

In memory

of Prof. lan Philip Grant

Vilnius University

In memory of Prof. Ian Philip Grant

Vilnius University

Gediminas Gaigalas

Second-Order Rayleigh-Schrödinger Perturbation Theory for the GRASP2018 Package:

Three-particle Feynman Diagrams Contributions

Contents:

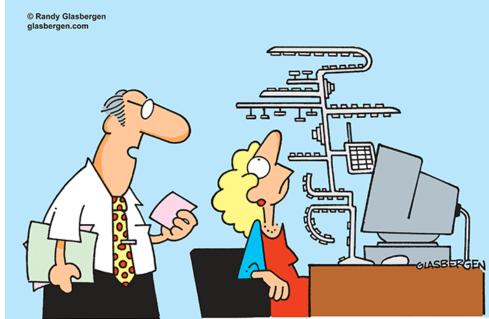
- RSMBPT research status up to 2025
- Relativistic second-order effective Hamiltonian in irreducible tensorial form for three-particle
 Feynman diagrams contributions to valence-valence correlations
- Relativistic second-order effective Hamiltonian in irreducible tensorial form for three-particle
 Feynman diagrams contributions to core-valence correlations
- Calculations
- Summary and conclusions

Vilnius University

Computational Atomic Structure Group

Vilnius University

Laima Kitovienė, Gediminas Gaigalas, Pavel Rynkun


Motivation for the approach

The same as in the talks:

- Ran Si "GRASP: Recent Code Developments and Applications"
- Shaofan Shi "GRASP: Basis Selection by Machine Learning"
- Sijie Wu "A partitioned correlation function interaction approach in GRASP"
- Per Jönsson "On the use of Natural Orbitals in GRASP Calculations"

How to achieve higher data accuracy with GRASP, with fewer computing resources.

 Gediminas Gaigalas "Second-Order Rayleigh-Schrödinger Perturbation Theory for the GRASP2018 Package "

"It's an ergonomic keyboard. Once you learn how to use it, it will increase your speed by six percent!"

RSMBPT research sta up to 2025

The following correlations was not included in RSMBPT:

• Valence correlations

 $(n_m \ell_m) j_m^{w_m} \to (n_m \ell_m) j_m^{w_m - 1} (n_r \ell_r) j_r$

• Core correlations

$$(n_a\ell_a) j_a^{2j_a+1} (n_m\ell_m) j_m^{w_m} \to (n_a\ell_a) j_a^{2j_a} (n_m\ell_m)$$

Valence-valence correlations

$$\bigvee (n_a \ell_m) j_m^{w_m} (n_n \ell_n) j_n^{w_n} \to (n_m \ell_m) j_m^{w_m+1} (n_n \ell_n) j_n^{w_n-1} (n_n \ell_n) j_n^{w_n-1$$

• Core-valence correlations

$$(n_{a}\ell_{a}) j_{a}^{2j_{a}+1} (n_{m}\ell_{m}) j_{m}^{w_{m}} (n_{n}\ell_{n}) j_{n}^{w_{n}} \to (n_{a}\ell_{a}) j_{a}^{2j_{a}} (n_{m}\ell_{m}) j_{m}^{w_{m}} (n_{n}\ell_{n}) j_{n}^{w_{n}} (n_{p}\ell_{p}) j_{p}^{w_{p}} \to (n_{a}\ell_{a}) j_{a}^{2j}$$

Relativistic second-order effective Hamiltonian in irreducible tensorial form for valence-valence correlations

Vilnius University

A Feynman diagram that is independent of the potential at which the wave functions were obtained.

The third type of valence-valence correlations

 $(n_m\ell_m) j_m^{w_m} (n_n\ell_n) j_n^{w_n} \to (n_m\ell_m) j_m^{w_m+1} (n_n\ell_n) j_n^{w_n-2} (n_r\ell_r) j_r,$

where all lines with the double arrow of diagram VV₃ is renamed in the following way: $m' = p \equiv m$ and $m = n = n' = p' \equiv n$.

RSMBPT research status up to 2025

Vilnius University

The following correlations was not included in RSMBPT:

• Valence correlations

$$(n_m \ell_m) j_m^{w_m} \to (n_m \ell_m) j_m^{w_m - 1} (n_r \ell_r) j_r$$

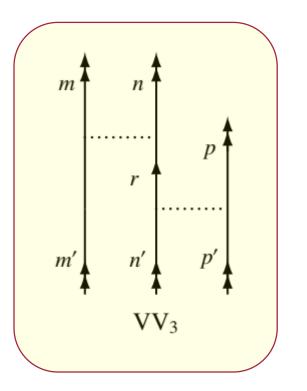
• Core correlations

$$(n_a\ell_a) j_a^{2j_a+1} (n_m\ell_m) j_m^{w_m} \to (n_a\ell_a) j_a^{2j_a} (n_m\ell_m) j_m^{w_m+1}$$

• Valence-valence correlations

$$\mathbf{V} \qquad (n_a \ell_m) j_m^{w_m} (n_n \ell_n) j_n^{w_n} \rightarrow (n_m \ell_m) j_m^{w_m+1} (n_n \ell_n) j_n^{w_n-2} (n_r \ell_r) j_r$$

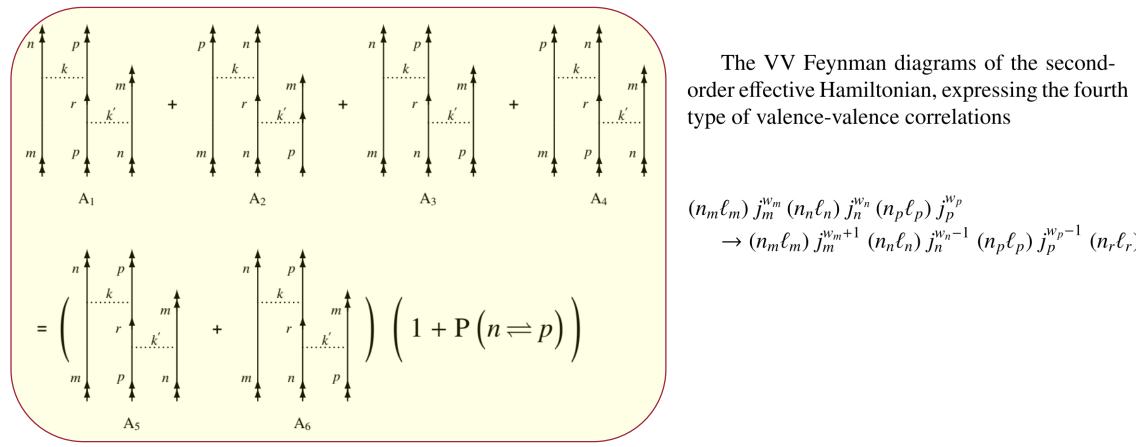
- $\bigvee (n_a \ell_m) j_m^{w_m} (n_n \ell_n) j_n^{w_n} (n_p \ell_p) j_p^{w_p} \to (n_m \ell_m) j_m^{w_m+1} (n_n \ell_n) j_n^{w_n-1} (n_p \ell_p) j_p^{w_p-1} (n_r \ell_r) j_r$
- Core-valence correlations


$$(n_{a}\ell_{a}) j_{a}^{2j_{a}+1} (n_{m}\ell_{m}) j_{m}^{w_{m}} (n_{n}\ell_{n}) j_{n}^{w_{n}} \to (n_{a}\ell_{a}) j_{a}^{2j_{a}} (n_{m}\ell_{m}) j_{m}^{w_{m}-1} (n_{n}\ell_{n}) j_{n}^{w_{n}+2}$$

$$(n_{a}\ell_{a}) j_{a}^{2j_{a}+1} (n_{m}\ell_{m}) j_{m}^{w_{m}} (n_{n}\ell_{n}) j_{n}^{w_{n}} (n_{p}\ell_{p}) j_{p}^{w_{p}} \to (n_{a}\ell_{a}) j_{a}^{2j_{a}} (n_{m}\ell_{m}) j_{m}^{w_{m}-1} (n_{n}\ell_{n}) j_{n}^{w_{n}+1} (n_{p}\ell_{p}) j_{p}^{w_{p}+1}$$

Relativistic second-order effective Hamiltonian in irreducible tensorial form for valence-valence correlations

Vilnius University

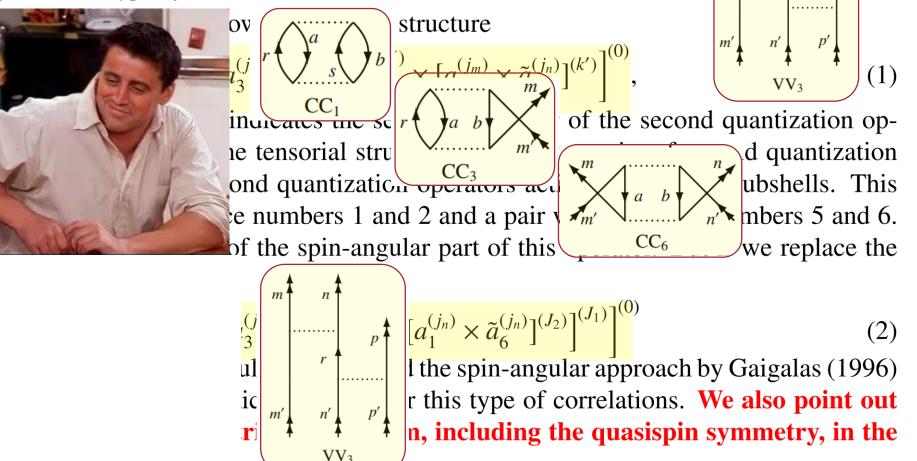

A Feynman diagram that is independent of the potential at which the wave functions were obtained.

