

Atomic data for Solar Physics Applications

Wenxian Li

National Astronomical Observatories Chinese Academy of Sciences

CompAS meeting, 2025.6.13, Lund, Sweden

NAOG

Solar Atmosphere

Solar Spectra

N/200

Solar Spectra Lines

Optical thin lines:
$$I(\lambda_{ji}) = \frac{h\nu_{ji}}{4\pi} \int N_j(Z^{+r}) A_{ji} ds \quad (\text{erg cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1})$$

 $N_j(Z^{+r}) \equiv \frac{N_j(Z^{+r})}{N(Z^{+r})} \frac{N(Z^{+r})}{N(Z)} \frac{N(Z)}{N_H} \frac{N_H}{N_e} N_e$

Atomic data

- wavelength
- radiative data A/log gf
- collisional cross section
- photoionization cross section
- hyperfine and isotopic splitting

GRASP calculations for radiative transitions

Collaborated with Anish Amarsi, Per Jönsson, Meichun Li on C, N, O, S atoms and atomic ions

GRASP calculations for radiative transitions

ab initio and fine-tuned energies and log(gf) for SI

Theoretical calculations of collisional data

Collaborated with Connor Ballance and Tomas Brage Atomic structure calculations: GRASP0 code Scattering calculation: DARC codes based on the Dirac Rmatrix method

				$A(s^{-1})$		
i-j	λ (Å)	Lower level	Upper level	CHIANTI V10.0 ^a	MCDHF ^b	Ratio
1-30	174.531	$3s^2 3p^5 {}^2P_{3/2}$	$3s^2 3p^4 3d {}^2D_{5/2}$	1.860e+11	1.807e+11	0.97
2-31	175.263	$3s^2 3p^5 {}^2P_{1/2}$	$3s^2 3p^4 3d {}^2D_{3/2}$	1.750e+11	1.697e+11	0.97
1-28	177.240	$3s^2 3p^5 {}^2P_{3/2}$	$3s^2 3p^4 3d {}^2P_{3/2}$	1.540e+11	1.466e+11	0.95
1-27	184.537	$3s^2 3p^5 {}^2P_{3/2}$	$3s^2 3p^4 3d {}^2S_{1/2}$	1.220e+11	1.249e+11	1.02
1-7	255.393	$3s^2 3p^5 {}^2P_{3/2}$	$3s^2 3p^4 3d {}^4D_{1/2}$	3.080e+06	3.453e+06	1.12
1-5	257.259	$3s^2 3p^5 {}^2P_{3/2}$	$3s^2 3p^4 3d {}^4D_{5/2}$	3.330e+06	6.077e+06	1.82
1-4	257.261	$3s^2 3p^5 {}^2P_{3/2}$	$3s^2 3p^4 3d {}^4D_{7/2}$	5.640e+01	5.748e+01	1.02
1-3	345.738	$3s^2 3p^5 {}^2P_{3/2}$	$3s 3p^6 {}^2S_{1/2}$	3.820e+09	2.996e+09	0.78

EUV lines in Fe X used for density, temperature and magnetic strength diagnostics

뱱릚

Theoretical calculations of collisional data

AK-DARC90: DARC R-matrix calculation from Aggarwal & Keenan (2005);

DZ-DW6: distorted wave calculation from Del Zanna et al. (2012);

DZ-RM4: R-matrix calculation from Del Zanna et al. (2012); **DZ-RM3**: R-matrix calculation from Del Zanna et al. (2004); **This work**: DARC calculation

Thermally-averaged effective collision strengths for Fe X lines, from different calculations.

NAOG

Theoretical calculations of collisional data

Spectropolarimetry: solar magnetic measurement

(Solar Physics, 2022, 297:22)

Landé factor

LS coupling, Zeeman induced polarization "weak-field" approximation

 $\overline{g} = \frac{1}{2}(g_1 + g_2) + \frac{1}{4}(g_1 - g_2)d - - - \operatorname{circular polarization}$ $\overline{G} = \overline{g}^2 - \delta - - - \operatorname{linear polarization}$

$$egin{aligned} &\delta &= rac{1}{80}\,\Delta^2(16s-7d^2-4)\;, \ &d &= J_1(J_1+1) - J_2(J_2+1)\;, \ &s &= J_1(J_1+1) + J_2(J_2+1)\;, \ &\Delta &= g_1 - g_2\;. \end{aligned}$$

Landi Degl'Innocenti & Landolfi 2004

Landé factor

LS coupling, Zeeman induced polarization

(1) Transitions with $\overline{g} \neq 0$ and $\overline{G} = 0$, which have zero *linear* polarization under the Zeeman effect;

 ${}^{4}D_{1/2} - {}^{2S+1}L_{1/2}$, ${}^{6}G_{3/2} - {}^{2S+1}L_{1/2}$, where ${}^{2S+1}L \neq {}^{4}D$.

