Searching for Physics beyond the Standard Model

Research Seminar, Lund University

Ruth Pöttgen 15 Nov 2016

Standard Model

fundamental particles and their interactions

Open Questions

- What is Dark Matter/Energy?

• Where is the anti-matter?

https://apod.nasa.gov/apod/ap060824.html

- Why so different interaction strengths?
- Why similarities between quark and lepton sector?
- several more...

- various theories addressing one or several of the open questions
 - Supersymmetry, extra dimensions, Grand Unification...
- most predict new particles with masses at the TeV scale
- experiments look for evidence of such particles
 - production of new particles at colliders
 - observation of processes not present in the SM
 - deviation from prediction in precision measurements

- various theories addressing one or several of the open questions
 - Supersymmetry, extra dimensions, Grand Unification...
- most predict new particles with masses at the TeV scale
- experiments look for evidence of such particles
 - production of new particles at colliders
 - observation of processes not present in the SM
 - deviation from prediction in precision measurements

this talk

Outline

Search for Dark Matter candidates

- WIMP Dark Matter
- collider mono-X signature
- ATLAS mono-jet analysis
- interpretation of results
- outlook and future plans

Other Searches for new physics

- ATLAS search for scalar leptoquarks
- phenomenological study on baryon number violation

Search for Dark Matter Candidates

• using 20 fb⁻¹ of $\sqrt{s} = 8$ TeV ATLAS data

<u>Springer Theses (2016) 978-3-319-41044-9</u>

and EPJC 75 (2015) 299

Why Dark Matter?

- compelling evidence for existence of non-luminous matter on largely different cosmological scales
 "Dark Matter"
- ~1/4 of the universe's matter-energy budget
 - ~5 times as much as 'normal' matter

- no viable candidate within Standard Model (SM)
- popular generic class of <u>new particles</u>: weakly interacting massive particles (WIMPs)
 - broad search programme, mainly 3 approaches
 - interacting = interacting non-gravitationally
 - weakly interacting
 - --> escape collider experiment undetected
 - additional (high pT) object to trigger on
 - missing transverse energy (E_T^{miss})
 from recoiling WIMPs
 - ► => "mono-X" searches
 - massive —> can account for relic density

Monojet Signature

highly energetic jet
 + large missing E_T

Monojet Signature

highly energetic jet
 + large missing E_T

- ► larger WIMP mass => higher E^{miss}
- missing E_T as discriminant variable
- "cut&count" experiment

=> search for excess over SM prediction at high E_T^{miss}

various SM processes can lead to the same signature

introduce dedicated cuts for suppression

Optimised Event Selection

- high-p⊤ jet (anti-kt algorithm, distance parameter 0.4)
- large missing E_T

W/Z Estimation - Idea

- main backgrounds => precise estimation essential
- use W/Z+jets events in data to normalise simulation & correct shape of distributions
- for Z(vv): "treat leptons as missing E_T "

- 4 control region (CR) processes:
 W&Z+jets with decay into e or μ
- 4 estimates for Z(vv) —> combination!
- W+jets events for estimation of W+jets

W/Z Estimation - Procedure

simulation only in ratios

=> **reduce** systematic uncertainties (e.g. luminosity)

• applied bin-by-bin

=> correct normalisation & shape

simulation normalised to data (factor 0.92)

generator cut on invariant mass

Combination

• using 'best linear unbiased estimator' (BLUE) method

 total uncertainty reduced by combination

Reduction of Systematics

- example: jet energy scale (propagated to ET^{miss})
 - depends on η and p_T of the jets, 1-10%

- raw simulation: ~10%
- data-driven estimates: 0.5-4%
- combined Z(vv) estimate: $\leq 1\%$ (3% SR8)
- final background estimate: ~1%

many systematics reduced by use of simulation ratios and Z(vv) combination

Signal Region

8 inclusive signal regions (SR1 - SR8) for cut&count: 150, 200, 250, 300, 350, 400, 500, 600 GeV < ET^{miss}

no significant deviation from SM prediction

Signal Description

Effective Field Theory (EFT)

minimal assumptions:

- WIMPs only new particles in reach of LHC
- mediator too heavy to be produced on-shell
 - integrated out —> contact interaction
- only two parameters:
 - suppression scale M*
 - WIMP mass m_x
- consider subset of possible operators
- straight-forward conversion into non-collider parameters
- applicability questionable at LHC energies

less general

- s-channel vector mediator
- Iarger number of parameters:
 - ▶ mass M_{Med}
 - ► width F_{Med}
 - couplings gsм, gdм
 - WIMP mass m_x
- comparison with non-collider more involved
- no concerns about validity
- default for run-2

Comparing to other Experiments

• upper limits on WIMP-nucleon-scattering cross section

- ATLAS and CMS very similar
- some of the strongest collider limits (especially gg-operator)
- improvement wrt previous result: factor ~3-10

Limits on Vector Mediator Model

=> parameter space excluded (for WIMPs with standard production mechanism)

=> connection to astrophysics

Current Status

shift to simplified models for run-2

ATLAS/CMS DM Forum report

. . .