The fourth type of valence-valence correlations

 $(n_m \ell_m) j_m^{w_m} (n_n \ell_n) j_n^{w_n} (n_p \ell_p) j_p^{w_p} \to (n_m \ell_m) j_m^{w_m+1} (n_n \ell_n) j_n^{w_n-1} (n_p \ell_p) j_p^{w_p-1} (n_r \ell_r) j_r.$

where all lines with the double arrow of diagram VV₃ is renamed in the following way: $m = m' = n = n' = p' \equiv ???$.

Relativistic second-order effective Hamiltonian in irreducible tensorial form for valence-valence correlations


$$(n_m \ell_m) j_m^{w_m} (n_n \ell_n) j_n^{w_n} (n_p \ell_p) j_p^{w_p} \to (n_m \ell_m) j_m^{w_m+1} (n_n \ell_n) j_n^{w_n-1} (n_p \ell_p) j_p^{w_p-1} (n_r \ell_r) j_r.$$

University

Vilnius

Relativistic second-order effective " Hamiltonian in irreducible tensorial form for VV correlations

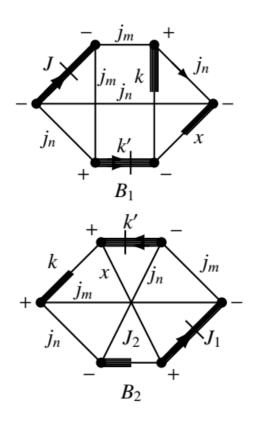
The spin-angular part of the third type of valence-valence correlations

(2)

Relativistic second-order effective Hamiltonian in irreducible tensorial form for VV correlations

In this case, the diagram VV₃ has the following tensorial structure

$$\left[\left[a_1^{(j_n)} \times \tilde{a}_2^{(j_m)} \right]^{(k)} \times \left[a_3^{(j_n)} \times \tilde{a}_4^{(j_n)} \right]^{(k)} \right]^{(k')} \times \left[a_5^{(j_m)} \times \tilde{a}_6^{(j_n)} \right]^{(k')} \right]^{(0)}, \tag{1}$$


The first tensorial product $[\tilde{a}_{2}^{(j_m)} \times a_{5}^{(j_m)}]^{(J_1)}$ is the one to which we want to bring the algebraic expression, i.e. (1), and the second one $[[a_3^{(j_n)} \times \tilde{a}_4^{(j_n)}]^{(x)} \times [a_1^{(j_n)} \times \tilde{a}_6^{(j_n)}]^{(J_2)}]^{(J_1)}$ consists of only two pairs of operators for the second quantization acting to the same subshell. These two sets of tensorial operators are obtained by applying the operator commutation rule to operators $a_1^{(j_n)}$ and $\tilde{a}_4^{(j_n)}$. This gives the following expression

$$\begin{split} \left[\left[\left[a^{(j_n)} \times \tilde{a}^{(j_m)} \right]^{(k)} \times \left[a^{(j_n)} \times \tilde{a}^{(j_n)} \right]^{(x)} \right]^{(k')} \times \left[a^{(j_m)} \times \tilde{a}^{(j_n)} \right]^{(k')} \right]^{(0)} \\ &= \sum_J B_1 \left[\left[\tilde{a}^{(j_m)} \times a^{(j_m)} \right]^{(J)} \times \left[a^{(j_n)} \times \tilde{a}^{(j_n)} \right]^{(J)} \right]^{(0)} \\ &+ \sum_{J_1, J_2} B_2 \left[\left[\tilde{a}^{(j_m)} \times a^{(j_m)} \right]^{(J_1)} \times \left[\left[a^{(j_n)} \times \tilde{a}^{(j_n)} \right]^{(x)} \times \left[a^{(j_n)} \times \tilde{a}^{(j_n)} \right]^{(J_2)} \right]^{(J_1)} \right]^{(0)}. \end{split}$$

Relativistic second-order effective Hamiltonian in irreducible tensorial form for VV correlations

+

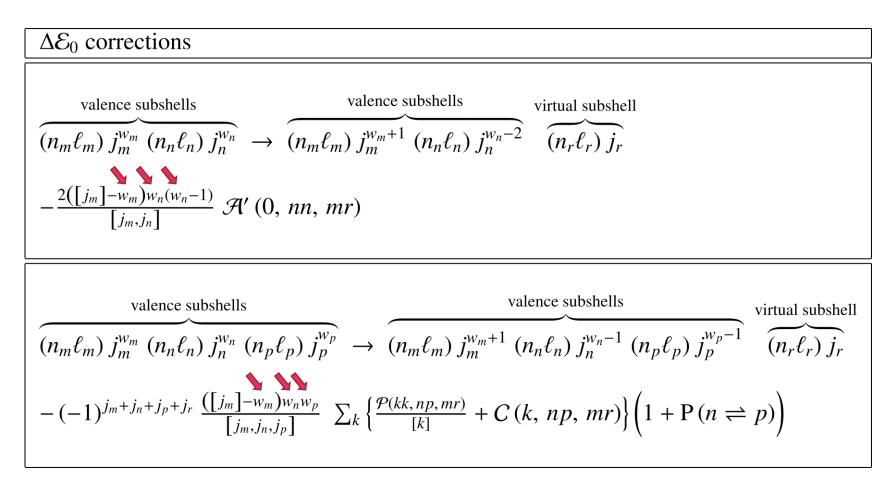
Vilnius University

$$\begin{bmatrix} \left[\left[a^{(j_n)} \times \tilde{a}^{(j_m)} \right]^{(k)} \times \left[a^{(j_n)} \times \tilde{a}^{(j_n)} \right]^{(x)} \right]^{(k')} \times \left[a^{(j_m)} \times \tilde{a}^{(j_n)} \right]^{(k')} \end{bmatrix}^{(0)} \\ = \sum_{J} B_1 \left[\left[\tilde{a}^{(j_m)} \times a^{(j_m)} \right]^{(J)} \times \left[a^{(j_n)} \times \tilde{a}^{(j_n)} \right]^{(J)} \times \left[a^{(j_n)} \times \tilde{a}^{(j_n)} \right]^{(J)} \right]^{(0)} \\ \sum_{J_2} B_2 \left[\left[\tilde{a}^{(j_m)} \times a^{(j_m)} \right]^{(J_1)} \times \left[\left[a^{(j_n)} \times \tilde{a}^{(j_n)} \right]^{(x)} \times \left[a^{(j_n)} \times \tilde{a}^{(j_n)} \right]^{(J_2)} \right]^{(J_1)} \right]^{(0)}.$$
(1)

The coefficients B_1 and B_2 in the expression (1) are the easiest to represent and their algebraic expressions are the easiest to obtain by using the generalized graphical method of the angular momentum theory.

