+25 10.48550/arxiv.2502.13250

Ricardo Ferreira da Silva [•],^{1,2,*} Andreas Flörs [•],³ Luís Leitão [•],^{1,2}
José P. Marques [•],^{1,2} Gabriel Martínez-Pinedo [•],^{3,4} and Jorge M. Sampaio [•],^{1,2}
¹Laboratório de Instrumentação e Física Experimental de Partículas (LIP) Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal ²Faculdade de Ciências da Universidade de Lisboa Rua Ernesto de Vasconcelos, Edifício C8, 1749-016, Lisboa, Portugal ³GSI Helmholtzzentrum für Schwerionenforschung Planckstraße 1, D-64291, Darmstadt, Germany
⁴Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt Schlossgartenstraße 2, D-64289, Darmstadt, Germany

CompAS Lund Jun 2025

Ricardo F. Silva

POTENTIAL OPTIMIZATION WORKFLOW

- General optimization procedure can be applied to multiple codes requiring direct user input for determining local central potential
 - Sequential Model-Based Optimization (SMBO) Ο procedure applied to FAC- RFS+ 25 (10.48550/ARXIV.2502.13250)
 - Similar application had been done already in Ο **AUTOSTRUCTURE (M. Mendez PhD Thesis** (2021); RFS+ (in prep.)
 - Similar application done for HULLAC (Kato+24) Ο
- Flexible loss function can be adapted to optimized for different needs
 - Energy levels, transition rates, cross sections... Ο

POTENTIAL OPTIMIZATION WORKFLOW

i	Término	NIST	Sin opt.	Powell	GP	
1	$2s^{2} S^{1}S$	0,0000	0,0000	0,0000	0,0000	
2	$2s2p$ ^{3}P	0,2003	0,2040	0,1966	0,1998	
3	$2s2p$ ^{1}P	0,3879	0,4225	0,3921	0,3952	
4	$2s3s$ 3S	0,4746	0,4732	0,4670	0,4714	
5	$2s3s$ 1S	0,4983	0,5016	0,4917	0,4991	8
6	$2p^2 D$	0,5184	0,6598	0,5149	0,5181	tive
7	$2s3p$ $^{3}\!P$	0,5368	0,5376	0,5292	0,5368	rela
8	$2p^2 {}^3\!P$	0,5440	0,5595	0,5432	0,5537	ror
9	$2s3p{}^1\!P$	0,5485	0,5574	0,5518	0,5493	E
10	$2s3d$ 3D	0,5655	0,5665	0,5572	0,5639	
11	$2s3d$ ^{1}D	0,5871	0,5322	0,5859	0,5877	
	Total $2s^2 {}^1S$	-29,3369	-29,2342	-29,2355	-29,3377	

Tabla 4.2: Energía de excitación (en Rydbergs) de los primeros 11 términos espectroscópicos de Be relativos al estado fundamental $2s^2 {}^1S$.

Energy levels

Recombination rates

Central potential → Wavefunctions

Calibration

Radiative rates (M1, E2 transitions)

Radiative rates (E1 transitions)

Electron-impact excitation rates

Detail in the modelling

- Optimization has the biggest impact in the accuracy of energy levels
- Further calibration (using Term Matching) is then achieved

ENERGY LEVELS OF ACTINIDES

[R. F. Silva, in prep.]

 Ability to provide improved data for where no experimental data is available

SCASA - Selected constants, energy levels and atomic spectra of actinides (Blaise and Wyart 1983)

Energy levels

Recombination rates

Central potential → Wavefunctions

Calibration

Radiative rates (M1, E2 transitions)

Radiative rates (E1 transitions)

Electron-impact excitation rates

Detail in the modelling

CALIBRATION

P, J & spectroscopic term known for FAC & some NIST

TRANSITION RATES

 log(gf) in agreement between calculations, but less so with available experimental data - especially for stronger lines

TRANSITION RATES

CompAS Lund

Courtesy of Salma Rahmouni

Energy levels

Recombination rates

Central potential → Wavefunctions

Calibration

Radiative rates (M1, E2 transitions)

Radiative rates (E1 transitions)

Electron-impact excitation rates

Detail in the modelling

Forbidden Lines

- Doubly ionised lanthanides sufficiently well studied experimentally (exception: Pm III)
- Most permitted & forbidden transitions up to 20 000 - 30 000 cm⁻¹ energy calibrated
- Higher number of transitions for singly ionized ions makes the fraction of levels calibrated lower

Flörs et al. (in prep.)

