DARK MATTER

Problem Sheet 1: Classical evidence

1. Beyond spherical symmetry

(a) Suppose that we observe a galaxy with a rotating gaseous disc that has rotational speed: $v_{obs}(R) = v_0 = \text{constant}$, where R is the radius in the disc plane. A reasonable model for the disc potential is called the **Miyamoto-Nagai potential**:

$$\Phi_*(R,z) = -\frac{GM_*}{\sqrt{R^2 + (a + \sqrt{b^2 + z^2})^2}}$$
(1)

where G is Newton's Gravitational constant; M_* is the mass of the stellar disc; and a and b set the scale height and length of the disc, respectively. It is very useful because it approximates real discs in the Universe, but has an *analytic* solution to the Poisson equation such that the density of the disc can be simply written down:

$$\rho_*(R,z) = \left(\frac{b^2 M}{4\pi}\right) \frac{aR^2 + (a+3\sqrt{z^2+b^2})(a+\sqrt{z^2+b^2})^2}{\left[R^2 + (a+\sqrt{z^2+b^2})^2\right]^{5/2}(z^2+b^2)^{3/2}}$$
(2)

i. Using the above potential Φ_* , show that $v_*(R)$ for gas moving on circular orbits in the disc plane (z=0) is given by:

$$v_*^2 = \frac{GM_*R^2}{\left[R^2 + (a+b)^2\right]^{3/2}} \tag{3}$$

- ii. What happens in the limit $R \to \infty$ to the disc density ρ_* in the disc plane (z = 0)? What happens to $v_*(R)$ in the same limit?
- iii. How does the above compare with the observation $v_* = v_0 = \text{constant}$. What does this mean?
- (b) In the notes, we assumed that galaxies are spherical from which we derived:

$$v_*^2 = \frac{GM_*(R)}{R} \tag{4}$$

For the same disc mass M_* , sketch how equation 4 compares to equation 3 (you can assume without loss of generality that a+b=1). What does this tell you about the assumption of spherical symmetry?

(c) Consider now the potential:

$$\Phi(R,z) = \frac{v_0^2}{2} \ln\left(R_c^2 + R^2 + \frac{z^2}{q^2}\right)$$
(5)

where R_c and q are constants.

- i. What do the constants R_c and q mean (i.e. how does changing them change the potential?)
- ii. Calculate $v_c(R)$ for this potential. How does it compare with equation 3? Do you think this is a better model of real galaxies in the Universe?
- iii. From equation 4, in order to keep $v_c = \text{const.}$ we must increase the mass as $M(R) \propto R$. What do you think this tells us about the Logarithmic potential in equation 5?

2. What dark matter is not

(a) Assume, as in the notes, that the Milky Way halo density profile is a spherical power law:

$$\rho_{\rm dm} = \rho_0 \left(\frac{r}{r_s}\right)^{-\alpha} \tag{6}$$

where we have normalised the distribution so that the local dark matter density at the Solar neighbourhood $r = r_s \sim 8 \,\text{kpc}$ is given by ρ_0 .

Show that the Milky Way's rotation curve (the rotation speed of gas moving on a circular orbit) is given by:

$$v_c^2 = \frac{GM_{\rm dm}(r_s)}{r_s} + v_{c,b}^2(r_s) \tag{7}$$

where $v_{c,b}^2(r_s) \sim (150 \,\mathrm{km/s})^2$ is the baryonic contribution to the rotation curve at r_s .

(b) Show that the enclosed dark matter mass $M_{\rm dm}(r_s)$ is given by:

$$M_{\rm dm}(r_s) = \frac{4\pi\rho_0 r_s^3}{3-\alpha} \tag{8}$$

(c) Calculate the dark matter density at $r_s \sim 8 \,\mathrm{kpc}$, assuming $\alpha = 1$. Compare this with the total matter density at r_s , $\rho_{\mathrm{tot}} \sim 0.09 \,\mathrm{M_{\odot} \, pc^{-3}}$. Is the ratio of the two surprising? What do you think it means?