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Founded in 1947 by Dr. Vikram A. Sarabhai, 

the Physical Research Laboratory (PRL) had 

a modest beginning at his residence, the 

RETREAT, with research on Cosmic Rays. 

PRL research encompasses the Earth, the Sun Immersed

in the fields and radiations reaching from and to infinity,

all that man’s curiosity and intellect can reveal.



Ahmedabad, Gujarat, India

Ahmedabad, in western India, is the largest city in the state of Gujarat. The

Sabarmati River runs through its center. On the western bank is the Gandhi

Ashram at Sabarmati, which displays the spiritual leader’s living quarters and

artifacts. Across the river, the Calico Museum of Textiles, once a cloth

merchant's mansion, has a significant collection of antique and modern fabrics.

Area: 505 km² Population: 79,22, 000



• Our research interests

• General procedures of atomic calculations 

• Coupled-cluster theory in spherical coordinate system

• Variants of coupled-cluster methods: 
 Bi-orthogonal approach
 Finite-field approach
 Expectation value evaluation approach
 Linear response approach
 Analytical response approach
 Fock-space approach
 Equation-of-motion approach

• Results from our recent collaboration

• Summary and Outlook

Outline



High-precision Atomic Clocks

Time = No. of oscillations x Period

1 sec = Duration per oscillation = 1/f

Wave

Atomic Systems (atoms and ions)

o Energy levels are fixed and 
reproducible.

o Transition frequency as clock.
o Long lifetime (narrow linewidth).
o Least affected by external fields.  

Electronic levels    

(optical)

Fine-structure     

(optical and THz)

Hyperfine structure 

(microwave)

Role of  Theoretical Study

 Searching suitable transitions.
 Estimating black-body radiation 

shifts (multipolar).
 Electric field effects (laser).
 Magnetic field effects.  

Applications:
1. Navigation, Geomapping

2. Volcanology

3. Constancy of fundamental 

constants (electron and 

proton masses), dark matter



Energy and Property Evaluation Equations

Schroedinger Eq:

Property evaluation expression:

𝑯𝟎|𝚿𝒏〉 = 𝑬𝒏|𝚿𝒏〉

< 𝑶 >𝒇𝒊=
𝜳𝒇 𝑶 𝜳𝒊

𝚿𝒇 𝚿𝒇 𝚿𝒊 𝚿𝒊

𝚿 =
𝟏

𝑵!

|𝝍𝟏(𝒓𝟏〉 ⋯ |𝝍𝑵(𝒓𝟏)〉
⋮ ⋱ ⋮

|𝝍𝟏 𝒓𝑵 〉 ⋯ |𝝍𝑵 𝒓𝑵 〉



Isotope Shifts

 Gives precise values of nuclear 
charge radii of isotopes.

 Helps to describe nuclear structure 
(magic nuclei).

 Helps to validate nuclear theory. 



Approaches to evaluate the first-order energy

𝑬𝒏 𝝀 = 𝑬𝒏
𝟎
+ 𝝀𝑬𝒏

𝟏
+ 𝝀𝟐𝑬𝒏

(𝟐)
+⋯

In the perturbative theory:

The expectation value evaluation (EVE) approach:

𝑬𝒏
(𝟏)

= 𝑯𝒊𝒏𝒕 =
〈𝚿𝐧

𝟎
𝐇𝐢𝐧𝐭 𝚿𝐧

(𝟎)
〉

〈𝚿𝒏
𝟎
|𝚿𝐧

(𝟎)
〉

Analytical Response (AR) approach:

|𝚿𝐧〉 = |𝚿𝐧
𝟎
〉 + 𝝀|𝚿𝐧

𝟏
〉 + 𝝀𝟐|𝚿𝐧

𝟐
〉 + ⋯

𝑯𝟎 − 𝑬𝒏
(𝟎)

|𝚿𝒏
𝟏
〉 = 𝑬𝒏

𝟏
−𝑯𝒊𝒏𝒕 |𝚿𝐧

𝟎
〉

𝐻𝑖𝑛𝑡 ≡ 𝐸𝑎𝑡
1
≈ ቤ
𝜕𝐸𝜆
𝜕𝜆

𝜆→0



3   Fundamental Forces

12 Fundamental Fermions

12 Gauge Bosons

Parity violation   

CP and T reversal violations

SU(2) X U(1) 

CPT is conserved

Objective: testing BSM physics 

• Why three generations 
of particles?