Relativistic second-order effective Hamiltonian in irreducible tensorial form for VV correlations

Vilnius University


$$\begin{array}{c} \propto \sum_{m_{jm},m_{j_{m'}}} \sum_{m_{jn'},m_{j_{n''}}} \sum_{m_{jn'},m_{j_{n''}}} \sum_{m_{k'},m_{x}} \sum_{m_{J}} (-1)^{\cdots} [\dots] \sqrt{[\dots]} \\ \begin{pmatrix} j_{m} & j_{m} & J \\ \pm m_{j_{m}} & \pm m_{j_{m'}} & \pm m_{J} \end{pmatrix} \begin{pmatrix} j_{m} & k & j_{n} \\ \pm m_{j_{m}} & \pm m_{j_{m'}} & \pm m_{J} \end{pmatrix} \begin{pmatrix} j_{m} & k & j_{n} \\ \pm m_{j_{m}} & \pm m_{j_{n}} & \pm m_{j_{n''}} & \pm m_{J} \end{pmatrix} \\ \begin{pmatrix} x & k & k' \\ \pm m_{x} & \pm m_{k} & \pm m_{k'} \end{pmatrix} \begin{pmatrix} k' & j_{m} & j_{n} \\ \pm m_{k'} & \pm m_{j_{n''}} & \pm m_{j_{n''}} & \pm m_{j_{n''}} & \pm m_{J_{m'}} \end{pmatrix} \begin{pmatrix} j_{n} & j_{n} & J \\ \pm m_{j_{n''}} & \pm m_{j_{n''}} & \pm m_{j_{n''}} & \pm m_{j_{n''}} & \pm m_{j_{n''}} \end{pmatrix}$$

$$= (-1)^{j_m + j_n + k + x} \sqrt{[k, k', x]} \left\{ \begin{array}{cc} j_m & j_n & k \\ x & k' & j_n \end{array} \right\} (-1)^J \sqrt{[J]} \left\{ \begin{array}{cc} j_m & j_m & J \\ j_n & j_n & k' \end{array} \right\}$$

The admixed configurations from VV correlations can be added to usual energy of the term χJ of the configuration *K* and can be expressed as the energy $E_0(K)$, which does not depend on term, and the sum of product of Slater integrals and spin-angular coefficients, describing the interaction within open subshell and between them:

$$\begin{split} &= E_{0} \left(KJ \right) + \Delta \mathcal{E}_{0} \left(KJ \right) \\ &+ \sum_{n\ell j} \sum_{k>0} \widetilde{f_{k}} \left(\ell j^{w}, K\chi J \right) \left[\mathcal{F}^{k} \left(n\ell j, n\ell j \right) + \Delta \mathcal{F}^{k} \left(n\ell j, n\ell j \right) \right] \\ &+ \sum_{n\ell j} \sum_{n'\ell' j' > n\ell j} \left\{ \sum_{k>0} \widetilde{f_{k}} \left(\ell j^{w} \ \ell' j'^{w'}, K\chi J \right) \left[\mathcal{F}^{k} \left(n\ell j, n'\ell' j' \right) + \Delta \mathcal{F}^{k} \left(n\ell j, n'\ell' j' \right) \right] \\ &+ \sum_{k} \widetilde{g_{k}} \left(\ell j^{w} \ \ell' j'^{w'}, K\chi J \right) \mathcal{G}^{k} \left(n\ell j, n'\ell' j' \right) \\ &+ \sum_{k} \widetilde{v_{k}} \left(\ell j^{w} \ \ell' j'^{w'}, \ell j^{w-2} \ \ell' j'^{w'+2}, K\chi J \ K'\chi' J \right) \mathcal{R}^{k} \left(n\ell jn\ell j, n'\ell' j'n'\ell' j' \right) \\ &+ \sum_{n'\ell' j' \neq n\ell j} \sum_{k>0} \left\langle \Psi \left\| \left[\left[\widetilde{a}^{(j)} \times a^{(j)} \right]^{(k)} \times \left[\left[a^{(j')} \times \widetilde{a}^{(j')} \right]^{(x)} \times \left[a^{(j')} \times \widetilde{a}^{(j')} \right]^{(k')} \right]^{(k')} \right]^{(k')} \right\| \Psi \right\rangle \\ &+ \sum_{\substack{n\ell j \\ n'\ell' j' \neq n\ell j}} \sum_{k>0 \atop k',x} \left\langle \Psi \left\| \left[\left[\widetilde{a}^{(j)} \times a^{(j)} \right]^{(k)} \times \left[a^{(j')} \times \widetilde{a}^{(j')} \right]^{(x)} \times \left[a^{(j'')} \times \widetilde{a}^{(j'')} \right]^{(k')} \right]^{(k')} \right]^{(0)} \right\| \Psi \right\rangle \\ &\times \Delta \widetilde{\mathcal{R}}^{(k,k',x)} \left(n\ell j \ n'\ell' j' \ n'\ell' j' \right)^{(k)} \times \left[a^{(j')} \times \widetilde{a}^{(j')} \right]^{(x)} \right]^{(k')} \left\| \left[\left[\widetilde{a}^{(j')} \times a^{(j)} \right]^{(k')} \times \left[a^{(j'')} \times \widetilde{a}^{(j'')} \right]^{(k')} \right]^{(k')} \right\| \Psi \right\rangle \end{aligned}$$

 $E\left(K\chi J
ight)$

$$\mathcal{A}'(x, ij, i'j') = \sum_{k,k'} \left\{ \begin{array}{cc} k & k' & x \\ j_i & j_i & j_{i'} \end{array} \right\} \left\{ \begin{array}{cc} k & k' & x \\ j_j & j_j & j_{j'} \end{array} \right\} \mathcal{P}(kk', ij, i'j'), \tag{1}$$

$$C(x, ij, i'j') = \sum_{k} \left\{ \begin{array}{cc} x & j_i & j_{i'} \\ k & j_j & j_{j'} \end{array} \right\} Q(xk, ij, i'j').$$

 $\mathcal{P}(kk', ij, i'j') = \mathcal{R}^k(ij, i'j') \mathcal{R}^{k'}(i'j', ij) \mathcal{O}(K', K),$

 $Q(kk', ij, i'j') = \mathcal{R}^k(ij, i'j') \mathcal{R}^{k'}(i'j', ji) O(K', K),$

$$\mathcal{R}^{k}(ij,i'j') = \left\{ \left[1 + \delta(i,j) \right] \left[1 + \delta(i',j') \right] \right\}^{-1/2} \mathcal{R}^{k}(n_{i}j_{i}n_{j}j_{j}, n_{i'}j_{i'}n_{j'}j_{j'}) \left\langle \ell_{i}j_{i} \| \mathcal{C}^{(k)} \| \ell_{i'}j_{i'} \right\rangle \left\langle \ell_{j}j_{j} \| \mathcal{C}^{(k)} \| \ell_{j'}j_{j'} \right\rangle,$$

$$O(K',K) = \frac{1}{\overline{E}(K') - \overline{E}(K)}.$$

Corrections	Slater integral	k values
valence subshells $\underbrace{(n_m \ell_m) j_m^{w_m} (n_n \ell_n) j_n^{w_n}}_{(n_m \ell_n) j_n^{w_n}} \rightarrow \underbrace{(n_m \ell_m) j_m^{w_m+1} (n_n \ell_n)}_{(n_m \ell_n) j_m^{w_m+1} (n_n \ell_n)}$	$j_n^{w_n-2}$ virtual subshell $(n_r\ell_r) j_r$	
$-4 [k] \frac{\left([j_m] - w_m \right)}{[j_m]} \mathcal{A}' (k, nn, mr)$	$\Delta \mathcal{F}^k(n,n)$	<i>k</i> > 0
$2 [k] \sum_{k'} (-1)^{j_n + j_r + k'} \begin{cases} j_m & j_m & k \\ j_n & j_n & k' \end{cases} C(k', rm, nn)$	$\Delta \mathcal{F}^k(m,n)$	<i>k</i> > 0
$2(-1)^{-j_m+j_n+x} \sqrt{[k,k',x]} \mathcal{G}(kk'x,nn,mr)$	$\Delta \widetilde{\mathcal{R}}^{(k,k',x)}(mnn)$	<i>k</i> > 0

Table 1: Expressions for Slater integrals $\Delta \mathcal{F}^k(n, n)$, $\Delta \mathcal{F}^k(m, n)$, and $\Delta \widetilde{\mathcal{R}}^{(k,k',x)}(mnn)$ corrections corresponding to the third type of valence-valence correlations.

$$\begin{split} &= E_{0} \left(KJ \right) + \Delta \mathcal{E}_{0} \left(KJ \right) \\ &+ \sum_{n\ell j} \sum_{k>0} \widetilde{f_{k}} \left(\ell j^{w}, K\chi J \right) \left[\mathcal{F}^{k} \left(n\ell j, n\ell j \right) + \Delta \mathcal{F}^{k} \left(n\ell j, n\ell j \right) \right] \\ &+ \sum_{n\ell j} \sum_{n'\ell' j' > n\ell j} \left\{ \sum_{k>0} \widetilde{f_{k}} \left(\ell j^{w} \ \ell' j'^{w'}, K\chi J \right) \left[\mathcal{F}^{k} \left(n\ell j, n'\ell' j' \right) + \Delta \mathcal{F}^{k} \left(n\ell j, n'\ell' j' \right) \right] \\ &+ \sum_{k} \widetilde{g_{k}} \left(\ell j^{w} \ \ell' j'^{w'}, K\chi J \right) \mathcal{G}^{k} \left(n\ell j, n'\ell' j' \right) \\ &+ \sum_{k} \widetilde{v_{k}} \left(\ell j^{w} \ \ell' j'^{w'}, \ell j^{w-2} \ \ell' j'^{w'+2}, K\chi J \ K'\chi' J \right) \mathcal{R}^{k} \left(n\ell jn\ell j, n'\ell' j'n'\ell' j' \right) \\ &+ \sum_{n'\ell' j' \neq n\ell j} \sum_{k>0} \left\langle \Psi \left\| \left[\left[\widetilde{a}^{(j)} \times a^{(j)} \right]^{(k)} \times \left[\left[a^{(j')} \times \widetilde{a}^{(j')} \right]^{(x)} \times \left[a^{(j')} \times \widetilde{a}^{(j')} \right]^{(k')} \right]^{(k')} \right]^{(k')} \right\| \Psi \right\rangle \\ &+ \sum_{\substack{n\ell j \\ n'\ell' j' \neq n\ell j}} \sum_{k>0 \atop k',x} \left\langle \Psi \left\| \left[\left[\widetilde{a}^{(j)} \times a^{(j)} \right]^{(k)} \times \left[a^{(j')} \times \widetilde{a}^{(j')} \right]^{(x)} \times \left[a^{(j'')} \times \widetilde{a}^{(j'')} \right]^{(k')} \right]^{(k')} \right]^{(0)} \right\| \Psi \right\rangle \\ &\times \Delta \widetilde{\mathcal{R}}^{(k,k',x)} \left(n\ell j \ n'\ell' j' \ n'\ell' j' \right)^{(k)} \times \left[a^{(j')} \times \widetilde{a}^{(j')} \right]^{(x)} \right]^{(k')} \left\| \left[\left[\widetilde{a}^{(j')} \times a^{(j)} \right]^{(k')} \times \left[a^{(j'')} \times \widetilde{a}^{(j'')} \right]^{(k')} \right]^{(k')} \right\| \Psi \right\rangle \end{aligned}$$

