Latest results from SUSY searches with the ATLAS experiment

Lund University, Nov 15, 2016

Christian Ohm, on behalf of the ATLAS Collaboration





### Outline

- 1. Introduction
  - Supersymmetry
  - Dataset & detector performance
  - Typical analysis strategy
- 2. Results
  - Inclusive  $\tilde{q}/\tilde{g}$  production
  - 3rd generation q̃ production
  - Electroweak production
- 3. Summary & conclusions





- Strong evidence for Dark Matter from astronomy and observational cosmology
- What is it made up of? We don't know.
- ► Can we produce it at the LHC?



(Planck: 1502.01589)

# Theory



• "Unnatural" fine-tuning of  $m_H^2$ 

 $\Rightarrow$  presence of scalar top partner would cancel quadratic radiative corrections and *protect*  $m_{H}^{2}$ 

 No gauge coupling unification in the Standard Model



### A brief introduction to Supersymmetry

### SUSY can solve these problems

- Could explain Dark Matter
- Alleviates hierarchy problem
- Allows for gauge coupling unification

### How?

- Generalization of SM: symmetry between force and matter particles
- ► Introduces sfermions and gauginos ⇒ doubles particle content wrt SM Sfermions:  $q, \ell \longleftrightarrow \tilde{q}, \tilde{\ell}$ Gauginos: e.g.  $g \longleftrightarrow \tilde{g}$

### But...

► With ~100 free parameters ⇒ wide range of possible exp. signatures

So, SUSY is theoretically appealing, phenomenologically rich, and therefore experimentally challenging



8 TeV  $\rightarrow$  13 TeV  $\Rightarrow \sigma(SUSY)$  grows:

•  $\sigma(\tilde{g}\tilde{g}) \times 30$  for  $m_{\tilde{g}} = 1.4$  TeV

• 
$$\sigma(\tilde{t}\tilde{t}) \times 8$$
 for  $m_{\tilde{t}} = 700 \text{ GeV}$ 

•  $\sigma(\tilde{\chi}\tilde{\chi}) \times 4$  for  $m_{\tilde{\chi}} = 500 \text{ GeV}$ 

In contrast:  $\sigma(t\bar{t}) \times 3.3 \Rightarrow S/B$  boost

Early Run II priorities:

- Optimize for discovery, keep analyses simple and robust
- ► Target strong production of ğ and q, then EW prod. with increased ∫ Ldt 5/44

### ATLAS Run II 13 TeV dataset

The LHC performed extremely well in 2016 pp run!



### ATLAS Run II 13 TeV dataset

The LHC performed extremely well in 2016 pp run!



Used for all 18 results shown today:

 $\int \mathcal{L} dt = 13\text{-}18 \text{ fb}^{-1} \text{ at } \sqrt{s} = 13 \text{ TeV}$ 

### ATLAS Run II 13 TeV dataset

The LHC performed extremely well in 2016 pp run!



6 / 44

### The ATLAS detector in Run II



### Detector performance with 13 TeV data





8 / 44

### Detector performance with 13 TeV data

Missing transverse momentum:

$$E_{\rm T}^{\rm miss} = \sqrt{(E_x^{\rm miss})^2 + (E_y^{\rm miss})^2}$$

where  $E_{x(y)}^{\rm miss} = -\sum E_{x(y)}$  summed over all calibrated  $e, \gamma, \mu, \tau$  and jets plus a track-based "soft" term (TST)

 $E_{\rm T}^{\rm miss}$  is crucial, strong discrimination power for *R*-parity conserving SUSY with stable lightest SUSY particle (LSP) escaping detection (DM cand.)