• Sources of CP 
violation.                 
(eg: matter-antimatter
asymmetry) 

• Explaining neutrino
masses.   

• And so on ………            



(n+1)S
F’

F

F’

F

1
2

6S 7S transition

nS

off-resonant
laser

Cooling & 
detection

(Cs/Ba+)

E1PNC
E2

m=-1/2

ω0

m=+1/2

m=-1/2
Zeeman shift

6S5D3/2,5/2 transitions

nS

nP

(n-1)D

Atomic Parity Violation 

(Cs)

𝑬𝟏𝑷𝑵𝑪
𝑵𝑺𝑰

𝑸𝑾

𝒕𝒉𝒆𝒐𝒓𝒚

=
𝜳𝒇 𝑫𝜳𝒊

𝚿𝒇 𝚿𝒇 𝚿𝒊 𝚿𝒊

≃

𝚿𝒇
(𝟎)

𝑫 𝚿𝒊
(𝟏)

+ 𝜳𝒇
(𝟏)

𝑫𝜳𝒊
(𝟎)

𝚿𝒇
(𝟎)

𝚿𝒇
(𝟎)

𝚿𝒊
(𝟎)

𝚿𝒊
(𝟎)



Nuclear anapole moment 

Current

𝒂 ∝ Ԧ𝑰

𝜿𝒂(
𝟏𝟑𝟑𝑪𝒔) = 𝟎. 𝟏𝟎𝟐 ± 𝟎. 𝟎𝟎𝟏𝟔

 1959:   Concept of  Nuclear  Anapole Moment:   
(Ya. B. Zel’dovich & V. G. Vaks )

Chakraborty & Sahoo, Phys. Rev. A 110, 022812 (2024).



CP/T-violation effects (EDMs) in Atom

𝑉𝜒 𝑟, 𝑟′ =
𝑒−𝑚𝜒𝑐|𝑟−𝑟′|

4𝜋 |𝑟−𝑟′|

ҧ𝑔𝜋𝑁𝑁

𝜋

𝑛/𝑝 𝑛/𝑝 𝑛/𝑝

𝛾
𝑔𝜋𝑁𝑁

Electron size by the SM Electron size by the SUSY

𝑒 𝑒

𝑊 𝑊𝑏

𝑠

𝑑

𝑡
𝛾

𝑡
𝑊



Atomic theory for EDM

𝐷𝑎 =
Ψ𝑛 𝐷 Ψ𝑛
Ψ𝑛 Ψ𝑛

EDM of  a state |Ψ𝑛〉 given by:

Mixed parity states: Ψ𝑛 ≃ |Ψ𝑛
0
〉 + 𝜆 |Ψ𝑛

1
〉

H ≡ 𝐻𝑎𝑡 +𝐻𝐸𝐷𝑀 = 𝐻𝑎𝑡 + 𝜆 𝐻𝑜𝑑𝑑 𝜆 = 𝑆 or 𝜎𝑛 𝐶𝑇with

⇒ 𝐷𝑎 = 𝜆 𝑅 ≅ 2 
Ψ𝑛
(0)

𝐷 Ψ𝑛
(1)

Ψ𝑛
(0)

Ψ𝑛
(0)

Inhomogeneous Eqn:

(𝐻𝑎𝑡 − 𝐸0
0
)|Ψ𝑛

1
〉 = −𝐻𝐸𝐷𝑀|Ψ𝑛

(0)
〉



Atomic Theory: in spherical coordinate system

Dirac equation: 𝒉|𝝍〉 = 𝜺 |𝝍〉

with  𝒉 = 𝒄 𝜶 ⋅ 𝒑 + 𝜷𝒎𝒆𝒄
𝟐 + 𝑽𝑵(𝒓)

Single particle solutions:

•Atomic states are described by n, J, π etc. quantum numbers.

• Purely spherical symmetric.