 $E\left(K\chi J
ight)$

$$\mathcal{G}(x_1 x_2 x, ij, i'j') = \sum_{k,k'} (-1)^{k'} \left\{ \begin{array}{cc} j_j & j_j & x \\ k & k' & j_{j'} \end{array} \right\} \left\{ \begin{array}{cc} j_{i'} & j_i & k \\ x_1 & x_2 & x \\ j_{i'} & j_i & k' \end{array} \right\} \mathcal{P}(kk', ij, i'j'),$$

$$6 - j \text{ symbol} \qquad 9 - j \text{ symbol}$$

RSMBPT research status up to 2025

Vilnius University

The following correlations was not included in RSMBPT:

• Valence correlations

$$(n_m \ell_m) j_m^{w_m} \to (n_m \ell_m) j_m^{w_m - 1} (n_r \ell_r) j_r$$

• Core correlations

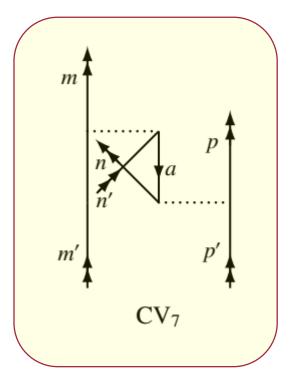
$$(n_a\ell_a) j_a^{2j_a+1} (n_m\ell_m) j_m^{w_m} \to (n_a\ell_a) j_a^{2j_a} (n_m\ell_m) j_m^{w_m+1}$$

• Valence-valence correlations

$$\mathbf{V} \qquad (n_a \ell_m) j_m^{w_m} (n_n \ell_n) j_n^{w_n} \rightarrow (n_m \ell_m) j_m^{w_m+1} (n_n \ell_n) j_n^{w_n-2} (n_r \ell_r) j_r$$

 $\bigvee (n_a \ell_m) j_m^{w_m} (n_n \ell_n) j_n^{w_n} (n_p \ell_p) j_p^{w_p} \to (n_m \ell_m) j_m^{w_m+1} (n_n \ell_n) j_n^{w_n-1} (n_p \ell_p) j_p^{w_p-1} (n_r \ell_r) j_r$

Core-valence correlations


$$(n_{a}\ell_{a}) j_{a}^{2j_{a}+1} (n_{m}\ell_{m}) j_{m}^{w_{m}} (n_{n}\ell_{n}) j_{n}^{w_{n}} \to (n_{a}\ell_{a}) j_{a}^{2j_{a}} (n_{m}\ell_{m}) j_{m}^{w_{m}-1} (n_{n}\ell_{n}) j_{n}^{w_{n}+2}$$

$$(n_{a}\ell_{a}) j_{a}^{2j_{a}+1} (n_{m}\ell_{m}) j_{m}^{w_{m}} (n_{n}\ell_{n}) j_{n}^{w_{n}} (n_{p}\ell_{p}) j_{p}^{w_{p}} \to (n_{a}\ell_{a}) j_{a}^{2j_{a}} (n_{m}\ell_{m}) j_{m}^{w_{m}-1} (n_{n}\ell_{n}) j_{n}^{w_{n}+1} (n_{p}\ell_{p}) j_{p}^{w_{p}+1}$$

Relativistic second-order effective Hamiltonian in irreducible tensorial form for core-valence correlations

Vilnius University

A Feynman diagram that is independent of the potential at which the wave functions were obtained.

The third type of core-valence correlations

 $(n_a \ell_a) j_a^{2j_a+1}(n_m \ell_m) j_m^{w_m}(n_n \ell_n) j_n^{w_n} \to (n_a \ell_a) j_a^{2j_a}(n_m \ell_m) j_m^{w_m-1}(n_n \ell_n) j_n^{w_n+2}.$

where all lines with the double arrow of diagram CV_7 is renamed in the following way: $p' \equiv m$ and $m' = n = n' = p \equiv n$.

RSMBPT research status up to 2025

Vilnius University

The following correlations was not included in RSMBPT:

• Valence correlations

$$(n_m \ell_m) j_m^{w_m} \to (n_m \ell_m) j_m^{w_m - 1} (n_r \ell_r) j_r$$

• Core correlations

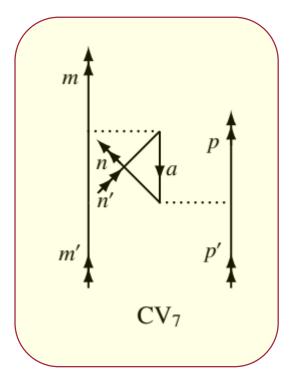
$$(n_a\ell_a) j_a^{2j_a+1} (n_m\ell_m) j_m^{w_m} \to (n_a\ell_a) j_a^{2j_a} (n_m\ell_m) j_m^{w_m+1}$$

• Valence-valence correlations

$$\mathbf{V} \qquad (n_a \ell_m) \, j_m^{w_m} \left(n_n \ell_n \right) \, j_n^{w_n} \, \rightarrow \, (n_m \ell_m) \, j_m^{w_m+1} \left(n_n \ell_n \right) \, j_n^{w_n-2} \left(n_r \ell_r \right) \, j_r$$

 $\bigvee (n_a \ell_m) j_m^{w_m} (n_n \ell_n) j_n^{w_n} (n_p \ell_p) j_p^{w_p} \to (n_m \ell_m) j_m^{w_m+1} (n_n \ell_n) j_n^{w_n-1} (n_p \ell_p) j_p^{w_p-1} (n_r \ell_r) j_r$

• Core-valence correlations

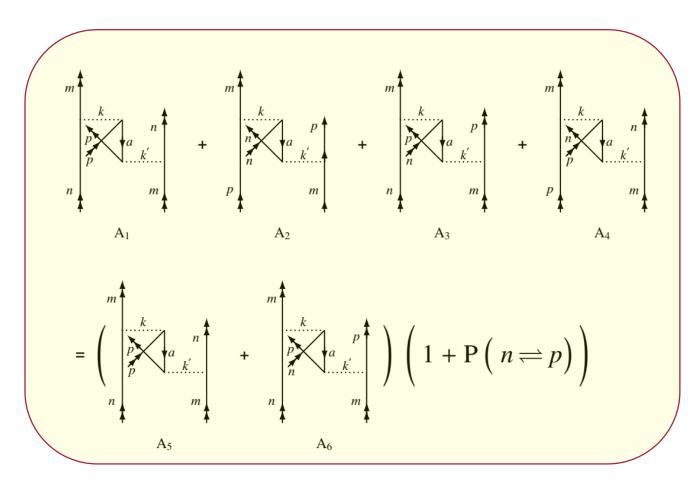

$$(n_{a}\ell_{a}) j_{a}^{2j_{a}+1} (n_{m}\ell_{m}) j_{m}^{w_{m}} (n_{n}\ell_{n}) j_{n}^{w_{n}} \to (n_{a}\ell_{a}) j_{a}^{2j_{a}} (n_{m}\ell_{m}) j_{m}^{w_{m}-1} (n_{n}\ell_{n}) j_{n}^{w_{n}+2}$$

$$(n_{a}\ell_{a}) j_{a}^{2j_{a}+1} (n_{m}\ell_{m}) j_{m}^{w_{m}} (n_{n}\ell_{n}) j_{n}^{w_{n}} (n_{p}\ell_{p}) j_{p}^{w_{p}} \to (n_{a}\ell_{a}) j_{a}^{2j_{a}} (n_{m}\ell_{m}) j_{m}^{w_{m}-1} (n_{n}\ell_{n}) j_{n}^{w_{n}+1} (n_{p}\ell_{p}) j_{p}^{w_{p}+1}$$

Relativistic second-order effective Hamiltonian in irreducible tensorial form for core-valence correlations

Vilnius University

A Feynman diagram that is independent of the potential at which the wave functions were obtained.