(2) Transitions with $\overline{g} = 0$ and $\overline{G} \neq 0$, which have zero *circular* polarization under the Zeeman effect;

 $\label{eq:2.1} {}^{6}\!P_{3/2} - {}^{4}\!F_{5/2}, \ {}^{5}\!D_2 - {}^{3}\!G_3, \ {}^{7}\!D_1 - {}^{5}\!F_2, \ {}^{8}\!D_{5/2} - {}^{6}\!G_{7/2}, \\ {}^{5}\!F_2 - {}^{5}\!H_3, \ {}^{7}\!F_2 - {}^{7}\!H_3, \ {}^{7}\!F_3 - {}^{5}\!H_4, \ {}^{8}\!F_{3/2} - {}^{6}\!G_{5/2}.$

(3) Transitions with $\overline{g} = \overline{G} = 0$, which have zero polarization under the Zeeman effect.

 $\label{eq:2.1} {}^{3}\!P_{0}\!-\!{}^{5}\!F_{1}\!, \ {}^{4}\!D_{1/2}\!-\!{}^{4}\!D_{1/2}\!, \ {}^{4}\!D_{1/2}\!-\!{}^{6}\!G_{3/2}\!, \ {}^{5}\!D_{0}\!-\!{}^{5}\!F_{1}\!, \\ {}^{5}\!F_{1}\!-\!{}^{5}\!F_{1}\!, \ {}^{5}\!F_{1}\!-\!{}^{7}\!F_{0}\!, \ {}^{5}\!F_{1}\!-\!{}^{7}\!H_{2}\!, \ {}^{6}\!G_{3/2}\!-\!{}^{6}\!G_{3/2}\!, \ {}^{7}\!H_{2}\!-\!{}^{7}\!H_{2}\!.$

Transitions with large landé factor

$\bar{g}_{LS} \geq 3$									
${}^{4}\mathrm{P}_{\frac{1}{2}} - {}^{6}\mathrm{D}_{\frac{1}{2}}$	3.	${}^{6}\mathrm{D}_{rac{1}{2}} - {}^{8}\mathrm{F}_{rac{1}{2}}$	3.667	${}^{8}\mathrm{D}_{rac{5}{2}} - {}^{6}\mathrm{G}_{rac{3}{2}}$	3.6				
${}^{6}\mathrm{P}_{\frac{3}{2}} - {}^{4}\mathrm{D}_{\frac{1}{2}}$	3.	${}^{7}\mathrm{D}_{1}^{-} - {}^{7}\mathrm{D}_{1}^{-}$	3.	${}^{8}\mathrm{D}_{\frac{7}{2}} - {}^{6}\mathrm{G}_{\frac{5}{2}}$	3.				
${}^{6}\mathrm{P}_{\frac{3}{2}} - {}^{6}\mathrm{F}_{\frac{1}{2}}$	3.167	${}^{7}\mathrm{D}_{1} - {}^{7}\mathrm{F}_{0}$	3.	$^7\mathrm{F}_3^{}-{^7\mathrm{H}_2^{}}$	3.				
${}^{6}\mathrm{P}_{rac{5}{2}}-{}^{4}\mathrm{F}_{rac{3}{2}}$	3.	${}^{7}\mathrm{D}_{2}-{}^{5}\mathrm{F}_{1}$	3.	${}^{7}\mathrm{F}_{4} - {}^{5}\mathrm{H}_{3}$	3.				
${}^{7}\mathrm{P}_{2}^{-} - {}^{5}\mathrm{F}_{1}^{-}$	3.5	$^7\mathrm{D}_2-{}^7\mathrm{G}_1$	3.25	${}^{8}\mathrm{F}_{rac{1}{2}} - {}^{8}\mathrm{F}_{rac{1}{2}}$	4.				
${}^{8}\mathrm{P}_{rac{5}{2}}-{}^{6}\mathrm{F}_{rac{3}{2}}$	3.2	${}^{7}\mathrm{D}_{3}-{}^{5}\mathrm{G}_{2}$	3.167	${}^{8}\mathrm{F}_{\frac{5}{2}} - {}^{6}\mathrm{G}_{\frac{3}{2}}$	3.				
${}^{5}\mathrm{D_{0}} - {}^{7}\mathrm{D_{1}}$	3.	${}^{8}\mathrm{D}_{rac{3}{2}} - {}^{6}\mathrm{F}_{rac{1}{2}}$	3.667	${}^{8}\mathrm{F}_{rac{5}{2}} - {}^{8}\mathrm{H}_{rac{3}{2}}$	3.3				
${}^{6}\mathrm{D}_{\frac{1}{2}}-{}^{6}\mathrm{D}_{\frac{1}{2}}$	3.333	${}^{8}\mathrm{D}_{\frac{3}{2}} - {}^{8}\mathrm{G}_{\frac{1}{2}}$	3.833	${}^{8}\mathrm{F}_{rac{7}{2}} - {}^{6}\mathrm{H}_{rac{5}{2}}$	3.286				

Landé factor

Stokes profiles of Fe I transition ${}^{5}F_{1}^{o} - {}^{5}F_{1}$ at 7389.398 Å

Red dashed curves: LS-coupling scheme g1=g2=0, B=100 G.

Green dashed curves: experimental g1 = -0.016, g2 = 0.007, B = 0 G

Black solid curves: experimental g1 = -0.016, g2 = 0.007, B = 100 G

MCDHF calculations of Landé factors compared with LS-coupling and Kurucz's database (http://kurucz.harvard.edu/atoms.html)

Li et al. , 2020

Neither the programs nor data are "black boxes". You should not be using them if you do not have some understanding of the physics and of the programming in the source code.

--Robert L. Kurucz