Solution:   𝜓 𝑟 =
1

𝑟

𝑃(𝑟) Χ𝜅,𝑚(𝜃, 𝜙)

𝑖𝑄(𝑟) Χ−𝜅,𝑚(𝜃, 𝜙)

1

Ԧ𝐫𝟏 − Ԧ𝐫𝟐
=෍

𝑘,𝑞

4 𝜋

2𝑘 + 1

𝑟<
𝑘

𝑟>
𝑘+1 𝐘𝑞

𝑘(𝜃, 𝜙) ⋅ 𝐘−𝑞
∗𝑘 (𝜃, 𝜙)

Two-body Coulomb interaction:



Atomic system: Spherical symmetry

Dirac wave function: 𝜙𝐷 𝑟 =
1

𝑟

𝑃𝑛𝜅(𝑟) Χ𝜅,𝑚(𝜃, 𝜙)

𝑖𝑄𝑛𝜅(𝑟) Χ−𝜅,𝑚(𝜃, 𝜙)

Hartree-Fock equation: 𝐹 𝐶 = 𝑆 𝐶 𝜀

Schroedinger wave function: 𝜙𝑠 𝑟 =
𝑅𝑛𝑙 𝑟

𝑟
Y𝑙,𝑚 𝜃, 𝜙 𝜎𝑠

𝑅𝑛𝑙 𝑟 = σ𝑖=1
𝑁𝑙 𝑐𝑛𝑙

𝑖 𝜁𝑖 ⇒ 𝑁𝑙 × 𝑁𝑙 dimension matrix

𝑃𝑛𝜅 𝑟 = σ𝑖=1
𝑁𝜅 𝑐𝑛𝜅

𝑖,𝐿 𝜁𝑖
𝐿 and    𝑄𝑛𝜅 𝑟 = σ𝑖=1

𝑁𝜅 𝑐𝑛𝜅
𝑖,𝑆 𝜁𝑖

𝑆

⇒
𝐹𝐿𝐿 𝐹𝐿𝑆
𝐹𝑆𝐿 𝐹𝑆𝑆

𝐶𝑛𝜅
𝐿

𝐶𝑛𝜅
𝑆 =

𝑆𝐿𝐿 0
0 𝑆𝑆𝑆

𝐶𝑛𝜅
𝐿

𝐶𝑛𝜅
𝑆 𝜀

⇒ 2𝑁𝜅 × 2𝑁𝜅 dimension matrix



P

Q

Fock space of HDF

Bloch’s prescription

According to the Bloch’s prescription, the 

Fock space is divided into model (P) and 

orthogonal (Q) space.  

𝑷 = ۧ|𝚽𝟎 |𝚽𝟎ۦ and    𝑸 = 𝟏 − 𝑷

𝚿𝟎 = 𝛀 | 𝚽𝟎〉𝑯𝟎 = 𝑯𝑫𝑭 + 𝝀𝑽𝒓𝒆𝒔

If energies of two systems A and B, and its combined 

system AB with A and B very far apart, computed in 

equivalent ways, satisfy

Size-consistency: 𝑬 𝑨𝑩 = 𝑬 𝑨 ⨁ 𝑬(𝑩)

Size-extensitivity: 𝚿 𝑨𝑩 = 𝚿 𝑨 ⨂𝚿(𝑩)



Perturbation approach (MBPT)

In perturbation approach: 

𝛀 = 𝛀(𝟎) + 𝛀(𝟏) +𝛀(𝟐) +⋯ = σ𝒏𝛀
𝐧 with   𝛀(𝟎) = 𝟏

𝑬 = 𝑬(𝟎) + 𝑬(𝟏) + 𝑬(𝟐) +⋯ = σ𝒏𝑬
𝐧

Energy equation:  𝑬(𝒏) = 𝑷𝑽𝒊𝒏𝒕𝛀
(𝐧−𝟏)𝑷

𝑷 = ۧ|𝚽𝟎 |𝚽𝟎ۦ and    𝑸 = 𝟏 − 𝑷

𝚿 = 𝛀 | 𝚽𝟎〉

Amplitude solving equation:    

𝛀(𝒌), 𝑯𝟎 𝑷 = 𝑸𝑽 𝛀(𝒌−𝟏)𝑷 − σ𝒎=𝟏
(𝒌−𝒎)

𝑷𝑽𝒊𝒏𝒕 𝛀
(𝒌−𝟏) 𝑷

𝑯 = 𝑯𝟎 + 𝑽𝒊𝒏𝒕



Size-consistency problem with truncated MBPT

Rayleigh-Schroedinger equation:    

𝛀(𝒌), 𝑯𝟎 𝑷 = 𝑸𝑽𝒓𝒆𝒔 𝛀
(𝒌−𝟏)𝑷 − σ𝒎=𝟏

𝒌−𝒎
𝛀 𝒌−𝒎 𝑷𝑽𝒓𝒆𝒔 𝛀

𝒎−𝟏 𝑷

= 𝑸𝑽𝒓𝒆𝒔 𝛀
(𝒌−𝟏)𝑷 −෍

𝒎=𝟏

𝒌−𝟏

𝛀 𝒌−𝒎 𝑬𝟎
(𝒎)

