
CompAS Lund         Jun 2025 Ricardo F. Silva

Ricardo F. Silva

CompAS 25 

Lund, Sweden 

Atomic data requirements for 
Non-LTE modelling of 
Kilonovae



CompAS Lund         Jun 2025 Ricardo F. Silva
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→ Opacity of the ejecta dominated by photon absorption by atomic lines
→ Kilonova light curve and spectra  modeling strongly depends on atomic opacities 
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Nucleosynthesis sites
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Atomic data needs
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All relevant levels & transitions known
Most levels & transitions known
Very incomplete levels & transitions data

Available Experimental Data

LTE modelling  (first few days): 
→ energy levels and E1 radiative transitions  
required: 
Saha & Boltzmann equations
→ bolometric light curves: grey opacities from 
uncalibrated data good enough
→ spectral models: use of calibrated atomic data 
essential for line identification and obtaining the 
relevant spectral features

NLTE modelling  (after a few days): 
→ requires additional atomic data: electron-ion 
impact cross sections, photoionisation & 
recombination cross sections, forbidden (M1 and 
E2) transitions
→ due to lack of atomic data only possible using 
approximations

Credit: A. Flörs 
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Atomic data needs
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Kasen+13, Kasen+17  AUTOSTRUCTURE -  Lanthanides
Fontes+ 20, Fontes+ 22   Los Alamos Atomic Physics and Plasma Code - Lanthanides and Actinides (I-IV)
Tanaka +20 , Domoto+22, Banerjee+23, Kato+24  HULLAC - Multiple r-process elements (I - IX)
Gaigalas+19, Gaigalas+20, Radžiūtė+20, Radžiūtė+21  GRASP - Multiple lanthanides 
Carvajal +22, Deprince+22, Deprince+25 HFR - Multiple Lanthanides and Actinides,
Silva+22, Flörs+23, Silva+25, Flörs+25  GSI + LIP FAC all lanthanides (II, III, IV) calibrated to experimental data
…

Significant progress on the atomic structure side since 2017!

We now have:
● All relevant energy levels and transitions/opacities for r-process elements
● Data for multiple ionisation stages (neutral to ~4 times ionised)
● Individual important ions investigated in detail
● Calculations from several atomic structure codes
● Most of the data publicly available
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Energy levels

Radiative rates
 (E1 transitions)

Recombination 
rates

Radiative rates
(M1, E2 transitions)Calibration

Electron-impact 
excitation rates

Central potential → 
Wavefunctions

Detail in the modelling

Atomic data needs
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Atomic codes
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General use codes - multiple atomic processes High accuracy structure codes

● Fully ab-initio using MC(D)HF or MBPT approaches

● Focused on structure and some radiative properties

● High accuracy

● Computationally demanding
○ Can take months for large scale calculations 

depending on the ion

● E.g. - GRASP*, ATSP*, MCDFGME*, AMBiT, 
CI-MBPT… 

*Can be (usually) coupled to R-matrix codes for 
computation of other properties 

● Usually user-input dependent parameters

● Able to calculate a large number of processes

● Limited accuracy

● Fast and efficient
○ 100 000+ levels and transitions in 

hours/days 

● E.g. - FAC, Hullac, Autostructure , Los Alamos 
Suite, JAC …
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Method - FAC
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● Allows for a complete set of data for plasma modelling with speed and utility in mind
➢ Structure, radiative and collisional processes

● Uses a Dirac-Fock-Slater Hamiltonian with a local central potential, computed for a 
fictitious mean configuration (FMC) with fractional occupation numbers

➢ Orthogonality is ensured automatically → Speed increase

➢ Potential not optimized for a single configuration → Accuracy issues

➢ Choice of FMC is mostly arbitrary and usually constructed by hand → Major 
source of uncertainty
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FAC (current implementation)
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FAC takes a DHS like potential

with 

User input:

1. User provides a set of configurations (and weights) and the (weighted) mean of the 
occupation numbers ωα over all the configurations is taken

2. User provides a set of occupation number ωα  via a fictitious mean configuration (FMC)

Latter (1955) 

*

*differences in recent FAC versions comes from different cut-off 
formalisms introduced

Badnel (ASOS 23), Gu 23, private com.
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Optimization procedure

Example optimization for 1 parameter (4f)
(5d, 6s, 6p) fixed at (0.357,0.0714,0.0714)