CompAS Lund Jun 2025

Forbidden Lines

Flörs et al. (in prep.)

	FAC calib	. below Eion						
Ion	# config	# levels	# E1 lines	# lines E1 calib.	# E2 lines	# lines E2 calib.	# M1 lines	# lines M1 calib.
Laп	44	472	17743	1 2 3 9	17 277	1 335	16 551	1 286
Lam	23	41	219	219	232	232	125	125
Сеп	40	2829	408 639	14 592	387 677	20456	499 746	15 873
Cem	24	295	7 0 8 3	3 680	8 1 4 0	4 638	5736	3 1 8 2
Pr 11	18	3 6 8 9	571 453	881	687 044	1012	708 795	848
Pr III	15	1 105	63 935	9436	77 435	12855	54 138	8 3 8 9
Ndп	27	9 994	3 336 077	5 4 3 4	3 284 715	6512	4 100 622	5215
Nd III	21	4 580	667 955	3675	720 857	4718	848 074	4 2 2 8
Рmп	7	4 9 90	913 018	0	1 355 037	93	1 303 516	66
PmIII	14	5 5 2 6	797 829 s	0	1 046 057	0	1 267 671	0
SmII	6	6145	1 111 875	1 106	1776621	1 0 3 8	1767334	1 0 3 3
Sm III	16	11 177	1911972	95	2189469	237	2835854	206
Eu 11	10	6781	888 646	224	2 281 580	271	2 4 3 0 6 3 0	198
Eum	11	8470	1 308 810	893	2 218 726	934	2 640 346	821
Gdп	8	12 394	3 070 318	2 909	5926 233	4 3 3 3	6 533 689	3 2 9 5
Gd III	10	6298	814 002	85	1 665 995	94	1844924	64
Тbп	8	16092	5 245 495	445	9641783	526	1 0486 628	433
Тbш	9	8 385	1 335 501	928	1886633	1071	2 546 384	806
Dуп	9	12 493	3 580 925	4617	7 062 482	5456	7117517	4836
Dуш	6	3910	355 148	1 246	863 920	1 223	747 452	960
Ноп	8	1517	86 064	101	141 936	107	125 433	104
Нош	14	4658	462 551	1 162	601 531	1617	696 321	1 1 4 9
ErII	16	5072	838 067	983	1 153 835	1 272	1416125	1016
Erm	18	2837	195 156	216	234 072	238	238 953	163
Ттп	17	1517	114318	7 307	172 834	6911	152 396	7 406
TmIII	11	650	16361	1 200	24 834	1 792	18 229	1 461
Ybп	34	348	8 849	3711	11 223	3 963	11052	4414
Ybm	14	916	1 585	202	2 4 5 7	347	1 987	264
total		143 181	28 129 594	66 586	45 440 635	83 281	50 416 228	67 841

Energy levels

Recombination rates

Central potential → Wavefunctions

Calibration

Radiative rates (M1, E2 transitions)

Radiative rates (E1 transitions)

Electron-impact excitation rates

Detail in the modelling

ATOMIC PROCESSES WITH THE CONTINUUM

Two main methods:

- Distorted Wave (DW)
 - Neglects interaction between channels (resonances)
 - Fast and efficient
 - FAC, AUTOSTRUCTURE, HULLAC
- R-matrix
 - Resonances are treated consistently
 - Very computationally demanding
 - GRASP⁰+DARC

Progress so far...

Electron impact excitation:

McCann+21, Bromley+23, Mulholland+24, McCann+25 GRASP0 + DARC - Pt + Au (I- III), Sr II, Y II

Recombination:

Barnerjee+25 Hullac - Se, Rb, Sr, Y, Zr (I- IV)

IMPACT OF OPTIMIZATION ON EIE

CompAS Lund Jun 2025

IMPACT OF OPTIMIZATION ON EIE

 Similar optimization procedure for improved central potential have shown similar effects on collisions strengths

IMPROVING EIE COLLISION RATES

DW seems to provide significant improvements to the current status, based on empirical formulas (VRA):