𝑷

Brillouin-Wigner perturbation equation:    

𝛀(𝒌), 𝑯𝟎 𝑷 = 𝑸𝑽𝒓𝒆𝒔 𝛀
(𝒌−𝟏)𝑷 − σ𝒎=𝟏

𝒌−𝒎
𝛀 𝒌−𝒎 𝑷𝑽𝒓𝒆𝒔 𝛀

𝒎−𝟏 𝑷

= 𝑸(𝑯 − 𝑬) 𝛀(𝒌−𝟏)𝑷

This series converges faster, but has size-consistency problem.

It does not converge faster, but avoids size-consistency problem.



Double sources of perturbation

Amplitude equation:

𝛀 𝜷,𝜶 , 𝑯𝟎 𝑷 = 𝑸𝑽𝒊𝒏𝒕
(𝟏)
𝛀(𝜷−𝟏,𝜹)𝑷 + 𝑸 𝑽𝒊𝒏𝒕

(𝟐)
𝛀(𝜷,𝜹−𝟏)𝑷

− σ𝒎=𝟏
𝜷−𝟏 σ𝒍=𝟏

𝜹−𝟏 𝛀(𝜷−𝒎,𝜹−𝟏)𝑷𝑽𝒊𝒏𝒕
(𝟏)
𝛀(𝒎−𝟏,𝒍)𝑷 − 𝛀 𝜷−𝒎,𝜹−𝒍 𝑷𝑽𝒊𝒏𝒕

𝟐
𝛀(𝒎,𝒍−𝟏)𝑷

In this case:       𝑯 = 𝑯𝟎 + 𝑽𝒊𝒏𝒕
(𝟏)

+ 𝑽𝒊𝒏𝒕
(𝟐)

Let wave function is approximated as

𝚿 = 𝚿 𝟎 + 𝚿 ′ ≈ 𝚿 𝟎 + 𝚿 𝟏

𝑬 = 𝑬(𝟎) + 𝑬(′) ≈ 𝑬(𝟎)

In perturbation approach for this case:    

𝛀 = 𝛀(𝟎,𝟎) + 𝛀(𝟏,𝟎) + 𝛀(𝟎,𝟏) + 𝛀(𝟎,𝟐) + 𝛀(𝟏,𝟏) +⋯ = σ𝒏,𝒎𝛀
𝐧,𝐦

with  𝛀(𝟎,𝟎) = 𝟏,     𝛀(𝟏,𝟎) = 𝐕𝐢𝐧𝐭
(𝟏)

and    𝛀(𝟎,𝟏) = 𝐕𝐢𝐧𝐭
(𝟐)



𝚿𝟎 = 𝚽𝟎
𝟎

+ 𝝀𝟏 𝚽𝟎
𝟏

+ 𝝀𝟏
𝟐 𝚽𝟎

𝟐
+ 𝝀𝟏

𝟐 𝚽𝟎
𝟑

+⋯
Fock space       P-space              --------------------------- Q-space ---------------------------

i.e.   𝚽𝟎
𝒏

= σ𝒌≠𝟎
N 𝚽𝒌

𝟎
𝑪𝟎𝒌
(𝒏)

All-order many-body methods

⇒ Ψ0 = Φ0
(0)

+ 𝐶𝐼
(∞)

Φ𝐼
(0)

+ 𝐶𝐼𝐼
(∞)

Φ𝐼𝐼
(0)

+ ⋯

In terms of  level of  excitations  Configuration Interaction (CI)  

Further: 𝚽𝒌
𝟎

≡ 𝚽𝒂𝒃𝒄….
𝒑𝒒𝒓…

= 𝒂𝒑
+ 𝒂𝒒

+𝒂𝒓
+…𝒂𝒂𝒂𝒃𝒂𝒄 𝚽𝟎

𝟎

⇒ Ψ0 = Φ0
(0)

+ 𝑇𝐼 Φ0
(0)

+ 𝑇𝐼𝐼 +
1

2
𝑇𝐼
2 Φ0

0
+ ⋯+ 𝑇𝑁 𝚽𝟎

𝟎

= 𝑒𝑇 Φ0
(0)