Most searches I show today use a  $E_{\rm T}^{\rm miss}$ -based trigger (plateau: 200 GeV)



Variables describing event-level kinematics and topology:

$$\begin{split} H_{\mathrm{T}} &= \sum_{\mathrm{jets},\ell} p_{\mathrm{T}} \qquad m_{\mathrm{eff}}^{(\mathrm{incl})} = \sum_{\mathrm{jets},\ell} p_{\mathrm{T}} + E_{\mathrm{T}}^{\mathrm{miss}} \qquad m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}^{\ell} E_{\mathrm{T}}^{\mathrm{miss}} (1 - \cos[\Delta \phi(\vec{\ell}, E_{\mathrm{T}}^{\mathrm{miss}})])} \\ M_{\mathrm{J}}^{\Sigma} &= \sum m_{j}^{R=1.0} \qquad m_{\mathrm{T}2} = = \min_{\mathbf{q}_{\mathrm{T}}} \left[ \max\left( m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right] \end{split}$$



### Turning every stone



(Not today: long-lived SUSY particles...)

Background modeling:

- Sherpa:  $V/\gamma + jets VV W\gamma$ Powheg:  $t\bar{t} Wt VV$ \_
- -
- Pythia8: Multijet \_
- MadGraph:  $t\bar{t}V t\bar{t}\gamma V + jets$ \_

SUSY signals:

- Simplified models
- MG5 aMC@NLO+Py8

### General strategy for Run II: typical workflow

- Define selections for targeted signals
- ► Optimize for S/√B using variables describing topology & kinematics
- Can't rely on perfect modeling in MC out to tails in distributions
   ⇒ extract normalization from data in signal-free region



For main irreducible BGs ( $t\bar{t}, V+jets$ ):

- 1. High-purity control regions (CRs)  $\Rightarrow$  simultaneous fit of MC to data  $\Rightarrow$  normalization factors
- 2. Test extrapolation using validation regions (VRs)
- 3. Predict yields in blinded signal regions (SRs)

Considerations:

- Extrapolate along reliably modeled variables
- Uncertainties: trade-off between stat and syst.

Reducible backgrounds measured in data, for example:

- "Fake"  $E_{\mathrm{T}}^{\mathrm{miss}}$ ,  $\ell$
- Charge mis-identification for  $\ell$

# New results: inclusive $\tilde{q}/\tilde{g}$ production



# $1\ell + jets + E_T^{miss}$ search

Target: final states with jets, exactly one isolated  $e/\mu$ , and significant  $E_{\rm T}^{\rm miss}$ 



### Design of SRs:

- ► Defined using  $n_{\text{jets}}, E_{\text{T}}^{\text{miss}}, m_{\text{T}}, m_{\text{eff}}^{\text{incl}}$
- ▶ 6 for g̃g, 4 for q̃q̃ prod.
- ► Most for large ∆m(˜χ<sup>±</sup><sub>1</sub>, ˜χ<sup>0</sup><sub>1</sub>), 2-jet "soft-ℓ" SR for compressed spectra

Backgrounds:  $t\bar{t}$  and W+jets dominate  $\Rightarrow$  normalize MC in CRs



ATLAS-CONF-2016-054

### Ex: soft-lepton 2-jet

- ▶ Regions split by requirements on E<sup>miss</sup><sub>T</sub> and m<sub>T</sub>
- ▶ tt̄ CR: ≥ 1 b-jet
- ▶ W+jets CR: no b-jets

Simultaneous fit for  $t\bar{t}$  & W CRs  $\Rightarrow$  normalization factors

### ATLAS-CONF-2016-054

# $1\ell + \text{jets} + E_{\text{T}}^{\text{miss}}$ : results



- $\blacktriangleright \leftarrow m_{\mathrm{T}}$  in 6-jet  $\tilde{g}\tilde{g}$  SR
- No significant excess seen in any SR
- Exclusion curves in  $m_{\tilde{g}}$ - $m_{\tilde{\chi}_1^0}$  plane  $\downarrow$

Throughout: only showing example interpretations - many more available!



### Brand new search for $\tilde{g}$ RPV decays in $1\ell$ + jets NEW! ATLAS-CONF-2016-094



- R-parity violated  $\Rightarrow$  no sign.  $E_{\rm T}^{\rm miss}$
- ▶  $\geq$ 1  $e/\mu$ ,  $\geq$ (8-10) jets, (0-4) b-jets
- First look for SUSY in this final state!

