

GÖTEBORGS

UNIVERSITET

of

Stable and Radioactive

Negative Ions

DAG HANSTORP

CompAS 2025, Lund, Sweden

12-14 June 2025

GÖTEBORGS UNIVERSITET

Are negative ions good for you?

14 June 1973

Vol 58 No 850 Weekly 15p Australia 35 cents/ Canada 60 cents/

South Africa 35 cents

hfl 1.75/skr 3.00/

+

Negative Ion Generator Smart Air Purifier For Home Air Freshener Air Ionizer... Brand: Unbranded RRP: 2 149,00 kr Price: 1 299,00 kr You save: 850,00 kr (39%)

Klarna Shop now. Pay in 60 days. Learn more Sold by: ShenZhenShiSenNengKeJiYouXianGongSi

We accept the following payment methods

BUY NOW

ADD TO BASKET

1 \$

1 299,00 kr

+ 154,49 kr Shipping

In stock ⑦

Quantity

Negative ions

For an atom:

$$V_C({\pmb r}) = -\frac{e^2}{4\pi\varepsilon_0 r}$$

For a negative ion:

$$V(r) = \frac{l(l+1)}{2r^2} - \frac{\alpha_{\rm D}}{2r^4}$$

Photdetachment: $hf + A^- \rightarrow A + e^-$

Why study negative ions?

• Benchmark for electron correlation theory

• Model system in physics

• Appears in many environments and used applications

Producing a positive hydrogen ion:

Study negative ions:

The electron affinity of Astatine

Periodic Table of Elements

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 ' H Hydrogen 1.00794	Atomic # Symbol Name Atomic Mass	С	Solid				Metals			Nonmet	als						2 ² He Helum 4.002802	ĸ
2	3 i Li Lithium 0.941	4 3 Be Beryllium 9.012182	Hç H	Liquid Gas		Alkali me	 Alkaline earth mel	anthanoid	metals	Poor met	Uther nonmetal	Noble ga	5 § B Baran 10.811	6 2 C Carbon 12.0107	7 8 N Nitrogen 14.0007	8 2 0 Cxygen 15.8994	9 \$ F Pluorine 18.9984032	10 6 Neon 20.1797	ř.
3	11 § Na Sodium 22.95976928	12 g Mg Magnesium 24.3050	RI	f Unknov	vn	tals	als	Actinoids		als	ø	ses	13 ag Aluminium 25.9815385	14 5 Silicon 28.0855	15 8 P Phosphorus 30.973762	16 5 Sulfur 32.085	17 57 Cl Chiorine 35.453	18 8 Ar Argon 29:948	K L
4	19 K Potassium 39.0963	20 g Ca Calcium 40.078	21 5 Scandium 44.955912	22 Ti Titanium 47.807	23 V Vanadium 50.9415	⁸ 1 ² Cr ^{Chromium} 51.9901	25 Mn Manganese 54.938045	26 Fe Iron 55.845	27 Co Cobalt 58.933195	28 Ni Nickel 58.0934	29 Cu Copper 63.540	30 30 Zn 2inc 65.38	31 58 Ga Gallum 69.723	32 Ge Gemanium 72.04	33 8 Ass Arsenic 74,92100	34 58 See Selenium 78.96	35 § Br Bronine 79.904	36 18 Krypton 83.798	K L M N
5	37 8 Rb Rubidum 85.4678	38 Sr Strontium 87.62	39 5 Y 100 100 100 100 100 100 100 100 100 10	40 Zr ^{Zirconium} 91.224	41 Nb Nicolum 92.90538	42 Mo Molybdenum 95.96	43 Tc (97.9072)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.90550	46 Pd Palladium 108.42	47 Ag ^{Silver} 107.8882	48 48 5 Cd 5 Cadmium 112.411	49 10 10 10 10 10 10 10 10 10 10 10 10 10	50 50 Sn 12 Tin 118,710	51 55 Sb 55 Antimony 121.760	52 52 Telurium 127.60	53 60 50/14 120.90447	54 18 Xe 18 293	OZErx
6	55 Cs 132.9004019	56 8 Ba Barium 137.327	57–71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.94788	74 W Tungsten 183.84	75 Re Rhanium 180.207	76 Os Osmium 190.23	77 1 Ir Irdium 192.217	78 Pt 195.084	79 Au Gold 196.900009	80 Band Band Band Band Band Band Band Band	81 50 50 50 50 50 50 50 50 50 50 50 50 50	82 10 10 10 10 10 10 10 10 10 10 10 10 10	83 Bi Biamuth 208.98040	84 Poloniu (208.982	85 At #1 (209.9871)	а С 176)	NUZZUN
7	87 5 Fr 55 (223)	88 88 80 80 80 80 80 80 80 80 80 80 80 8	89–103	104 Rf Rutefockm (281)	105 Db Dubnium (282)	106 Sg Sesborgium (288)	107 Bh Bohrium (284)	108 Hs Hassium (277)	109 Mt (288)	110 Ds Damstadium (271)	111 Rg Roentgenken (272)	112 Uub Ununblum (285)	113 Uut (284)	114 Uuquadum ³ (289)	115 Uuppentum (288)	116 Uuh Ununhexium 18 (292)	Uus Uhraptum	118 Uuo (294)	0.00ZGLX
	For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.																		
Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/																			
	Dto	bla		57 La Lanthanum 138.90547	58 Ce Carium 140.110	59 Pr Paseodymium 140.90705	60 Nd Neodymium 144.242	61 51 Pm 23 Promethium 23 (145)	62 Sm Samarium 150.36	63 Eu Europium 101.904	64 Gd Gadolnium 157.25	65 10 10 10 10 10 10 10 10 10 10 10 10 10	66 100 100 100 100 100 100 100 100 100 1	67 Ho Holmium 164.93032	68 68 30 30 50 50 50 50 50 50 50 50 50 50 50 50 50	69 000000000000000000000000000000000000	70 100 100 100 100 100 100 100 100 100 1	71 20 20 20 20 20 20 20 20 20 20 20 20 20	
	.(com		89 Ac Actinium (227)	90 Th Thorium 232.03808	91 Protectinium 231.03588	92 Uranium 238.02891	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm ^{Curlum} (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 53 Es 53 (252) 20	100 20 Fm 30 Fermium 20 (257)	101 50 Md 50 (258) 50	102 No Nobelium (259)	103 10 Lr 10 (282) 10 10 10 10 10 10 10 10 10 10 10 10 10 1	