T = TI + TII +⋯+ 𝑇𝑁

Coupled-cluster (CC) method:  

where



Configuration interaction (CI) method:

Coupled-cluster (CC) method:

Ψ0 = 𝑒𝑇𝐼+𝑇𝐼𝐼+⋯+𝑇𝑁 Φ0 = 𝑒𝑇 Φ0

Approximated CI vs. CC methods

Ψ0 = 𝐶0 Φ0 + 𝐶𝐼 Φ𝐼 + 𝐶𝐼𝐼 Φ𝐼𝐼 + ⋯+ 𝐶𝑁 Φ𝑁

Comparison between both:

𝐶0 → 1

𝐶1 → 𝑇1

𝐶2 → 𝑇2 +
1

2
𝑇1
2

𝐶3 → 𝑇3 + 𝑇1𝑇2 +
1

3!
𝑇1
3

so on …

Due to exponential ansatz, CCSD captures more correlation effects than CISD approximation.



Energy and amplitudes in (R)CC theory

𝐸0 = 〈𝐻0〉 =
Ψ0 𝐻0 Ψ0
Ψ0 Ψ0

Energy expression:

𝐸0 =
Φ0 𝑒

𝑇+𝐻0𝑒
𝑇 Φ0

Φ0 𝑒
𝑇+𝑒𝑇 Φ0

=
σ𝐾 Φ0 𝑒

𝑇+𝑒𝑇 Φ𝐾 〈Φ𝐾|𝑒
−𝑇𝐻0𝑒

𝑇 Φ0

Φ0 𝑒
𝑇+𝑒𝑇 Φ0

= Φ0 𝑒
−𝑇𝐻0𝑒

𝑇 Φ0 = Φ0 𝐻0𝑒
𝑇

𝑐 Φ0

Excitation amplitudes: Φ𝐾 𝐻0𝑒
𝑇

𝑐 Φ0 = 0

It gets naturally terminated. Its appears in the form A*X=B; Jacobi iterative method is used. 



RCC expressions for atomic properties

Matrix element evaluation expression:  

𝐷 𝑓𝑖 =
〈Ψ𝑓 𝐷 Ψ𝑖〉

〈Ψ𝑓|Ψ𝑓〉〈Ψ𝑖|Ψ𝑖〉
=

〈Φ𝑓 𝑒
𝑇+𝐷𝑒𝑇 Φ𝑖〉

〈Φ𝑓 𝑒
𝑇+𝑒𝑇 Φ𝑓〉〈Φ𝑖 𝑒

𝑇+𝑒𝑇 Φ𝑖〉

𝑂 =
Ψ0 𝑂 Ψ0

Ψ0 Ψ0
=

Φ0 𝑒
𝑇+𝑂𝑒𝑇 Φ0

Φ0 𝑒
𝑇+𝑒𝑇 Φ0

Property:

• Possesses two non-terminating series.

• Unmanageable with two-body operators like SMS operator.

• It does not satisfy the Hellmann-Feynman theorem.

• But any property can be evaluated. 



Ψ𝑛
0

→ |Φ𝑛〉

Random phase approximation (RPA):

and Ψ𝑛
1

→ Ω𝐼,𝐶𝑃
(∞,1)

Φ𝑛 = Ω𝑅𝑃𝐴
(1)

|Φ𝑛〉

Configuration interaction (CI) method:

Ψ𝑛
0/1

= 𝐶0 Φ𝑛 + 𝐶𝐼 Φ𝐼 + 𝐶𝐼𝐼 Φ𝐼𝐼 + ⋯

Coupled-cluster (CC) method:

Ψ𝑛
0/1

= 𝐶0 Φ𝑛 + 𝐶𝐼 Φ𝐼 + 𝐶𝐼𝐼 Φ𝐼𝐼 + ⋯

=  Φ𝑛 + 𝑇𝐼
(0/1)

Φ𝑛 + 𝑇𝐼𝐼
(0/1)

Φ𝑛 +
1

2
𝑇𝐼
(0/1)2

Φ𝑛 +⋯

= 𝑒𝑇𝐼
(0/1)

+𝑇𝐼𝐼
(0/1)

+⋯ Φ𝑛 = 𝑒𝑇
0 (+𝑇 1 ) Φ𝑛

All-order methods with external perturbation 



Finite-field (FF) approach

Modified Hamiltonian: 𝐻𝜆 = 𝐻𝑎𝑡 + 𝜆𝑂

𝐸𝜆 = 𝐸𝑎𝑡
(0)