### Background estimation

- ▶ Don't trust MC for high n<sub>jets</sub> ⇒ measure in data
- ► Assumes P(additional jet) constant ⇒ extrapolate from n to n + 1 jets
- ► Global likelihood fits separately for W, Z, tt̄ (templates incl. b-jet mult.)



Validation of V+ jets fits in  $\gamma+$  jets and multijet events

### Brand new search for $\tilde{g}$ RPV decays in $1\ell$ + jets NEW! ATLAS-CONF-2016-094



2000 ieV]

### $0\ell$ + 4-6 jets + $E_{\rm T}^{\rm miss}$ search

Target: Fully hadronic  $\tilde{g}$  and  $\tilde{q}$ 



Two categories of SRs:

- ▶ 2–6 jets (no  $\ell$ !), subdivided in  $m_{\rm eff}$
- New: Recursive Jigsaw Reco (RJR): creates full-kinematics hypothesis for each event using assumption on decay topologies incl. invisible particles (1607.08307)

Backgrounds:

- ▶ W+jets, tt̄ from CRs
- $Z(\nu\nu)$ +jets from  $\gamma$ +jets, VV in MC



ATLAS-CONF-2016-078



SRs for  $\tilde{g}\tilde{g}$  with two-step decays:

- $\geq$  8–10 jets ( $p_{\rm T} > 50~{
  m GeV}$ )
- $M_{
  m J}^{\Sigma}>$  340 or 500 GeV
- ►  $E_{\mathrm{T}}^{\mathrm{miss}}$  significance:  $\frac{E_{\mathrm{T}}^{\mathrm{miss}}}{\sqrt{H_{\mathrm{T}}}} > 4 \ \mathrm{GeV}^{1/2}$



NEW! ATLAS-CONF-2016-095 Multijet bg estimation:

- $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} \sim {\rm indep.}$  of  $n_{\rm jets}$
- ► Extracted templates in 6j CR ⇒ validate in 7j region ⇒ predict in 8–10j SRs
- ► Top and W from 1ℓ CRs with (N<sup>SR</sup><sub>jets</sub> - 1) jets to improve stats

No significant excess  $\Rightarrow m_{\tilde{g}} \lesssim 1.6 \text{ TeV}$  excluded



### $0\ell + 8-10$ jets $+ E_{\pi}^{\text{miss}}$ search

New RPV multijet result:

p

• *R*-parity violated  $\Rightarrow$  no  $E_{\rm T}^{\rm miss}$ 





ATLAS-CONF-2016-057



### 3-4 *b*-jets + 0-1 $\ell$ + $E_{\rm T}^{\rm miss}$ search

ATLAS-CONF-2016-052

Target: Gtt & Gbb scenarios:  $\tilde{g} \rightarrow t\bar{t}\tilde{\chi}$ 



- SR design:
  - $0\ell$   $(\tilde{b}, \tilde{t})$  and  $1\ell$   $(\tilde{t})$
  - Subdivided in  $E_{\rm T}^{\rm miss}$ ,  $m_{\rm eff}$ , Gtt SRs use  $\sum m_{j}^{R=1.0}$
- Backgrounds
  - All SRs dominated by  $t\bar{t}$ +jets, measured in low- $m_{\rm T}$  CRs
  - Other BGs from MC



Candidate 3b event: jets with 774, 436, 312, and 180 GeV  $p_{\rm T}$ ,  $E_{\rm T}^{\rm miss}=508~{\rm GeV}, m_{\rm eff}=2.2~{\rm TeV}$ 



