DARK MATTER

Problem Sheet 2: The Homogeneous Universe

1. The homogeneous Universe

(a) In the notes we proved that an isotropic Universe must be homogeneous. Is the converse true? If not, come up with a counter example.

2. The Friedmann equation

The Friedmann equation can be written as:

$$\left(\frac{\dot{a}}{a}\right)^2 = H_0^2 \left[\Omega_\Lambda + \Omega_m a^{-3} + \Omega_r a^{-4} - (\Omega_0 - 1)a^{-2}\right]$$
(1)

where $H_0 = 70 \text{ km/s/Mpc}$ is Hubble's constant; $\Omega_{\Lambda} = 0.7$, $\Omega_m = 0.3$, and $\Omega_r = 8 \times 10^{-5}$ are the dark energy, matter, and radiation contributions to the total energy density of the Universe at the current time; and $\Omega_0 = \Omega_{\Lambda} + \Omega_m + \Omega_r$.

- (a) Calculate the age of the Universe for a matter dominated flat Universe ($\Omega_m = \Omega_0 = 1; \Omega_\Lambda = \Omega_r = 0$).
- (b) Compare this age with the age of the oldest stars in the Milky Way. What do you think this means?
- (c) Derive \ddot{a} from the Friedmann equation. Use this to derive the relationship between Ω_{Λ} and $a = a_0 =$ const. for an eternal static Universe.
- (d) Why can't I construct an eternal static Universe just using curvature with $\Omega_{\Lambda} = 0$?
- (e) Calculate the redshift at which radiation dominates over all other terms in the Friedmann equation.