- Least abundant element on earth
- 70 mg in the crust of the earth (1 atom per 100 kg mass)
- Decays through $\alpha\text{-decay}$
- Used in cancer treatment Targeted Alfa Therapy (TAT) (suitable lifetime and energy, non-toxic, non-radioactive daughters)
- Small knowledge about its chemical and physical properties

GANDALPH

-Moberg

RESUTLS

Experiment: EA= 2.415 78 (5) eV

Method	Author	Year	EA
Experiment			2.41578(5)
CBS-DC-CCSDT(Q)+Breit+QED			2.414(16)
MCDHF+SE corr.	Chang et al	2010	2.38(2)
MCDHF	Zhao et al	2012	2.416
DC-CCSD(T)+Breit+QED	Broschevsky et al	2015	2.412
MCDHF+Extrap.+Breit+QED	Si and Fischer	2018	2.3729(46)
CBS-DC-CCSD(T)+Gaunt+QED	Finney and Peterson	2019	2.423(13)

Property	Definition	Value
Electron affinity	EA IE	$2.41578(5)\mathrm{eV}$ $9.31751(8)\mathrm{eV}^{20}$
Electronegativity	$\chi_M = \frac{IP + EA}{2}$	$5.86665\mathrm{eV}$
Hardness Softness Electrophilicity	$\eta = IE - EA$ $S = \frac{1}{\eta_2}$ $\omega = \frac{\chi^2}{2\eta}$	$\begin{array}{c} 6.901\ 72(13)\ \mathrm{eV} \\ 0.144\ 89(2)\ \mathrm{eV}^{-1} \\ 2.493\ 41(8)\ \mathrm{eV} \end{array}$

The At-H molecule should be called **astatine hydride** (not hydrogen astatide)

Leimbach et al. Nature Communications, 11 (2020) 3824

Precision measurement of the EA of O

Neumark, D. M., et al. Physical Review A 32.3 (1985): 1890

DESIREE – Double Electrostatic Ion Ring Experiment

A Swedish national facility at Stockholm university

 \rightarrow Physics at conditions of the interstellar media

Final result: E_{EA} = 1.461 112 972 (87) eV

Kristiansson, et al. Nature Communications 13 (2022) 5906

¹⁸⁻¹⁶O isotope shift

E_{EA} (¹⁶O)= 1.461 112 972 (87) eV E_{EA} (¹⁸O)= 1.461 103 706 (67) eV

IS = -0.000 009 267(11) eV

Multi-configurational Dirac-Hartree-Fock (MCDHF) and relativistic configuration-interaction (RCI) methods, as implemented in thecurrent development version of GRASP2018 (Jon Grumer)