1. Get a set of initial points
2. Fit  a surrogate model for a specific loss 

function 
3. Compute acquisition function  - 

dynamically chosen between EI, PI and 
GP-UCB

4. Evaluate new point
5. Repeat 2. - 4. until convergence of loss 

function evaluation (exploitation) or 
chosen number of iterations 
(exploration)

6. Make recommendation

Sequential Model-Based Optimization 
(SMBO)

10
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Method described in RFS+ 25 
(10.48550/ARXIV.2502.13250)

RFS+25 10.48550/arxiv.2502.13250
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Potential Optimization workflow

● General  optimization procedure can be applied to 
multiple codes requiring direct user input for 
determining local central potential
○ Sequential Model-Based Optimization (SMBO) 

procedure applied to FAC-  RFS+ 25 
(10.48550/ARXIV.2502.13250)

○ Similar application had been done already in 
AUTOSTRUCTURE (M. Mendez PhD Thesis 
(2021); RFS+ (in prep.) 

○ Similar application done for HULLAC (Kato+24)

● Flexible  loss function - can be adapted to optimized 
for different needs 
○ Energy levels, transition rates, cross sections…

12
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Potential Optimization workflow
M. Mendez PhD Thesis (2021)
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Recombination 
rates

Radiative rates
(M1, E2 transitions)Calibration

Electron-impact 
excitation rates

Energy levels

Radiative rates
 (E1 transitions)

Central potential → 
Wavefunctions

Detail in the modelling

Atomic data needs
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● Optimization has 
the biggest impact 
in the accuracy of 
energy levels

● Further calibration 
(using Term 
Matching) is then 
achieved

15

Energy Levels - Lanthanides

Calculations for all singly and doubly ionized lanthanides have been achieved
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Energy levels of actinides 
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● Ability to provide improved 
data for where no experimental 
data is available 

SCASA - Selected constants, energy levels and atomic spectra of actinides (Blaise and Wyart 1983)

P=0

P=1

(ΔExp = 8.4%)

(ΔExp = 7.8%)

[R. F. Silva, in prep.]
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Recombination 
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Detail in the modelling

Atomic data needs
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Calibration
● P, J & spectroscopic term known for FAC & some NIST 

levels (using the grasp/jj2lsj module by G. Gaigalas)
● Match NIST levels with corresponding FAC levels
● FAC levels without NIST data: use combination of mean 

correction from P-J group and mean correction from 
configuration

18

A. Kiruga et al. arXiv:2506.08170
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TRansition rates
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● log(gf) in agreement between calculations, but less so with available experimental 
data - especially for stronger lines
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TRansition rates
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Atomic Data for Lte Modelling
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Atomic Data for Lte Modelling
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Atomic Data for Lte Modelling
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Courtesy of Salma Rahmouni
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Atomic Data for Lte Modelling
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Courtesy of Salma Rahmouni
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Forbidden Lines

● Doubly ionised lanthanides sufficiently 
well studied experimentally 
(exception: Pm III)

● Most permitted & forbidden transitions 
up to 20 000 - 30 000 cm-1 energy 
calibrated

● Higher number of transitions for singly 
ionized ions makes the fraction of 
levels calibrated lower 

Flörs et al. (in prep.)
26
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Forbidden Lines
Flörs et al. (in prep.)

27
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Progress so far… 

Electron impact excitation:
McCann+21, Bromley+23, Mulholland+24, McCann+25  GRASP0 + DARC - Pt + Au (I- III), Sr II, Y II  

Recombination:
Barnerjee+25 Hullac - Se, Rb, Sr, Y, Zr (I- IV)

Atomic processes with the continuum

29

(Pradhan and Nahar, “Atomic Astrophysics and Spectroscopy”, Cambridge 2011)Two main methods: 

● Distorted Wave (DW) 
○ Neglects interaction between channels 

(resonances)
○ Fast and efficient
○ FAC, AUTOSTRUCTURE, HULLAC

● R-matrix
○ Resonances are treated consistently 
○ Very computationally demanding
○ GRASP0+DARC
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Pt II

Impact of optimization on EIE

Levels are calibrated in both 
default and optimized
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Impact of optimization on EIE

● Similar optimization 
procedure for improved 
central potential have shown 
similar effects on collisions 
strengths

M. Mendez PhD Thesis (2021)
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DW  seems to provide significant improvements to the current 
status, based on empirical formulas (VRA):

     → Van Regemorter for allowed, fosc ≥10-3
 

    → Axelrod 1980 for forbidden, fosc <10-3

Y II

Leitão, F. Silva+ (in prep.)

