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I.a.- Compute the hot dark matter abundance for a fermion with n degrees of freedom and mass
m.

I.b.- Compute the annihilation cross section into the total bosonic and fermionic content of the
SM of a Dirac fermion with mass m and hypercharge Y . Assume that the mass is larger than the
electroweak symmetry breaking scale.

I.c.- Estimate the cold dark matter abundance for such a Dirac fermion.

THERMAL FREEZE-OUT ABUNDANCES

In order to calculate the thermal relic abundance, we will use the standard techniques given in [1, 2] in two limiting
cases, either relativistic (hot) or non-relativistic (cold) at decoupling. In this section we will review the basic steps of
the calculation method.
The evolution of the number density nα of a stable particle α, interacting with SM particles in an expanding

universe is given by the Boltzmann equation:

dnα

dt
= −3Hnα − ⟨σAv⟩(n2

α − (neq
α )2) (1)

where

σA =
∑
X

σ(παπα → X) (2)

is the total annihilation cross section of annihilation of α particles into SM particles X summed over final states.
The −3Hnα term, with H the Hubble parameter, takes into account the dilution of the number density due to the
universe expansion. These are the only terms which could change the number density of α particles. In fact, since
they are stable they do not decay into other particles.
The thermal average ⟨σAv⟩ of the total annihilation cross section times the relative velocity is given by:

⟨σAv⟩ =
1

n2
eq

∫
d3p1
(2π)3

d3p2
(2π)3

f(E1)f(E2)
w(s)

E1E2
, (3)

where:

w(s) = E1E2σAvrel =
sσA

2

√
1− 4M2

s
, (4)

with M the mass of the α particle. The Mandelstam variable s can be written in terms of the components of the four
momenta of the two α particles p1 and p2 as s = (p1 + p2)

2 = 2(M2 + E1E2 − |p⃗1||p⃗2| cos θ). Assuming vanishing
chemical potential, the α distribution functions are:

f(E) =
1

eE/T + a
(5)

with a = 0 for Maxwell-Boltzmann, a = 1 for Fermi-Dirac, and a = −1 for Bose-Einstein. In the case of non-relativistic
relics T ≪ 3M , the Maxwell-Boltzmann distribution is a good approximation and we will use it for simplicity for cold
relics. Finally, the equilibrium abundance is given by:

neq =

∫
d3p

(2π)3
f(E) (6)
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From (??), the thermal average will include, to leading order, annihilations into all the SM particle-antiparticle pairs.
If the universe temperature is above the QCD phase transition (T > Tc), we consider annihilations into quark-
antiquark and gluons pairs. If T < Tc we include annihilations into light hadrons. For the sake of definiteness we will
take a critical temperature Tc ≃ 170 MeV, although the final results are not very sensitive to the concrete value of
this parameter.
In order to solve the Boltzmann equation we introduce the new variables: x = M/T and Y = n/s with s the

universe entropy density. We will assume that the total entropy of the universe is conserved, i.e. S = a3s = const,
where a is the scale factor of the universe and we will make use of the Friedmann equation:

H2 =
8π

3M2
P

ρ (7)

where the energy density in a radiation dominated universe is given by:

ρ = geff (T )
π2

30
T 4 (8)

In a similar way, the entropy density reads:

s = heff (T )
2π2

45
T 3 (9)

where geff (T ) and heff (T ) denote the effective number of relativistic degrees of freedom contributing to the energy
density and the entropy density respectively at temperature T (T being the temperature of the photon background).
Notice that for T > MeV we have heff ≃ geff . Using these expressions we get:

dY

dx
= −

(
πM2

P

45

)1/2
heffM

g
1/2
effx

2
⟨σAv⟩(Y 2 − Y 2

eq) (10)

where we have ignored the possible derivative terms dheff/dT .
The qualitative behaviour of the solution of this equation goes as follows: if the annihiliation rate defined as

ΓA = neq⟨σAv⟩ is larger than the expansion rate of the universe H at a given x, then Y (x) ≃ Yeq(x), i.e., the branon
abundance follows the equilibrium abundances. However, since ΓA decreases with the temperature, it eventually
becomes similar to H at some point x = xf . From that time on branons are decoupled from the rest of matter
or radiation in the universe and its abundance remains frozen, i.e. Y (x) ≃ Yeq(xf ) for x ≥ xf . For instance, for
relativistic (hot) scalar particles, the equilibrium abundance reads:

Yeq(x) =
45ζ(3)

2π4

1

heff (x)
, (x ≪ 3) (11)

whereas for cold relics:

Yeq(x) =
45

2π4

(π
8

)1/2
x3/2 1

heff (x)
e−x, (x ≫ 3) (12)

We see that for hot relics the equilibrium abundance is not very sensitive to the value of x. In the case of cold relics
however, Yeq decreases exponentially with the temperature, which implies that the sooner the decoupling occurs the
larger the abundance.
Let us first consider the simple case of hot relics. Since its equilibrium abundance depends on xf only through

heff (xf ), the relic abundance is not very sensitive to the exact time of decoupling. In this case, in order to calculate
the decoupling temperature Tf = M/xf , it is a good approximation to use the condition ΓA = H. From the explicit
expression of the Hubble parameter in a radiation dominated universe we have:

H(Tf ) = 1.67 g
1/2
eff (Tf )

T 2
f

MP
= ΓA(Tf ) (13)

which can be solved explicitly for Tf , expanding ΓA(Tf ) for Tf ≫ M/3. Once we know xf , the relic abundance today
(Y∞ ≃ Y (xf )) is given by (11). From this expression we can obtain the current number density of hot scalar relics
and the corresponding energy density which is given by:

ΩBrh
2 = 7.83 · 10−2 1

heff (xf )

M

eV
(14)
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The calculation of the decoupling temperature in the case of cold relics is more involved. The well-known result is
given by:

xf = ln

(
0.038 c (c+ 2)MPM⟨σAv⟩

g
1/2
eff x

1/2
f

)
(15)

where c ≃ 0.5 is obtained from the numerical solution of the Boltzmann equation. This equation can be solved
iteratively. The corresponding energy fraction reads:

ΩBrh
2 = 8.77 · 10−11GeV−2 xf

g
1/2
eff

( ∞∑
n=0

cn
n+ 1

x−n
f

)−1

(16)

where we have expanded ⟨σAv⟩ in powers of x−1 as:

⟨σAv⟩ =
∞∑

n=0

cnx
−n (17)

Notice that in general, Y∞ ∝ 1/⟨σAv⟩, i.e. the weaker the cross section the larger the relic abundance. This is the
expected result, since, as commented before the sooner the decoupling occurs, the larger the relic abundance, and
decoupling occurs earlier as we decrease the cross section. Therefore the cosmological bounds work in the opposite
way as compared to those coming from colliders. Thus, a bound such as ΩBr < O(1) translates into a lower limit for
the cross sections and not into an upper limit as those obtained from non observation in colliders.

[1] E.W. Kolb and M.S. Turner, The Early universe (Addison-Wesley, 1990).
[2] M. Srednicki, R. Watkins and K.A. Olive, Nucl. Phys. B310, 693 (1988); P. Gondolo and G. Gelmini, Nucl. Phys. B360,

145 (1991).


