DARK MATTER

Problem Sheet 5: Exam
This problem sheet brings together everything that you have learnt on the course.

1. Classical evidence

(a) Give three pieces of evidence for dark matter in the Universe.
(b) A spherical galaxy has enclosed mass:

$$
\begin{equation*}
M(<r)=M_{*}+M_{0} r^{\alpha} \tag{1}
\end{equation*}
$$

where M_{*} is the total visible mass in stars; M_{0} and $\alpha \geq 0$ are constants; and r is the radius from the centre of the galaxy.
(c) Balance the centripetal force and gravity to show that the velocity of a particle of mass moving on a circular orbit in the galaxy at radius r is given by:

$$
\begin{equation*}
v(r)=\sqrt{\frac{G\left(M_{*}+M_{0} r^{\alpha}\right)}{r}} \tag{2}
\end{equation*}
$$

(d) At large distance $r \rightarrow \infty$ from the centre of the galaxy, the rotational velocity is observed to tend towards a constant value $v(r)=v_{0}$. Derive the value of α in this case and show that $v_{0}^{2}=G M_{0}$.
(e) Show that for the above value of α, the cumulative mass $M(<r)$ is given by:

$$
\begin{equation*}
M(<r)=M_{*}+\frac{v_{0}^{2}}{G} r \tag{3}
\end{equation*}
$$

(f) What do you think the above equation for the cumulative mass is telling us? Explain your reasoning.

2. Cosmological Probes

The Friedmann equation is given by:

$$
\begin{equation*}
\left(\frac{\dot{a}}{a}\right)^{2}=H_{0}^{2}\left[\Omega_{\Lambda}+\Omega_{m} a^{-3}+\Omega_{r} a^{-4}-\left(\Omega_{0}-1\right) a^{-2}\right] \tag{4}
\end{equation*}
$$

where $\Omega_{0}=\Omega_{\Lambda}+\Omega_{m}+\Omega_{r}$ and a is the dimensionless scale factor.
(a) Hansen et. al (2004) estimate an age of 12.7 ± 0.7 Gyrs for the white dwarf stars in the star cluster $\mathrm{M} 4^{1}$. Assuming $\Omega_{\Lambda}=0$ and $H_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$, can you construct a Universe of this age? Is this a reasonable model of the Universe? [Hint: you will need to include the curvature term; see the notes for the solution in this case.]

3. Baryonic effects

Suppose I have a galaxy of mass M_{i}. We will assume that it is a point mass with dark matter orbiting around it on circular orbits of radius r_{i}.
(a) Suppose I slowly add a mass of M_{b} in baryons to the above galaxy. Derive the resulting radii of the dark matter particle orbits r_{t}.
(b) Imagine now that I instantaneously remove the mass M_{b} (due to e.g. a galactic wind). Prove that the galaxy becomes unbound if $M_{b}=M_{i}$.

[^0]
[^0]: ${ }^{1}$ https://arxiv.org/abs/astro-ph/0205087.