The fourth type of core-valence correlations

 $(n_{a}\ell_{a}) j_{a}^{2j_{a}+1}(n_{m}\ell_{m}) j_{m}^{w_{m}}(n_{n}\ell_{n}) j_{n}^{w_{n}}(n_{p}\ell_{p}) j_{p}^{w_{p}} \rightarrow (n_{a}\ell_{a}) j_{a}^{2j_{a}}(n_{m}\ell_{m}) j_{m}^{w_{m}-1}(n_{n}\ell_{n}) j_{n}^{w_{n}+1}(n_{p}\ell_{p}) j_{p}^{w_{p}+1}$

where all lines with the double arrow of diagram VV₃ is renamed in the following way: $m = m' = n = n' = p' \equiv ???$.

Relativistic second-order effective Hamiltonian in irreducible tensorial form for core-valence correlations

Vilnius University

The CV Feynman diagrams of the secondorder effective Hamiltonian, expressing the fourth type of core-valence correlations

$$(n_a \ell_a) j_a^{2j_a+1} (n_m \ell_m) j_m^{w_m} (n_n \ell_n) j_n^{w_n} (n_p \ell_p) j_p^{w_p} \rightarrow (n_a \ell_a) j_a^{2j_a} (n_m \ell_m) j_m^{w_m-1} (n_n \ell_n) j_n^{w_n+1} (n_p \ell_p) j_p^{w_p+1}$$

$$\begin{split} &= E_{0} \left(KJ \right) + \Delta \mathcal{E}_{0} \left(KJ \right) \\ &+ \sum_{n\ell j} \sum_{k>0} \widetilde{f_{k}} \left(\ell j^{w}, K\chi J \right) \left[\mathcal{F}^{k} \left(n\ell j, n\ell j \right) + \Delta \mathcal{F}^{k} \left(n\ell j, n\ell j \right) \right] \\ &+ \sum_{n\ell j} \sum_{n'\ell' j' > n\ell j} \left\{ \sum_{k>0} \widetilde{f_{k}} \left(\ell j^{w} \ \ell' j'^{w'}, K\chi J \right) \left[\mathcal{F}^{k} \left(n\ell j, n'\ell' j' \right) + \Delta \mathcal{F}^{k} \left(n\ell j, n'\ell' j' \right) \right] \\ &+ \sum_{k} \widetilde{g_{k}} \left(\ell j^{w} \ \ell' j'^{w'}, K\chi J \right) \mathcal{G}^{k} \left(n\ell j, n'\ell' j' \right) \\ &+ \sum_{k} \widetilde{v_{k}} \left(\ell j^{w} \ \ell' j'^{w'}, \ell j^{w-2} \ \ell' j'^{w'+2}, K\chi J \ K'\chi' J \right) \mathcal{R}^{k} \left(n\ell jn\ell j, n'\ell' j'n'\ell' j' \right) \\ &+ \sum_{n'\ell' j' \neq n\ell j} \sum_{k>0} \left\langle \Psi \left\| \left[\left[\widetilde{a}^{(j)} \times a^{(j)} \right]^{(k)} \times \left[\left[a^{(j')} \times \widetilde{a}^{(j')} \right]^{(x)} \times \left[a^{(j')} \times \widetilde{a}^{(j')} \right]^{(k')} \right]^{(k')} \right]^{(k')} \right\| \Psi \right\rangle \\ &+ \sum_{\substack{n\ell j \\ n'\ell' j' \neq n\ell j}} \sum_{k>0 \atop k',x} \left\langle \Psi \left\| \left[\left[\widetilde{a}^{(j)} \times a^{(j)} \right]^{(k)} \times \left[a^{(j')} \times \widetilde{a}^{(j')} \right]^{(x)} \times \left[a^{(j'')} \times \widetilde{a}^{(j'')} \right]^{(k')} \right]^{(k')} \right]^{(0)} \right\| \Psi \right\rangle \\ &\times \Delta \widetilde{\mathcal{R}}^{(k,k',x)} \left(n\ell j \ n'\ell' j' \ n'\ell' j' \right)^{(k)} \times \left[a^{(j')} \times \widetilde{a}^{(j')} \right]^{(x)} \right]^{(k')} \left\| \left[\left[\widetilde{a}^{(j')} \times a^{(j)} \right]^{(k')} \times \left[a^{(j'')} \times \widetilde{a}^{(j'')} \right]^{(k')} \right]^{(k')} \right\| \Psi \right\rangle \end{aligned}$$

 $E\left(K\chi J
ight)$

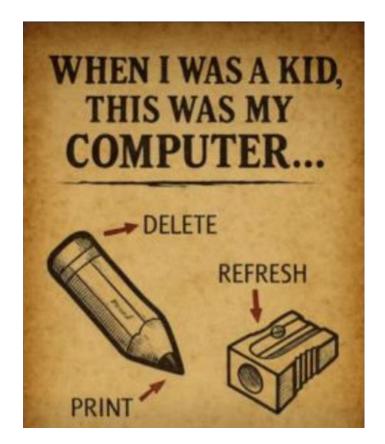
Corrections		Slater integral	k values
valence subshells	valence subshells	virtual subs	hell
$(n_m \ell_m) j_m^{w_m} (n_n \ell_n) j_n^{w_n} (n_p \ell_p) j_p^{w_p} \to (n_m \ell_m)$	$j_m^{w_m+1}(n_n\ell_n) j_n^{w_n-1}(n_p\ell_p)$	$j_p^{wp-1} \qquad \overbrace{(n_r \ell_r) j_r}^{wp-1}$	
$(-1)^{jm+jn} [k] \sqrt{[k]} \frac{([jm]-w_m)}{\sqrt{[jm]}} \left\{ (-1)^{k+1} \mathcal{G}(0kk,np,n) \right\}$	mr)	$\Delta \mathcal{F}^k(n,p)$	<i>k</i> > 0
$+\sum_{k_1,k_2,k_3} (-1)^{k_1+k} \begin{bmatrix} k_3 \end{bmatrix} \begin{cases} j_n & j_p & k_3 \\ k_1 & k_2 & j_r \end{cases} \mathcal{Q} \begin{pmatrix} k_1 & k_2 & j_r \end{pmatrix} \mathcal{Q} \begin{pmatrix} k_1 & k_2 &$	$(k_1 k_2, np, mr)$		
$\times C_{12j}\left(j_m j_n j_p, k_1 k_2 k_3, 0 k k\right) \right\} \left(1 + \mathbf{P} \begin{pmatrix} n \rightleftharpoons k_1 \rightleftharpoons k_1 \end{pmatrix}$	$\binom{p}{k_2}$		
$(-1)^{jm+jn} \sqrt{\left[k,k',x\right]} \left\{ (-1)^{x+1} \mathcal{G}\left(kk'x,np,mr\right) \right\}$	Δ	$\widetilde{\mathcal{R}}^{(k,k',x)}(mnp)$	<i>k</i> > 0
$+ \sum_{k_1,k_2,k_3} (-1)^{k+k'+k_1} \begin{bmatrix} k_3 \end{bmatrix} \begin{cases} jn & jp \\ k_1 & k_2 \end{cases}$	$ \begin{cases} k_3 \\ jr \end{cases} \Big\} Q \Big(k_1 k_2, np, mr \Big) $		
$\times C_{12j}\left(jmjnjp, k_1k_2k_3, kk'x\right) \left\{ 1 + P \begin{pmatrix} n \\ k_1 \\ k' \\ k' \\ \epsilon \end{pmatrix} \right\}$	$ \begin{array}{c} \stackrel{\scriptscriptstyle \Delta}{=} & p \\ \stackrel{\scriptscriptstyle \Delta}{=} & k_2 \\ \stackrel{\scriptscriptstyle \Delta}{=} & x \end{array} \right) $		

Table 1: Expressions for Slater integral $\Delta \mathcal{F}^{k}(n, p)$ and $\Delta \widetilde{\mathcal{R}}^{(k,k',x)}(mnp)$ corrections corresponding to the fourth type of valence-valence correlations.

$$C_{12j}(iji', k_1k_2k_3, J_1J_2J) = \sum_{x} [x] \left\{ \begin{array}{ccc} J_1 & j_j & x \\ j_j & J & J_2 \end{array} \right\} \left\{ \begin{array}{ccc} J & j_j & x \\ k_3 & j_{i'} & j_{i'} \end{array} \right\} \left\{ \begin{array}{ccc} j_{i'} & k_3 & x \\ k_1 & j_i & k_2 \end{array} \right\} \left\{ \begin{array}{ccc} j_i & k_1 & x \\ j_j & J_1 & j_i \end{array} \right\}.$$

12-*j* symbol

MCDHF and RCI calculations with MBPT



Calculations

Calculations of core-valence, core and valence-valence (including these which are described by the three-particle Feynman diagram) correlations with a new approach

The energy structure calculations were performed for 105 lowest energy levels of the $4s^24p^2$, $4p^4$, $4s^24p\{4d, 4f, 5s, 5p, 5d, 6s, 6p\}$, $4s4p^3$, and $4s4p^2\{4d, 5s\}$ configurations of the **Se III** using the regular way and the RSMBPT method when CV, C, VV and VVT correlations were included.