New experimental value	-9.27(0.09) μeV
Previous IS experimental value: C. Blondel, Physical Review A 64, 052504 (2001).	-9.2(2.2) µeV
New theoretical value:	-7.884 µeV
Previous Theoretical value: Godefroid and C. F. Fischer, Phys. Rev. A 60, R2637 (1999).	-7.104 μeV

Probing wavefunctions: Velocity map imaging (VMI)

Optical tomography

Optical tomography

Optical tomography

 $\vartheta = 3^{\circ}$

Eklund et al. PRA 102 023114 (2020)

Photodetachment in a strong field:

Hultgren, Mikael Eklund, Dag Hanstorp, and Igor Yu. Kiyan, Phys. Rev. A 87, (2013) 031404.

Detection of photoemitted electrons

$$X^{-} + h\nu \rightarrow X + e^{-}$$

Energy

 \rightarrow structure of the ion

Angular distrubution

→ relative phases of emitted electron waves the symmetry of the negative ion

$$\frac{d\sigma}{d\Omega} = \left[\frac{\sigma}{4\pi}\right] [1 + \beta P_2(\cos\theta)]$$
$$P_2(\cos\theta) = (3\cos^2\theta - 1)/2,$$

$$-1 < \beta < 2$$

 $\beta = -1 \quad \sin^2(\theta)$ $\beta = 0 \quad \text{isotropic}$ $\beta = 2 \quad \cos^2(\theta)$

Photodetachment of Na⁺+hv \rightarrow Na(3p) + e

Liu and Starace PRA, 59 (1999) 3643

$$X^{-}(ns) + hv \rightarrow X + e^{-}(\epsilon p)$$
 ($\beta = 2$)

$$X^{-}(np) + hv \rightarrow X + e^{-}(\varepsilon s) \quad (\beta = 0)$$

$$\rightarrow$$
 X + e⁻ (ϵ d) (β = +)

,

Two waves \rightarrow Interference

Cooper and Zare, J. Chem. Phys. 48 (1968) 942:

$$\beta = \frac{l(l-1)R_{l-1}^2 + (l+1)(l+2)R_{l+1}^2 - 6l(l+1)R_{l+1}R_{l-1}\cos(\delta_{l+1} - \delta_{l-1})}{(2l+1)[lR_{l-1}^2 + (l+1)R_{l+1}^2]}$$

$$\beta = \frac{l(l-1)R_{l-1}^2 + (l+1)(l+2)R_{l+1}^2 - 6l(l+1)R_{l+1}R_{l-1}\cos(\delta_{l+1} - \delta_{l-1})}{(2l+1)[lR_{l-1}^2 + (l+1)R_{l+1}^2]} ,$$

Photodetachment of P-

Windelius et al. Rev. A. 103 (2021) 033108.

Wigner law:

$$R_{l\pm 1} \sim k^{l\pm 1}$$

$$\frac{R_2}{R_0} = \frac{k^{l+1}}{k^{l-1}} = k^2 = A_2 \varepsilon$$
$$c = (\delta_{l+1} - \delta_{l-1})$$

 $\beta = 2A_2\varepsilon(A_2\varepsilon - 2c)/(1 + 2A_2^2\varepsilon^2)$

Amplitude of *s*- and *d*-waves are equal

Photoelectron angular distributions for states of any mixed character: An experiment-friendly model for atomic, molecular, and cluster anions

Dmitry Khuseynov, Christopher C. Blackstone, Lori M. Culberson,^{a)} and Andrei Sanov^{b)} Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA

(Received 25 March 2014; accepted 11 September 2014; published online 30 September 2014)

We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained *s*-*p* mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave crosssections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the *p*-*d* variant of the model to the experimental results for NO^- photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896241]

C. Examples of binary mixing curves

As discussed previously,^{3,24} the *s*-p mixing equation with the Hanstorp coefficients, Eq. (33), can be rearranged as follows:

$$\beta_{sp}(\varepsilon) = \frac{2Z_1(A_1\varepsilon) + 2(A_1\varepsilon)^2 - 4(A_1\varepsilon)\cos\delta_{2,0}}{Z_1(A_1\varepsilon) + 1 + 2(A_1\varepsilon)^2}, \quad (40)$$

What do we know about negative ions?

Many EAs determined

Five elements with allowed transitions found

Some lifetimes of metastable states have been determined

Essentially no traditional optical spectroscopy!