+ 𝜆𝐸𝑎𝑡
(1)

+ 𝜆2𝐸𝑎𝑡
(2)

+⋯

𝑂 ≡ 𝐸𝑎𝑡
1
≈ ቤ
𝜕𝐸𝜆
𝜕𝜆

𝜆→0

𝑁𝑜𝑡𝑒: 𝜆2 𝑡𝑒𝑟𝑚𝑠
𝑚𝑎𝑦 𝑛𝑜𝑡 𝑏𝑒 𝑠𝑚𝑎𝑙𝑙.

• All the terms get naturally terminated.

• Not much additional computational costs required.

• Satisfies the Hellmann-Feynman theorem.

• Properties described by scalar operators can only be evaluated.

• Neglects 𝕺 𝝀𝟐 contributions, which may not be small.

• Choice of 𝝀 depends on properties of interest (𝑭, 𝑲𝑵𝑴𝑺, and 𝑲𝑺𝑴𝑺

cannot be calculated accurately by considering same 𝝀). 



In the AR RCC method, we express

and

Ψ0 = 𝑒𝑇 Φ0 = 𝑒𝑇
(0)+𝜆𝑇(1)|Φ0〉

𝐻𝜆 = 𝐻0 + 𝜆𝑂 Ψ0 ≃ |Ψ0
0
〉 + 𝜆 |Ψ0

1
〉

First-order eqn.:

⇒ Ψ0
0

= 𝑒𝑇
(0)

|Φ0〉

Ψ0
1

= 𝑒𝑇
(0)

1 + 𝑇(1) |Φ0〉and

It yields that:

𝑂 ≡ 𝐸0
1
= 〈Φ0 (𝐻0𝑒

𝑇(0)𝑇(1))𝑐 + 𝑂𝑒𝑇
(0)

𝑐
Φ0〉

(𝐻0 − 𝐸0
0
)|Ψ𝑛

1
〉 = (𝐸0

1
− 𝑂) |Ψ0

(0)
〉

Analytic Response RCC method



• All the terms are terminated.

• It does not satisfies the Hellmann-Feynman 

theorem.

• Any properties can be evaluated.

• Free from choice of any perturbative parameter.

• Computational efforts are less than the FF 

approach.

First development in atomic physics!!

Advantages of AR RCC method



In NCC: |Ψ〉 = 𝑒𝑇 Φ0 〈෩Ψ| = 〈Φ0|(1 + ෨𝑇) 𝑒−𝑇and

where 𝑇 is a de-excitation operator similar to 𝑇+.  

෩Ψ Ψ = 〈Φ0 𝑒
෨𝑇𝑒−𝑇𝑒𝑇 Φ0〉 = 1.This follows:

In ECC: |Ψ〉 = 𝑒𝑇 Φ0 and 〈෩Ψ| = 〈Φ0|𝑒
෨𝑇𝑒−𝑇

Bi-orthogonal approach

〈𝑂〉 = 〈෩Ψ|𝑂 Ψ = 〈Φ0| 𝑂𝑒
𝑇

𝑐 Φ0 + 〈Φ0|𝑒
෤𝑇 𝑂𝑒𝑇 𝑐 Φ0

• All the terms get naturally terminated.

• Satisfies the Hellmann-Feynman theorem.

• Any properties can be evaluated.

• Additional operators are introduced; computationally expensive.

B. K. Sahoo and B. P. Das, Phys. Rev. Letts. 120, 203001 (2018).



and

Ψ0 = 𝑒𝑇 Φ0 = 𝑒𝑇
(0)+𝜆𝑇(1)|Φ0〉

𝐻 = 𝐻0 + 𝜀 𝐷 Ψ0 ≃ |Ψ0
0
〉 + 𝜀 |Ψ0

1
〉

First-order eqn.:

⇒ Ψ0
0

= 𝑒𝑇
(0)

|Φ0〉

Ψ0
1

= 𝑒𝑇
(0)

1 + 𝑇(1) |Φ0〉and

It yields:

(𝐻0 − 𝐸0
0
)|Ψ𝑛

1
〉 = (𝐸0

1
− 𝐷) |Ψ0

(0)
〉

Linear Response (R)CC method

𝜶𝒅 ≃ 𝚽𝟎 𝒆
𝑻 𝟎 +

𝑫 𝒆𝑻
𝟎
𝑻 𝟏 + 𝑻 𝟏 + 𝒆𝑻

𝟎 +
𝑫 𝒆𝑻

𝟎
𝚽𝟎



Tensor forms of any one- and two-body operators

where the two-body reduced matrix element:

〈𝐽|| 𝐭𝑘1𝐮𝑘2 𝐾| 𝐽′ = 2𝐾 + 1 −1 𝐽+𝐽′+𝐾 σ𝐽′′ 𝐽 𝐭𝑘1 𝐽′′ 𝐽′′ 𝐮𝑘2 𝐽′
𝑘1 𝑘2 𝐾

𝐽′ 𝐽 𝐽′′
.

〈𝐽𝑀|𝑡𝑞
𝑘 𝐽′𝑀′ = −1 𝐽−𝑀 𝐽 𝑘 𝐽′

𝑀 𝑞 𝑀′
𝐽| 𝑡𝑘 |𝐽′′Any one-body operator:

Any two-body operator:

Using reduced matrix elements, we can use j-dependent basis instead of 

j,mj-basis. However, it will introduce multipoles to the operators. 

〈𝐽1𝑀1; 𝐽2𝑀2| 𝐭𝑞1
𝑘1𝐮𝑞2

𝑘2

𝑄

𝐾
𝐽1
′𝑀1

′ = −1 𝐽1−𝑀1+𝐽2−𝑀2
𝐽1 𝑘1 𝐽1

′

𝑀1 𝑞1 𝑀1′

𝐽2 𝑘2 𝐽2
′

𝑀2 𝑞2 𝑀2′

× 〈𝐽|| 𝐭𝑘1𝐮𝑘2 𝐾| 𝐽′

where Is the Mj-independent reduced matrix element.𝐽| 𝑡𝑘 |𝐽′′



𝑬𝟏𝑷𝑵𝑪
𝑵𝑺𝑰(𝑫)

=
𝟏

ℵ
σ𝑰≠𝒊

𝜳𝒇
(𝟎)

𝑫 𝜳𝑰
(𝟎)

𝜳𝑰
(𝟎)

𝑯𝑷𝑵𝑪
𝑵𝑺𝑫 𝜳𝒊

(𝟎)

𝑬𝒊
(𝟎)

−𝑬𝑰
(𝟎) + 𝒇 ↔ 𝒊 +

= 𝑱𝒇 𝑫 𝟏 ⊗𝑯𝑷𝑵𝑪
𝒌

𝒍
𝑱𝒊 + 𝑱𝒇 𝑯𝑷𝑵𝑪

𝒌
⊗𝑫 𝟏

𝒍
𝑱𝒊

Ranks of PNC Hamiltonians:   NSI:  𝒌 = 𝟎 and   NSD:  𝒌 = 𝟏

Such that:   𝑱𝒇 − 𝒋𝒊 ≤ 𝒍 ≤ 𝑱𝒇 + 𝑱𝒊

Thus: 
𝑺𝟏/𝟐 → 𝑺𝟏/𝟐 and 𝑫𝟑/𝟐 → 𝑺𝟏/𝟐 have both NSI and NSD contributions

But,  𝑫𝟓/𝟐 → 𝑺𝟏/𝟐 transition can have only the NSD contribution.

Selection rules for NSD PNC amplitudes



RCC operators in spherical coordinate system

Unperturbed RCC operators: 𝑻(𝟎) = 𝑻𝟏
(𝟎)

+ 𝑻𝟐
(𝟎)

+ 𝑻𝟑
(𝟎)

+⋯

Perturbed RCC operators: 𝑻(𝟏) = 𝑻𝟏
(𝟏)

+ 𝑻𝟐
(𝟏)

+ 𝑻𝟑
(𝟏)

+⋯

k=0

k

k1 k3

k2

𝑎 𝑎 𝑏𝑖 𝑖 𝑗 𝑎 𝑖 𝑏 𝑗 𝑐 𝑘

K

K K

k1 k2
k1 k3

k2

𝑎 𝑎𝑖 𝑖 𝑏 𝑗 𝑎 𝑖 𝑏 𝑗 𝑐 𝑘

+/- +/-
+/- +/- +/-

+/-
+/-+/-

+/- +/-
+/- +/-



In our RCC approach:

⇒

Choice of VN-1/2 potentials: Fock-space approach

Similarly it can be extended to two-valence systems:

𝚿𝒗
𝟏

= 𝒆𝑻
𝟎

𝑺𝒗
(𝟏)

+ 𝑻 𝟏 (𝟏 + 𝑺𝒗
(𝟎)
) |𝚽𝒗〉

and

States of interest: 𝟓𝑷𝟔 𝟔𝑺, 𝟓𝑷𝟔 𝟕𝑺, 𝟓𝑷𝟔 𝟔𝑷𝟏/𝟐, 𝟓𝑷𝟔 𝟕𝑷𝟏/𝟐⋯⋯

Since 𝟓𝑷𝟔 is common, its DF wave function (|𝚽𝟎〉) is obtained first, 

then for actual states are constructed as: |𝚽𝒗〉 = 𝒂𝒗
+|𝚽𝟎〉. [V

N-1 potential]

𝚿𝟎
𝟎

= 𝒆𝑻
𝟎
|𝚽𝟎〉 𝚿𝒗

𝟎
= 𝒆𝑻

𝟎
𝟏 + 𝑺𝒗

𝟎
|𝚽𝒗〉

𝚿𝟎
𝟏

= 𝒆𝑻
𝟎

𝟏 + 𝑻 𝟏 |𝚽𝟎〉 and

𝑻 → 𝑻 + 𝑺𝒗

𝚿𝒗 = 𝒆𝑻+𝑺𝒗 𝚽𝒗 ≡ 𝒆𝑻 𝟏 + 𝑺𝒗 𝚽𝒗

= 𝒂𝒗
+𝒆𝑻 𝚽𝟎 + 𝒆𝑻𝑺𝒗 𝚽𝒗 = 𝒂𝒗

+ 𝚿𝟎 + |𝚿𝒗
𝒗𝒂𝒍〉

Unperturbed states:

First-order states:



Ground state:              Excited state with definite 𝑱 and 𝝅: 

|𝚿𝟎〉 = 𝒆𝑻|𝚽𝟎〉 𝚿𝑲 𝑱, 𝝅 = 𝑹𝑲 𝑱, 𝝅 𝚿𝟎

= 𝑹𝑲(𝑱, 𝝅)𝒆
𝑻|𝚽𝟎〉

Here 𝑹𝑲 𝑱, 𝝅 = 𝒓𝟎 + 𝑹𝟏 𝑱, 𝝅 + 𝑹𝟐 𝑱, 𝝅 + ⋯

Equation of motion:    𝑯 𝚿𝑲 𝑱, 𝝅 〉 = 𝑬𝑲 𝚿𝑲(𝑱, 𝝅)〉

⇒ 𝑯𝒆𝑻
𝒄
𝑹𝑲 𝑱, 𝝅 𝚽𝟎 = 𝑬𝑲 − 𝑬𝟎 𝑹𝑲 𝑱, 𝝅 |𝚽𝟎〉

And,   ෪〈Ψ𝐾 𝐽, 𝜋 | = 〈෪Ψ0|𝑳𝑲(𝑱, 𝝅) with 𝑳𝑲 𝑱, 𝝅 = 𝒍𝟎 + 𝑳𝟏 𝑱, 𝝅 + ⋯

Amplitude solving equations for 𝑅𝐾 (similar for 𝐿𝐾):

𝑃 𝐻𝑒𝑇 𝑐𝑃 𝑃 𝐻𝑒𝑇 𝑐𝑄

𝑄 𝐻𝑒𝑇 𝑐𝑃 𝑄 𝐻𝑒𝑇 𝑐𝑄

𝑟0𝑃
𝑄𝑅𝐾𝑃

𝑐

= Δ𝐸𝐾
𝑟0𝑃
𝑄𝑅𝐾𝑃

.

Equation-of-motion CC method
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 Developed all-order relativistic coupled-cluster methods for 

accurate calculations of atomic properties.  

 Methods are developed in the FF, EVE and AR frameworks to 

estimate isotope shift constants.

 Linear response approach is developed for polarizability 

calculations.

 Bi-orthogonal method is developed only for the ground state 

properties of closed-shell systems.

Summary and Outlook

Methods yet to be developed:
 Bi-orthogonal approach for the open-shell system

 Analytical response approach for hyperfine structure constants

 Equation-of-motion approach for excited states

 Focks-space approach for two-valence systems  