• suite of mono-X searches, ATLAS & CMS

- for some models: <u>DM WG recommendations</u>
- many recent results from direct detection experiments

so far no unambiguous signal anywhere

Outlook & Future Plans - ATLAS

- LHC run-2 holds great potential for mono-X searches
 - particularly interesting: **mono-Higgs** searches
 - probe different models than other mono-X searches
 - comparisons to other experiments?
 - collaboration with phenomenologists
 - **new** after Higgs discovery
 - room for improvements
 - H—>bb (largest branching ratio)
 - alternative background estimation
 - b-tagging in boosted regime
 - **unexplored** channels
 - H—>WW (2nd largest BR)
 - sub-structure techniques, "di-boson tagging"
 - exciting field with ample room for development
 - my goal for the next years of LHC operation

Outlook & Future Plans - Direct Detection

next generation DD experiments will (almost) reach "neutrino floor"

(irreducible neutrino background)

- directional direct detection
 - study direction of recoil

▶

Search for Scalar Leptoquarks

• using 3.2 fb⁻¹ of $\sqrt{s} = 13$ TeV ATLAS data

NJP 18 (2016) 093016

Leptoquarks

- similarities in SM lepton & quark sector
- **leptoquarks** (LQ) provide connection, e.g. in unification theories, compositeness
- carry lepton and baryon number
 - couple to lepton-quark pair
 - typically assumed: from the same generation
 - => "LQs of a certain generation"

- here: pair production of scalar LQs
 - essentially strong production
 - cross section depends ~only on mass

- decay into lepton + quark
 - branching fraction into charged lepton: β

q

coupling parameter: λ

$$\lambda_{\ell} = \sqrt{\beta}\lambda \qquad \lambda_{\nu} = \sqrt{1-\beta}\lambda$$

 \boldsymbol{q}

pair production => 3 possible final states

Main Kinematic Variables

- final state: ≥2 jets, 2 charged (high-p_T), same flavour leptons (e,µ)
- main SM backgrounds: $\textbf{Z/} \boldsymbol{\gamma}^{\star} + \text{jets}$ ("DY+jets") and $t\bar{t}$
- discriminant variables:
 - dilepton invariant mass, m_{II}
 - scalar p_T sum of leptons and jets, S_T
 - (minimum) invariant lepton-jet ("LQ") mass, mLQ^{min}
 - for combination with smallest mass difference

Run: 280231 Event: 912117525 2015-09-24 09:18:55 CEST

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2015-19/

Analysis Strategy

- need to predict background expectation in extreme region of phase space
 - signal region: m_>130 GeV, S_>600 GeV, 10 bins in m_{LQ}^{min}
- use well-known regions to constrain them "control region"
 - DY+jets CR: only look at Z-peak, i.e. m_l in [70,110] GeV
 - tt CR: use electron-muon events
- other (small) backgrounds taken from S_T [GeV] MC directly or estimated from data Z CR Signal Region perform combined **fit** to CRs (1-bin) and SR 600. normalisation factors Validation Region check in validation region 110 130 70 M m > 130 GeV and ST < 600 GeV</p> m_{ll} [GeV]

- experimental
 - most relevant:
 - object energy scales & resolution
 - lepton efficiency description
 - few %, 10% at most

- theoretical/modelling
 - background modelling: 20-30%
 - signal PDF/scales: 10-35%

Exclusion Bounds

Outlook

- first results at 13 TeV with 3.2/fb
 - Ilqq channel
- great potential for full 13 TeV data set ~40/fb
 - include lv channel
 - extend spectrum of models

Experimental Constraints on Baryon Number Violation in Supersymmetry

- study pure BNV processes in framework of RPV SUSY
- complementarity of LHC and flavour/low energy constraints
- ▶ quantification of potential of proposed n-n search

collaboration with L. Calibbi, G. Ferretti, D. Milstead, C. Petersson

JHEP05(2016)144

Baryon Number Violation

- baryon number violation (BNV) for baryogenesis (Sakharov)
 - intrinsic to many BSM theories
 - e.g. R-parity violation (RPV) SUSY

 $\lambda_{ijk}L_iL_j\bar{E}_k + \lambda'_{ijk}L_iQ_j\bar{D}_k + \lambda''_{ijk}\bar{U}_i\bar{D}_j\bar{D}_k$ leptons leptons + quarks only => pure BNV only quarks

- most common SUSY models: set all **Yukawa couplings** $\lambda^{(')/('')}=0$
- can set one λ "**≠0**, proton still stable (p decay violates B and L)
- one (of few) observables for pure BNV: n-n oscillations (△B=2)
 - current limit: t_{osc}^{free} > 0.86x10⁸s (ILL Grenoble, 1994)
 - experiment proposed at European Spallation Source (ESS)
 - factor ~1000 greater sensitivity to transition probability
 - => factor ~30 in oscillation time

Neutron-Antineutron Oscillations in RPV SUSY

consider only couplings and sparticles relevant for a given process

- all other masses decoupled, all other couplings = 0
- LHC signature depends on decay length of lightest sparticles
 - prompt decays (many jets), displaced jets, long-lived particles