- \rightarrow Van Regemorter for allowed, $f_{_{\rm OSC}}{\geq}10^{-3}$
- \rightarrow Axelrod 1980 for forbidden, $f_{_{\rm OSC}}{<}10^{-3}$

Empirical approximations produce PECs ("line intensities") much lower than current calculations

DW provide a much better estimate at a very low computational cost

IMPROVING EIE COLLISION RATES

- DW shows an improvement when compared to just using the VRA approximations -even without the inclusion of resonances.
- "Comparable" to R-Matrix but at a much lower computational cost
- Calculations for multiple lanthanides have been achived

Including Resonances

INCLUDING RESONANCES (PRELIMINARY)

• Calculation of Resonant EIE for multiple lanthanides ongoing

CONCLUSIONS

- We computed the atomic structure of all singly and doubly ionised lanthanide ions
 → total of 28 ions (27 of them calibrated to experimental data)
 - \rightarrow 120 million (E1 + E2 + M1) transitions, of which 220 000 have calibrated wavelengths
- Inaccurate wavefunctions can have major effects in all atomic data parameters computed
 → Large configurations sets and optimization to available data (when possible) is essential
 when *ab-initio* calculations are not feasible
- Ongoing calculations of EIE under the DW approximation (DE and RE) for all singly and doubly ionized lanthanides
 - \rightarrow Accuracy of wavefunctions can have a strong impact in collision strengths

COLLABORATION

Luis Leitão Daniel Garcia Tomás Campante Jorge Miguel Sampaio José Pires Marques

Gabriel Martínez-Pinedo Andreas Flörs Gerrit Leck Luke Shingles

SPARKLE Project: 2023.14470.PEX PhD research grant: 2022.10009.BD

Fundo Europeu e Desenvolvimento Regiona

CompAS Lund Jun 2025 Ricardo F. Silva

THANK YOU FOR YOUR ATTENTION!

Optimization procedure

- 1. Get a set of initial points
- 2. Fit a surrogate model for a specific loss function
- 3. Compute acquisition function dynamically chosen between EI, PI and GP-UCB
- 4. Evaluate new point
- 5. Repeat 2. 4. until convergence of loss function evaluation (exploitation) or chosen number of iterations (exploration)
- 6. Make recommendation

Example optimization for 1 parameter (4f) (5d, 6s, 6p) fixed at (0.357,0.0714,0.0714)

Optimization procedure

- 1. Get a set of initial points
- 2. Fit a surrogate model for a specific loss function
- 3. Compute acquisition function dynamically chosen between EI, PI and GP-UCB
- 4. Evaluate new point
- 5. Repeat 2. 4. until convergence of loss function evaluation (exploitation) or chosen number of iterations (exploration)
- 6. Make recommendation

Example optimization for 1 parameter (4f) (5d, 6s, 6p) fixed at (0.357,0.0714,0.0714)

SENSITIVITY OF THE OPTIMIZATION

- Only very small changes to FMC after including more than 50% of the available data for Ce II

 maintaining a relative accuracy of ~8%
- Close to ground state levels have the most impact (~10-30 levels)
- Provides confidence on it's predictive value for non-measured levels and robust to low amounts of data

OPTIMIZATION IN AUTOSTRUCTURE

- Faster and better memory handling than FAC
- Not fully relativistic
- "AS default" uses one of multiple built in ways to optimized the potential possible better result if tweaked
- No extra input needed in "AS opt" optimization in this work

Assessment of atomic data - Energy Levels

Sm II

- Calibration to experimental data helps but is not sufficient
 - \rightarrow Lack of experimental data
 - → Possibly inaccurate wavefunctions

COMPLETENESS/ACCURACY DUALITY

• Necessary to ensure convergence

• Differences in atomic data can have significant effect in opacity

OPTIMIZATION IN AUTOSTRUCTURE

- Faster and better memory handling than FAC - allows for larger computations, essential for CIE, PI and DR (active development by Prof. Nigel Badnel)
- Not fully relativistic

- "AS default" uses one of multiple built in ways to optimized the potential possible better result if tweaked
- No extra input needed in "AS opt" - optimization in this work

ROADMAP TO OPACITY

ALLOWED TRANSITIONS- LANTHANIDES RFS+25 10.48550/ARXIV.2502.13250

Assessment of atomic data - Transition rates

Transitions to the ground state of Nd II