The multireference (MR) set in the present calculations consists of the $4s^24p^2$, $4p^4$, $4s^24p\{4f, 5p, 6p\}$, $4s4p^2\{4d, 5s\}$ even and $4s^24p\{4d, 5s, 5d, 6s\}$, $4s4p^3$ odd configurations.

Calculations

Vilnius University

Regular GRASP2018 calculations

Regular MCDHF computations including CV, C, and VV(T) correlations are marked as CV+C+VV(T) MCDHF.

In this computational scheme, single-double (SD) substitutions are allowed from the

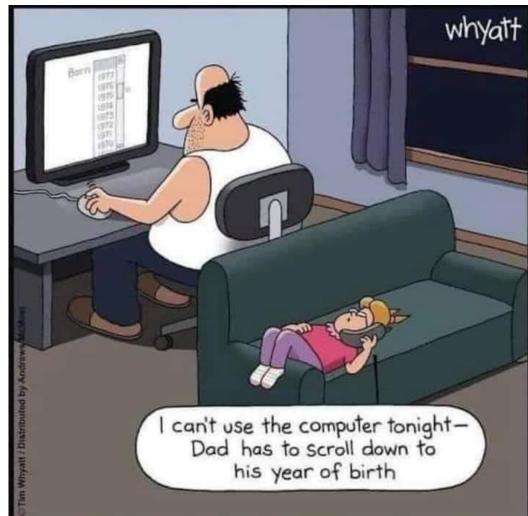
 $4s, 4p_-, 4p, 4d_-, 4d, 4f_-, 4f, 5s, 5p_-, 5p, 5d_-, 5d, 6s, 6p_-, 6p$ valence orbitals of the MR set

and

S substitutions from the 3s, $3p_-$, 3p, $3d_-$ and 3d core orbitals to orbital set (OS) $OS_1 = \{7s, 7p_-, 7p, 6d_-, 6d, 5f_-, 5f, 5g_-, 5g\},$ $OS_2 = \{8s, 8p_-, 8p, 7d_-, 7d, 6f_-, 6f, 6g_-, 6g\}.$ The 1s, 2s, 2p_, and 2p subshells are defined as inactive core subshells.

The radial wavefunctions of the new OS are estimated using the Thomas-Fermi potential, and further self-consistent field equations are solved. When a new OS is computed, the previous orbitals are frozen.

Based on the orbitals from the MCDHF calculations, further RCI calculations are performed. Regular RCI calculations are marked as CV+C+VV(T) RCI.



Calculations

Calculations using the RSMBPT method

The 1s, 2s, $2p_{-}$ and 2p subshells are defined as inactive core subshells in the calculations, the same as it is done in the regular GRASP2018 calculations. The 3s, $3p_{-}$, 3p, $3d_{-}$ and 3d subshells are defined as core subshells (that correspond to *F* set), 4s, $4p_{-}$, 4p, $4d_{-}$, 4d, $4f_{-}$, 4f, 5s, $5p_{-}$, 5p, $5d_{-}$, 5d, 6s, $6p_{-}$, 6p as valence subshells (that correspond to *F'* set), and subshells belonging to OS_{1} and OS_{2} as virtual ones (that correspond to *G* set). Such space distribution is consistent with regular GRASP2018 calculations described above.

The RSMBPT calculation procedure is analogous to that used in previous research. The contribution of each K' configuration for CSF for which energy needs to be calculated is computed according to Rayleigh-Schrödinger perturbation theory in an irreducible tensorial. K' configurations are sorted in descending order according to the impact of the correlations for each level. Further, K' configurations are selected by CV, C and VV(T) correlations impact with the specified fraction (expressed in the percentage: 95, 99, 99.5, 99.95 and 100%) of the total correlations contribution.

In memory of Prof. Ian Philip Grant

Calculations

Vilnius University

Results from RCI computations including CV, C and VV(T) correlations according to the RSMBPT method are marked as CV+C+VV(T) RCI (RSMBPT).

Results from MCDHF computations including CV, C and VV(T) correlations according to the RSMBPT method are marked as CV+C+VV(T) MCDHF (RSMBPT).

PT_Accumulate Output: rcsf.inp_PT taking CSF from the specified fraction (95, 99, 99.5, 99.95, and 100%) **PT_Interact** Output: rcsf.out_PT the stationary second-order Rayleigh**rmcdhf** Output: rwfn.out Schrödinger many-body perturbation theory (RSMBPT) in an irreducible tensorial form CV+C+VV(T) MCDHF (RSMBPT) calculation scheme Convergency Self-consistency Norm-1 Thomas-Fermi Output: rwfn.out Number of CSF in the first run (iteration) YES NO rcsfgeneratei Output: rcsfMR.inp and rcsfcomplete.inp in the first run (iteration)

Calculations

Table 1: Self-consistency and norm-1 parameters solving the MCDHF equations of the OS_1 for even parity states in cases 95%. Columns with 'x' var. means the number of variations with the constructed CSF basis. In. and Fin. means the initial and final results of solving the MCDHF equations for these parameters.

Subshell	1 .	var.	2 v	var.	3 v	var.	4 v	/ar.
	In.	Fin.	In.	Fin.	In.	Fin.	In.	Fin.
7s	1.81E-02	2.64E-06	2.28E-04	4.33E-07	5.38E-06	3.79E-07	1.67E-06	8.78E-08
7p_	1.15E-02	3.14E-06	1.27E-03	3.15E-07	4.69E-05	3.75E-07	6.12E-06	1.63E-07
7p	1.90E-02	3.92E-06	1.00E-03	4.43E-07	6.31E-05	5.47E-07	4.24E-06	1.70E-07
6d_	3.98E-02	3.11E-06	8.25E-04	3.94E-07	3.24E-05	3.95E-07	1.54E-06	1.31E-07
6d	5.43E-02	3.86E-06	7.64E-04	4.15E-07	5.49E-05	4.54E-07	5.82E-06	1.40E-07
5f_	2.10E-02	1.02E-06	1.14E-03	9.71E-08	5.72E-05	1.34E-07	1.26E-05	1.02E-07
5f	2.66E-02	1.33E-06	1.03E-03	1.10E-07	8.63E-05	1.95E-07	1.26E-05	9.47E-08
5g_	8.45E-03	1.15E-07	4.24E-04	1.90E-08	5.72E-05	1.45E-07	7.87E-07	8.94E-09
5g	9.43E-03	1.24E-07	4.46E-04	1.33E-08	3.22E-05	4.11E-08	3.22E-08	1.28E-08
			Ν	Norm-1 in cas	e 95%			
7s	3.78E-01	-3.58E-05	-2.72E-03	-5.36E-06	6.35E-05	-4.69E-06	1.76E-05	-1.12E-06
7p_	1.44E-01	-2.25E-05	-9.27E-03	-3.82E-06	-4.61E-04	-4.38E-06	-6.77E-05	-1.81E-06
7p	1.57E-01	-2.86E-05	-6.43E-03	-3.47E-06	-4.94E-04	-4.58E-06	-3.22E-05	-1.41E-06
6d_	1.35E-01	-1.60E-05	-4.55E-03	-2.47E-06	-7.01E-06	-2.25E-06	4.48E-06	-7.90E-07
6d	1.67E-01	-1.70E-05	-2.03E-03	-1.99E-06	-1.25E-05	-2.05E-06	3.47E-06	-6.43E-07
5f_	8.54E-02	-8.77E-06	-7.73E-03	-8.07E-07	-5.17E-04	-1.10E-06	-9.83E-05	-8.04E-07
5f	1.03E-01	-9.51E-06	-5.84E-03	-7.81E-07	-6.61E-04	-1.37E-06	-8.08E-05	-6.57E-07
5g_	4.80E-01	3.68E-06	-1.28E-02	6.16E-07	-2.00E-03	-5.38E-06	-2.47E-05	2.81E-07
5g	4.81E-01	3.45E-06	-1.20E-02	3.69E-07	-8.74E-04	-1.38E-06	-7.48E-07	3.76E-07

Calculations

Vilnius University

Table 1: Number of CSF in the MCDHF computations of OS_1 and OS_2 using regular way and the RSMBPT method.