- flavour/CP violation (e.g. K- or B-meson oscillations)
 - strong constraints for 1-2 mixing
- other $\Delta B=2$ processes: di-nucleon decay
 - ▶ NN—>KK, NN—>ππ
 - SuperKamiokande searches with ${}^{16}O \longrightarrow t > 10^{32}y \longrightarrow t_{osc}$ free > 2.7x10⁸s

 u_R

 d_R

 \tilde{b}_R

 b_R

 d_R

Results: $\lambda_{udb}'' = 10^{-6}$

 ESS experiment can exclude further parameter space

Results: $m_{\tilde{g}} = 1.5 m_{\tilde{q}}$

Oscillation Time as Function of Mass Scale

- large uncertainty from nuclear matrix element
- reach up to mass scales of hundreds of TeV

- Baryon number violation well motivated (experiment and theory)
- n-n oscillations high precision observable for pure baryon number violation
- strong constraints from LHC in certain regions of parameter space
- complementary results from flavour experiments
- ESS experiment can extend reach considerably

Summary

- SM leaves various questions unanswered
- many answers suggest new particles at TeV scale
- presented searches I made important contributions to
 - search for WIMP Dark Matter
 - search for leptoquarks
 - study on potential of $n-\overline{n}$ experiment
- so far, no convincing hint for new physics found
- future plans:
 - Dark Matter search in mono-Higgs channels
 - explore interplay between results from different experiments
 - Directional Direct Detection

Additional Material

Observation Principle

- cold neutrons from ESS (v<1000m/s)
- annihilate with neutrons in target nuclei
 - --> many pions, typically 5, total energy ~2 GeV
- + thin annihilation target, e.g. carbon —> $\sigma_{\text{annihilation}}/\sigma_{\text{n-interaction}} \sim 10^{\circ}6$
- . (cylindrical) detector with tracking (vertex finding), calorimeter, ToF

RPV SUSY at LHC

- not "traditional" SUSY signature with large missing energy
- dependence on decay length of lightest sparticles

prompt decay with couplings as small as 10-7

Models considered

relevant subset of large number of possibilities

Model	Sparticle content	Couplings probed
Z_1	$ ilde{g}, ilde{d}_R, ilde{s}_R$	$\lambda^{\prime\prime}_{uds}, (\delta^d_{RR})_{21}$
Z_2	$ ilde{g}, ilde{d}_R, ilde{b}_R$	$\lambda^{\prime\prime}_{udb}, (\delta^d_{RR})_{31}$
BM_1	$ ilde{g}, ilde{b}_R, ilde{b}_L,(ilde{t}_L), ilde{d}_L,(ilde{u}_L)$	$\lambda_{udb}^{''}, (\delta_{LL}^d)_{31}, (A_b - \mu \tan \beta)$
BM_2	$ ilde{g}, ilde{b}_R, ilde{d}_L, (ilde{u}_L)$	$\lambda^{\prime\prime}_{udb}, (\delta^d_{LR})_{31}$
GS	$ ilde{\chi}^{\pm}, (ilde{\chi}^0), ilde{b}_R, ilde{b}_L, (ilde{t}_L)$	$\lambda_{udb}^{''}, (A_b - \mu \tan \beta)$
СК	$\tilde{\chi}^{\pm}, (\tilde{\chi}^0), \tilde{b}_R, \tilde{t}_R, \tilde{b}_L, (\tilde{t}_L)$	$\lambda_{tdb}^{''}, (A_b - \mu \tan \beta), (A_t - \mu \cot \beta)$

48

Results: $\lambda'' = 10^{-6}$

prompt decay

- LHC bounds similar in both cases
- other constraints weaker for udb
 - ESS experiment can exclude further parameter space

Results: $\lambda'' = 10^{-8}$

non-prompt!

- LHC bounds similar in both cases
- other constraints weaker for udb
- ESS does not extend exclusion beyond LHC sensitivity

Results: $m_{\tilde{g}} = 1.5 m_{\tilde{q}}$

for lambda not too small potentially large gain by ESS experiment

Bounds for BM models

▶ bounds for BM₁ and BM₂ (MFV —> flavour mixing via detour)

 $_{\mbox{\tiny \ensuremath{\$}}}$ red: constraints from $~b~\rightarrow~d\gamma$

Bounds for GS model

- MFV by construction, no relevant bounds from flavour constraints
- LHC: only squark mass bound

Bounds for CK model

- MFV by construction, no relevant bounds from flavour constraints
- LHC: only squark mass bound

LQ ttbar CR

Comparison to other ATLAS Results

EFT - Comparison to Previous Mono-Jet Result

• upper limits on WIMP-nucleon-scattering cross section

clear improvement compared to 7TeV result

Simplified Model Limits 1

limits taken from SR with best expected limit

EFT - Limits on M*, SI

Iimits taken from SR with best expected limit

EFT - Limits on M*, SD

Iimits taken from SR with best expected limit