PHYSICAL REVIEW A 103, 062806 (2021)

Experimental and theoretical studies of excited states in Ir-

M. K. Kristiansson^{0,1,*} S. Schiffmann^{0,2,3} J. Grumer^{0,4} J. Karls^{0,5} N. de Ruette,^{1,6} G. Eklund,¹ V. Ideböhn,⁵ N. D. Gibson^{0,7} T. Brage^{0,2} H. Zettergren,¹ D. Hanstorp,⁵ and H. T. Schmidt¹
 ¹Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
 ²Department of Physics, Division of Mathematical Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
 ³Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), CP160/09, Université Libre de Bruxelles (ULB), B 1050 Bruxelles, Belgium
 ⁴Department of Physics and Astronomy, Theoretical Astrophysics, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
 ⁵Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden
 ⁶European Spallation Source ERIC (ESS), SE-221 00 Lund, Sweden
 ⁷Department of Physics and Astronomy, Denison University, Granville, Ohio 43023, USA

 Image: Construction of the second s

PHYSICAL REVIEW A 103, 062806 (2021)

Experimental and theoretical studies of excited states in Ir-

M. K. Kristiansson^{1,*} S. Schiffmann^{2,2,3} J. Grumer^{3,4} J. Karls^{5,5} N. de Ruette, ^{1,6} G. Eklund, ¹ V. Ideböhn,⁵ N. D. Gibson^{9,7} T. Brage^{9,2} H. Zettergren, ¹ D. Hanstorp,⁵ and H. T. Schmidt¹
¹Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
²Department of Physics, Division of Mathematical Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
³Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), CP160/09, Université Libre de Bruxelles (ULB), B 1050 Bruxelles, Belgium
⁴Department of Physics and Astronomy, Theoretical Astrophysics, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
⁵Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden
⁶European Spallation Source ERIC (ESS), SE-221 00 Lund, Sweden
⁷Department of Physics and Astronomy, Denison University, Granville, Ohio 43023, USA

(Received 13 February 2021; accepted 20 May 2021; published 10 June 2021)

$$\Delta \nu^{A,A'} = \nu^{A'} - \nu^{A} = k_{\rm MS} \frac{m_{A'} - m_{A}}{m_{A'} m_{A}} + F \delta \langle r^2 \rangle^{A,A'}$$

Transition	F	$F_{\text{exp.}}$	$k_{\rm NMS}$	$k_{ m SMS}$	$k_{\rm SMS,exp.}$	$k_{ m MS}$	$k_{\rm MS,exp.}$
${}^{4}S_{3/2} \rightarrow {}^{2}D_{3/2}$	0.26	-	98.3	-181.3	-	-83.0	-
${}^4S_{3/2} \rightarrow {}^2D_{5/2}$	0.24	-0.03	107.5	-44.5	164.8	63.0	272.3

Theory made by A. Bondarev

[45] M. S. Safronova, M. G. Kozlov, W. R. Johnson, and D. Jiang, Phys. Rev. A 80, 012516 (2009).

Hyperfine structure

Magnetic moments for ¹¹⁷Sn and ¹¹⁹Sn are very similar

Forbidden transitions are not forbidden anymore!

La⁻

CI+all-order

- [24] M. S. Safronova, M. G. Kozlov, W. R. Johnson, and D. Jiang, Phys. Rev. A 80, 012516 (2009).
- [25] C. Cheung, M. G. Kozlov, S. G. Porsev, M. S. Safronova, I. I. Tupitsyn, and A. I. Bondarev, Computer Physics Communications 308, 109463 (2025).

			1.0	CT -			1	
'L'ARLE' Moogurod	ond	coloniotod	latotamog.	otla	overted	ctotoc 1	n coconde	
TADLE I. Measureu	anu	calculated	meumes	or La	excited	states 1	II seconds	

State	Present Experiment	Present Theory	O'Malley [14]	Cerchiari [11]
${}^{3}\mathrm{F}_{3}{}^{e}$	132(20)	131	132*	132
${}^{3}\mathrm{F}_{4}{}^{e}$	32(5)	135	134*	
Short-lived	0.22(3)			

Physics and Applications of Negative IONS

EU doctoral network funded with 4 363 215.12 EUR (14 Ph. D. positions)

Information will soon be available on panions.eu Call open 1st of September

Aknowledgement

Next generation:

Physics and Applications of Negative IONS

Vetenskapsrådet

DFG Deutsche Forschungsgemeinschaft