Improving EIE collision rates

Empirical approximations produce PECs 
(“line intensities”) much lower than current 
calculations

DW provide a much better estimate at a 
very low computational cost

32

R-matrix calculation: Mulholland+ (2024)
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Improving EIE collision rates

● DW shows an improvement 
when compared to just 
using the VRA 
approximations -even 
without the inclusion of 
resonances. 

● “Comparable” to R-Matrix - 
but at a much lower 
computational cost 

● Calculations for multiple 
lanthanides have been 
achived

R-matrix calculation: McCann+ (2021)

T = 5000 K
ne= 106 cm-3
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Including Resonances

34

● Resonances can be 
accounted for in the 
Independent-Process, 
Isolated-Resonance 
Distorted-Wave (IPIRDW) 
Method (see. e.g. L.Xia et al.. 
2017)

● While not as accurate is 
much more computationally 
efficient 
○ Autoionization and 

EIE can be computed 
in parallel 
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Including resonances (Preliminary)

● Calculation of Resonant EIE for multiple lanthanides ongoing

35
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CONCLUSIONS
● We computed the atomic structure of all singly and doubly ionised lanthanide ions

→ total of 28 ions (27 of them calibrated to experimental data)
→ 120 million (E1 + E2 + M1) transitions, of which 220 000 have calibrated wavelengths

● Inaccurate wavefunctions can have major effects in all atomic data parameters computed 
→ Large configurations sets and optimization to available data (when possible) is essential 
when ab-initio calculations are not feasible

● Ongoing calculations of EIE under the DW approximation (DE and RE) for all singly and 
doubly ionized lanthanides
→ Accuracy of wavefunctions can have a strong impact in collision strengths

36
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Thank you for your 
attention!
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Optimization procedure

Example optimization for 1 parameter (4f)
(5d, 6s, 6p) fixed at (0.357,0.0714,0.0714)

1. Get a set of initial points
2. Fit  a surrogate model for a specific loss 

function 
3. Compute acquisition function  - 

dynamically chosen between EI, PI and 
GP-UCB

4. Evaluate new point
5. Repeat 2. - 4. until convergence of loss 

function evaluation (exploitation) or 
chosen number of iterations 
(exploration)

6. Make recommendation

Sequential Model-Based Optimization 
(SMBO)

39
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Method described in RFS+ 25 
(10.48550/ARXIV.2502.13250)
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Sensitivity of the Optimization

● Only very small changes to FMC after including more than 50% of the available data for Ce II  
- maintaining a relative accuracy of ~8%

● Close to ground state levels have the most impact (~10-30 levels)
● Provides confidence on it’s predictive value for non-measured levels and robust to low 

amounts of data
41

(4f1.43 5d1.05 6s0.24 6p0.28)

(4f2.03 5d0.97 6s0 6p0)

[R. F. Silva, in prep.]
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Optimization in AUTOSTRUCTURE
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● Faster and better 
memory handling than 
FAC 

● Not fully relativistic 

● “AS default” uses one of 
multiple built in ways to 
optimized the potential - 
possible better result if 
tweaked

● No extra input needed 
in “AS opt” - 
optimization in this work 

P=0

P=1
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Assessment of atomic data - Energy Levels 

43

● Systematic discrepancy 
in                   configuration

● Consequence of local 
potential model(?)

Sm II

● Calibration to experimental data helps but is not sufficient
→ Lack of experimental data 
→ Possibly inaccurate wavefunctions
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Completeness/Accuracy Duality

● Necessary to ensure convergence ● Differences in atomic data can have 
significant effect in opacity 

44



CompAS Lund         Jun 2025 Ricardo F. Silva

Optimization in AUTOSTRUCTURE
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● Faster and better 
memory handling than 
FAC - allows for larger 
computations, essential 
for CIE, PI and DR 
(active development by 
Prof. Nigel Badnel)

● Not fully relativistic 

● “AS default” uses one of 
multiple built in ways to 
optimized the potential - 
possible better result if 
tweaked

● No extra input needed 
in “AS opt” - optimization 
in this work 



CompAS Lund         Jun 2025 Ricardo F. Silva

Roadmap to opacity

46
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Allowed Transitions- Lanthanides RFS+25 10.48550/ARXIV.2502.13250
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Transitions to the ground state of Nd II  

Assessment of atomic data - Transition rates