Case		0.	<i>S</i> ₁		OS_2				
	1 var.	2 var.	3 var.	4 var.	1 var.	2 var.	3 var.	4 var.	
				Even					
95%	508364	569574	570467	571019	733794	1023336	1141939	1147646	
99%	689625	785778	898767	897052	1194590	1746407	1806590	1847202	
99.5%	772411	880322	980963	981664	1398101	1979519	2071879	2111506	
99.95%	966043	1144631	1173196	1173442	1944852	2525688	2567785	2567315	
100%	1287673	1303671	1303659	1303659					
Regular	1303709				2923523				
_									

				Odd				
95%	197074	226517	245285	248960	280434	422802	439826	442597
99%	269522	322049	340528	340543	465186	685001	700179	700938
99.5%	303520	353355	371760	371834	550123	783504	799867	799302
99.95%	380829	444754	450637	450656	764152	973620	974618	974715
100%	500591	507233	507231	507231				
Regular	507234				1126622			

In memory of Prof. Ian Philip Grant

Table 1: Self-consistency and norm-1 parameters solving the MCDHF equations of the OS_1 for even parity states in cases 95%. Columns with 'x' var. means the number of variations with the constructed CSF basis. In. and Fin. means the initial and final results of solving the MCDHF equations for these parameters.

Subshell	1	var.	2 v	/ar.	3 var		4 va	ır.
	In.	Fin.	In.	Fin.	In.	Fin.	In.	Fin.
			Self-o	consistenc				
5f_	2.10E-02	1.02E-06	1.14E-03	9.71E-(
				Norm-1 in				
5f_	8.54E-02	-8.77E-06	-7.73E-03	-8.07E-0			7	
				consistenc				
5f_	2.24E-02	2.02E-07	3.59E-04				and C	The second
				Norm-1 in		K		
5f_	9.73E-02	-1.65E-06	-2.31E-03			A		
				onsistency	here	10		
5f_	2.26E-02	2.02E-06	1.08E-04			A W	NO.	
				orm-1 in c				
5f_	9.88E-02	-1.63E-05	-7.45E-04		1		A THE	
				onsistency				
5f_	2.27E-02	7.84E-07	2.80E-04				1 A	
F C				orm-1 in c			N .	7
5f_	9.95E-02	-6.06E-06	2.25E-03				-	2
7 C		1 205 05		onsistency			12	1
$5f_{-}$	2.28E-02	1.29E-07	1.33E-06					
F C				orm-1 in				
5f_	9.98E-02	-9.94E-07	-2.54E-06	-2.18E-(The state of the s	and the second second	The second s	

Calculations

I THINK WE SHOULD CHECK THE TEMPERATURE

OF THE DIP!

N

Vilnius University

CV+C+VV(T) MCDHF calculations and differences (**RSMBPT 95%**) and **CV+C+VV(T) MCDHF** ener-($^{+C+VV(T) MCDHF}$) for *OS*₁ even states of Se III are given ded in the computations.

	CV+C+VV(]	Г) MCDHF (RSMB	PT 95%))-(CV+C+	VV(T) MCDHF)	
a pro-	var.	2 var.	3 var.	4 var.	
	719951	0.01069467	0.01063563	0.01062526	← 0.00044%
Coop Coop	375750	0.00967381	0.00965265	0.00964992	
	391853	0.00927581	0.00928841	0.00924708	
	448714	0.00986784	0.00988351	0.00982101	
	781291	0.01153240	0.01143447	0.01143258	← 0.00047%
REAL PRESE	389466	0.00995724	0.00988060	0.00989938	0.0001170
	349278	0.00947886	0.00940889	0.00941082	
	373647	0.00941741	0.00938174	0.00937987	
	044649	0.00589933	0.00588704	0.00586482	← 0.00024%
	341043	0.00762622	0.00758052	0.00757921	
Company of the state	039475	0.00617209	0.00614063	0.00612786	
No and a state of the state of	189693	0.00705631	0.00704251	0.00703630	
Startes Startes Market Startes Startes	117159	0.00670039	0.00670372	0.00669024	
CARE OF CONTRACTOR	132566	0.00677823	0.00679079	0.00678568	
Who will be when when when when when when when whe	086952	0.00638539	0.00636967	0.00633954	
What of allow the start	223365	0.00755601	0.00753338	0.00753415	← 0.00031%
SVA	039475	0.00589933	0.00588704	0.00586482	
V La JA Va	781291	0.01153240	0.01143447	0.01143258	
N/G	274465	0.00850122	0.00847525	0.00847151	
in the					

Vilnius University

Calculations

Table 1: Min, max diff and rms of total energy in the MCDHF computations of OS_1 comparing regular way and the RSMBPT method.

		Fx	ven			0	dd		-
	1 var.	2 var.	3 var.	4 var.	1 var.	2 var.	3 var.	4 var.	
				OS_1					
				Case 95%					
ΔE_{min} (in a.u.)	0.01039475	0.00589933	0.00588704	0.00586482	0.01078587	0.00619445	0.00410314	0.00378723	
ΔE_{max} (in a.u.)	0.01781291	0.01153240	0.01143447	0.01143258	0.01615159	0.00844032	0.00543860	0.00506363	
rms (in a.u.)	0.01274465	0.00850122	0.00847525	0.00847151	0.01345016	0.00724574	0.00455746	0.00430101	
				Case 99%					
ΔE_{min} (in a.u.)	0.00479198	0.00241481	0.00044516	0.00044752	0.00444358	0.00147206	0.00072496	0.00072521	
ΔE_{max} (in a.u.)	0.01010324	0.00488030	0.00122598	0.00123373	0.00864969	0.00231023	0.00107323	0.00105647	L THINK WE SHOULD CHECK THE TEMPERATURE
rms (in a.u.)	0.00692783	0.00366682	0.00081360	0.00081380	0.00723871	0.00182232	0.00086627	0.00086609	OF THE DIP!
				Case 99.5%					
ΔE_{min} (in a.u.)	0.00403621	0.00124726	0.00022377	0.00022392	0.00322708	0.00075465	0.00036678	0.00035865	MARCE OF
ΔE_{max} (in a.u.)	0.00892285	0.00265308	0.00078628	0.00078657	0.00729924	0.00126755	0.00055566	0.00054793	
rms (in a.u.)	0.00591419	0.00182666	0.00046031	0.00045983	0.00602911	0.00094146	0.00044813	0.00044605	The second second
				Case 99.95%					
ΔE_{min} (in a.u.)	0.00248536	0.00011430	0.00002831	0.00002734	0.00352790	0.00005336	0.00003057	0.00003065	
ΔE_{max} (in a.u.)	0.00591823	0.00032153	0.00017859	0.00017856	0.00581758	0.00013347	0.00007381	0.00007382	A DATE OF THE OF
rms (in a.u.)	0.00422965	0.00021375	0.00007648	0.00007318	0.00479534	0.00009420	0.00005156	0.00005162	W States and Stat
				Case 100%					A Contraction of the second
ΔE_{min} (in a.u.)	0.00003567	0.00000000	0.00000000	0.00000000	0.00003871	0.00000000	0.00000000	0.00000000	Not Not Not Not Not
ΔE_{max} (in a.u.)	0.00008260	0.00000078	0.0000078	0.00000078	0.00007884	0.00000001	0.00000003	0.00000003	A C AND A C A C A C A C A C A C A C A C A C A
rms (in a.u.)	0.00006240	0.00000015	0.00000015	0.00000015	0.00006174	0.00000001	0.00000001	0.00000001	ste se

Calculations

Vilnius University

Table 1: Min, max diff and rms of total energy in the MCDHF computations of OS_2 comparing regular way and the RSMBPT method.

		Ev	ven			0	dd		:
	1 var.	2 var.	3 var.	4 var.	1 var.	2 var.	3 var.	4 var.	-
				OS_2					
				Case 95%					
ΔE_{min} (in a.u.)	0.01514835	0.00565667	0.00465128	0.00476963	0.01905315	0.00664994	0.00635027	0.00628709	
ΔE_{max} (in a.u.)	0.02611409	0.01186351	0.00944572	0.00948070	0.02458143	0.00895267	0.00824978	0.00825399	
rms (in a.u.)	0.01959744	0.00889209	0.00680218	0.00676645	0.02082576	0.00747281	0.00703090	0.00698012	I THINK WE SHOULD CHECK THE TEMPERATURE
				Case 99%					OF THE DIP!
ΔE_{min} (in a.u.)	0.00879110	0.00085163	0.00081118	0.00076419	0.01077293	0.00157237	0.00150440	0.00150264	
ΔE_{max} (in a.u.)	0.01554800	0.00279595	0.00235952	0.00232113	0.01502497	0.00238582	0.00228452	0.00228469	
rms (in a.u.)	0.01167577	0.00205255	0.00177316	0.00168195	0.01235068	0.00183188	0.00177058	0.00177014	
				Case 99.5%					
ΔE_{min} (in a.u.)	0.00770291	0.00034064	0.00041791	0.00041622	0.00862058	0.00093582	0.00081631	0.00081282	
ΔE_{max} (in a.u.)	0.01361750	0.00188676	0.00154804	0.00153272	0.01279172	0.00150648	0.00140862	0.00140949	and the second sec
rms (in a.u.)	0.00996782	0.00133000	0.00107452	0.00101776	0.01058859	0.00111489	0.00104843	0.00104674	
				Case 99.95%					the second secon
ΔE_{min} (in a.u.)	0.00388888	0.00005463	0.00007514	0.00007001	0.00450417	0.00014034	0.00012899	0.00012840	Will Noti the Well Company
ΔE_{max} (in a.u.)	0.00911764	0.00047941	0.00040230	0.00040681	0.00806687	0.00040195	0.00038392	0.00038297	A CONTRACT OF AND A CONTRACT OF
rms (in a.u.)	0.00571790	0.00033027	0.00026441	0.00026029	0.00624877	0.00024094	0.00026036	0.00026023	NE 14 UE 14

Vilnius University

Calculations

Table 1: The smallest (ΔE_{min} in a.u.), the largest (ΔE_{max} in a.u.) differences and rms of total energies from the **RCI computations** of OS_1 and OS_2 comparing results from regular way and using the **RSMBPT** method.

	E	Even	(Ddd
	First procedure	Second procedure	First procedure	Second procedure
		OS_2		
	Radial	wavefunctions from	case 95%	
ΔE_{min} (in a.u.)	0.00005090	0.00478032	0.00004574	0.00630025
ΔE_{max} (in a.u.)	0.00197267	0.00952692	0.00094435	0.00826736
rms (in a.u.)	0.00098455	0.00678775	0.00043676	0.00698827
	Radia	wavefunctions from	case 99%	
ΔE_{min} (in a.u.)	0.00000458	0.00074870	0.00000710	0.00151110
ΔE_{max} (in a.u.)	0.00023362	0.00232700	0.00029347	0.00229393
rms (in a.u.)	0.00014306	0.00167533	0.00009579	0.00177984
	Radial	wavefunctions from	case 99.5%	
ΔE_{min} (in a.u.)	0.0000024	0.00041214	0.00000244	0.00081798
ΔE_{max} (in a.u.)	0.00008720	0.00154291	0.00014983	0.00141603
rms (in a.u.)	0.00004940	0.00102058	0.00004814	0.00105443
	Radial v	wavefunctions from c	ase 99.95%	
ΔE_{min} (in a.u.)	0.0000018	0.00007105	0.00000004	0.00012925
ΔE_{max} (in a.u.)	0.00002741	0.00041042	0.00001590	0.00038453
rms (in a.u.)	0.00000952	0.00026222	0.00000824	0.00026121

In the first procedure using the RSMBPT method, the radial wavefunctions were taken from the **CV+C+VV MCDHF** (**RSMBPT**) calculations and the CSFs basis was taken from the regular GRASP2018 calculations.

In the second procedure, the radial wavefunctions were taken from the

CV+C+VV MCDHF (RSMBPT) calculations and the CSF basis was constructed using the RSMBPT method with the same specified fraction as in the MCDHF.

University

Vilnius

Calculations

Table 1: Energy levels (in cm⁻¹) from CV+C+VV RCI calculations and differences (in cm⁻¹) between CV+C+VV RCI (RSMBPT) and CV+C+VV RCI energies ($\Delta E_{(CV+C+VV RCI (RSMBPT))-(CV+C+VV RCI)}$) for OS_2 even states of Se III are given when CV, C and VV correlations are included in the computations.

				$\Delta E_{(CV+C)}$	+VV RCI (RS	MBPT))-(CV+	C+VV RCI)	
No	o Pos J C		$S J \mathbf{CV+C+VV \ RCI}$	First pr	ocedure	Second procedure		
				95%	99.95%	95%	99.95%	
1	1	0	0.00	0.00	0.00	0.00	0.00	
2	1	1	1682.62	3.75	-0.32	-330.09	-21.68	
3	1	2	3889.34	6.04	-0.88	-411.08	-24.74	
4	2	2	13797.80	23.17	1.86	-312.40	-20.79	
5	2	0	29482.86	82.02	2.96	152.76	-4.49	
6	2	1	151160.29	-98.23	-3.90	-257.70	27.52	
7	3	1	153592.00	-99.55	-2.97	-330.38	25.41	
8	3	2	153914.82	-102.93	-3.31	-325.03	25.14	
9	3	0	155152.31	-89.78	-1.29	-193.47	34.01	
10	4	1	156676.51	-91.53	-2.96	-341.68	26.93	
11	1	3	157184.53	-103.16	-4.01	-140.65	35.61	
12	4	2	158137.34	-89.27	-3.00	-322.07	27.12	
13	5	1	159722.61	-95.52	-3.69	-354.90	26.77	
14	5	2	161643.32	-86.43	-2.54	-314.04	26.27	
15	4	0	167467.38	-75.92	-3.37	-122.41	27.77	
16	2	3	191065.56	-528.12	-0.05	-485.28	43.60	
N _{CS}	Fs			2923523	2923523	1148711	2567016	
rms	(in cr	n^{-1})	276.96	2.32	509.08	25.92	

Summary and conclusions

Vilnius University

Summary and conclu

Are all types of correlations included in the RSMBPT? The following correlations are not included in RSMBPT:

• Valence correlations

 $(n_m \ell_m) j_m^{w_m} \to (n_m \ell_m) j_m^{w_m - 1} (n_r \ell_r) j_r$

• Core correlations

$$(n_a\ell_a) j_a^{2j_a+1} (n_m\ell_m) j_m^{w_m} \to (n_a\ell_a) j_a^{2j_a} (n_m\ell_m) j_m^{w_m}$$

Summary and conclusions

Vilnius University

This is the first time that CSF bases constructed using the RSMBPT method have been used to solve the self-consistent field equations. Previously, this method was only applied to RCI computations.

Thus, this work demonstrates a third way of the application of the RSMBPT method in atomic calculations (other two ways of it application are presented in a series of previous papers by G. Gaigalas, P. Rynkun and L. Kitovienė).

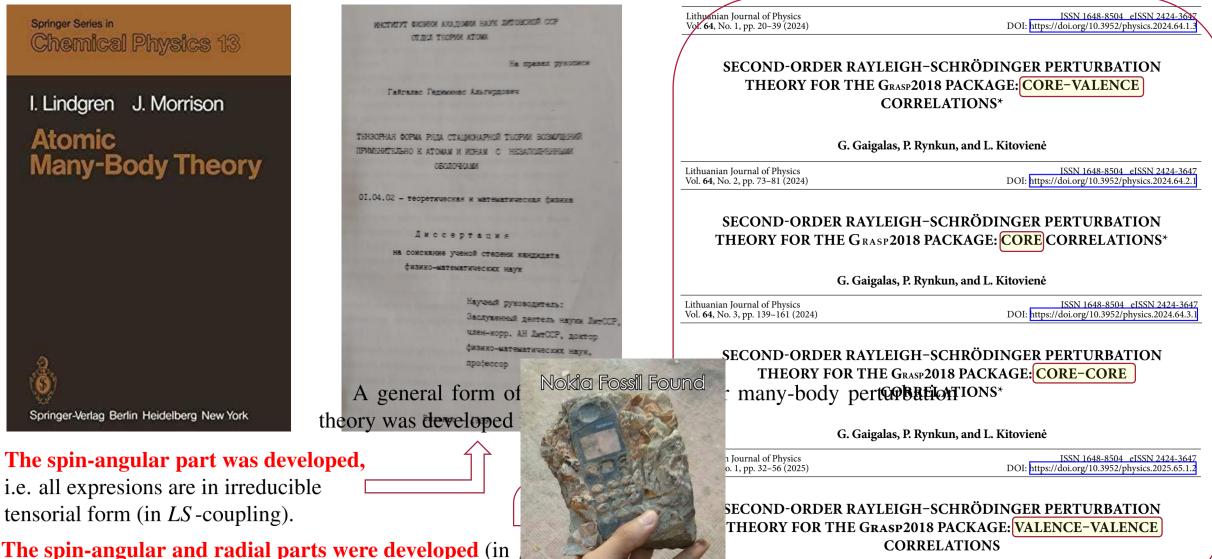
Summary and conclusions

Vilnius University

The radial wavefunctions obtained using the RSMBPT method can be used in the RCI computations in several procedures:

i) these can be used with the extended CSF basis;

ii) these can be used with CSF basis constructed using the RSMBPT method with the specified fraction as in the MCDHF.


Results of both RCI computations are in good agreement with the results of the regular RCI computations.

In memory of Prof. Ian Philip Grant

Summary and conclusions

for computer packages such as GRASP.

80% Battery Still Left

G. Gaigalas, P. Rynkun, and L. Kitovienė

In memory of Prof. Ian Philip Grant

Vilnius University