# ATLAS

Run: 300800 Event: 2418777995 2016-06-04 03:47:03 CI

# $2\ell$ same-sign $/3\ell$ + $E_{\mathrm{T}}^{\mathrm{miss}}$ search

 $\tilde{g}/\tilde{q}$  with leptonic  $\tilde{\ell}/\tilde{\chi}/W$  decays



### Sensitive to many types of mass spectra!

- 9 SRs (3 optimized for RPV):
- ▶ Object multiplicity: ℓ, b-jets, jets
- Event:  $E_{\mathrm{T}}^{\mathrm{miss}}$ ,  $m_{\mathrm{eff}}$ ,  $\ell$  charge config. Backgrounds
- Real: SS/3 $\ell$  from  $t\bar{t}V$ , VV
- Fake backgrounds:
  - Fake leptons relevant, measured in data
  - Charge mis-id  $\Rightarrow$  measured in  $Z \rightarrow \ell \ell$



ATLAS-CONE-2016-037

# $Z(\ell\ell) + jets + E_T^{miss}$ search

Target:  $\tilde{g}\tilde{g}$  or  $\tilde{q}\tilde{q}$  with  $Z \to \ell\ell$  in decay



Background estimation:

$$N_{ee/\mu\mu}^{\rm bg \ est.} = \frac{1}{2} N_{e\mu}^{\rm CR} \times k_{ee/\mu\mu}$$

- ► WZ, ZZ, ttV from MC, checked in VR
- ► Z+jets: estimated from γ+jets events in data

Excess in 8 TeV Run I search:

ee: 3σ, μμ: 1.7σ



Reproduce Run I SR:

- ► SFOS *ee*/μμ with 81 GeV < *m*<sub>ℓℓ</sub> < 101 GeV</p>
- 2 jets with  $\Delta \phi_{\min}(E_{\mathrm{T}}^{\mathrm{miss}}, j) > 0.4$
- $E_{\rm T}^{\rm miss} > 225 \,\,{\rm GeV}, \, H_{\rm T} > 600 \,\,{\rm GeV}$

# $Z(\ell\ell)$ + jets + $E_{\rm T}^{\rm miss}$ : results from 2015

Final event yield for 2015 data:

- Expected:  $10.3 \pm 2.3$  events
- Observed: 21 (10 *ee*, 11  $\mu\mu$ ) events  $\Rightarrow 2.2\sigma$  excess



CMS observes 12 with  $12^{+4.0}_{-2.8}$  expected (CMS-PAS-SUS-15-011)

# $Z(\ell\ell)$ + jets + $E_{\rm T}^{\rm miss}$ : results from 2016

Final result for 2015+2016 data:

- ▶ 2016: 43.5 expected, 43 observed events
- ▶ Reprocessing of 2015 data: 21 ⇒ 16 observed ⇒ No excess!



# New results: direct $\tilde{t}/\tilde{b}$ production



### Direct $\tilde{t}\tilde{t}$ production in $0\ell$ , $1\ell$ and $2\ell$ final states

Covers several decay chains for different  $\Delta m(\tilde{t}, \tilde{\chi}^0)$ 





# Direct $\tilde{t}\tilde{t}$ production in jets + $E_{\rm T}^{\rm miss}$ channel

Flexible search for all fully hadronic decays

▶ Boosted t̃ → tχ̃<sup>0</sup>: classify events using mass of two large-R jets:



► Exploit ISR for sensitivity to near-diagonal t X˜<sup>0</sup>:

$$R_{\rm ISR} = \frac{E_{\rm T}^{\rm miss}}{p_{\rm T}^{\rm ISR}} \sim \frac{m_{\tilde{\chi}^0}}{m_{\tilde{t}}}$$

• Main backgrounds: Z+jets,  $t\bar{t} + V$ 

### ATLAS-CONF-2016-077



### Direct $\tilde{t}\tilde{t}$ production in jets $+ E_{T}^{miss} + 1\ell$ channel

ATLAS-CONF-2016-050

 $t\bar{t}$ ,  $t\bar{t}Z$ , single-top, W+jets from CRs:







### Direct $\tilde{t}\tilde{t}$ production in jets $+ E_{T}^{miss} + 2\ell$ channel

ATLAS-CONF-2016-076

- ▶ 3-body decay highlighted here, also  $b\tilde{\chi}^{\pm}$  with had.  $m_{\rm T2}$ , dedicated DM SRs
- Selection:  $2\ell + 2$  *b*-jets +  $E_{\rm T}^{\rm miss}$
- Backgrounds:  $t\bar{t}$  and Wt, normalization extracted from CRs
- Super-razor variables (1310.4827) used to identify events with two heavy particles decaying into a set of leptons and invisible particles (shown in CRs)



### Summary of $\tilde{t} \rightarrow t \tilde{\chi}^0$ exclusions



### Targeting specific topologies for direct $\tilde{t}\tilde{t}$ production



- If  $\Delta m(\tilde{t}_1, \tilde{\chi}_0) \sim m_t$ , consider direct  $\tilde{t}_2 \tilde{t}_2 \text{ prod}, \tilde{t}_2 \rightarrow Z \tilde{t}_1$
- Sℓ, on-shell Z → ℓℓ: alternative approach for challenging diagonal



- Important natural GMSB scenarios with  $\tilde{\tau}$  NLSP
- Large  $E_{\mathrm{T}}^{\mathrm{miss}}$ , high  $m_{\mathrm{T2}}$ , b-jets



# New results: electroweak production of $\tilde{\chi}^\pm$ and/or $\tilde{\chi}^0$



### Direct EW production in $2\ell$ OS and $3\ell$ channels

### ATLAS-CONF-2016-096





### $\mathsf{SR}2\ell$

- No jets!
- $\blacktriangleright \ Z \to \ell\ell \text{ veto}$
- ▶ m<sub>T2</sub> over
   90, 120, 150 GeV
- SF and DF

### SR3ℓ-H(I)

- ► No *b*-jets!
- $\blacktriangleright \ Z \to \ell \ell \text{ veto}$
- $m_{\rm T} > 110 \,\,{\rm GeV}$
- $E_{\rm T}^{\rm miss} > 60(120) \,\,{\rm GeV}$
- ▶  $p_{\rm T}(\ell_3) > 80(30)$  GeV

Best ATLAS sensitivity to EW production with  $\tilde{\ell}$ -mediated decays!



32 / 44

### Direct EW production in $2\ell$ OS and $3\ell$ channels

Observed yields consistent with predicted background levels  $\Rightarrow$  exclusion limits

 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$  (2 $\ell$  OS)





### Direct EW production in di-tau channel

### ATLAS-CONF-2016-093

Signal region definition:

- $\geq 2\tau_{\rm had}$  (OS),  $E_{\rm T}^{\rm miss} > 150~{\rm GeV}$
- ▶ Z veto, b-jet veto
- $m_{\rm T2} > 70 {
  m GeV}$





Background estimation:

If only  $\tilde{\tau}$  accessible in  $\tilde{\chi}^0/\tilde{\chi}^{\pm}$  decay, hadronic  $\tau$  final states gain sensitivity!

- Fake  $\tau$ : multijet from data (ABCD), W+jets from MC norm. to CR
- ▶ Real  $\tau$ :  $VV \rightarrow \tau \tau \nu \nu$ , Z+jets, top ( $t\bar{t} + jets/V$ , Wt) from MC

### EW production in $4\ell$ channel





- SRs defined by Z veto,  $m_{\rm eff}$  cuts
- Reducible backgrounds:
  - WZ, WWW,  $t\bar{t}W + 1$  fake  $\ell$  (MC)
  - *tt̄*, Z+jets + 2 fake ℓ ⇒ from data using fake-factor method
- Irreducible backgrounds:
  - ► ZZ,  $t\bar{t}Z$ , ...





### Global summary of excluded mass ranges

### ATLAS SUSY Searches\* - 95% CL Lower Limits

Status: August 2016

|                                                                                           | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $e, \mu, \tau, \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jets                                                                                                                                                            | $E_{\rm T}^{\rm miss}$                                               | ∫£ dt[fb                                                                                    | Mass limit                                                                                                                                                                                                                                                                                                                       | √s = 7, 8 TeV √s = 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reference                                                                                                                                                                                                                 |  |  |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Inclusive Searches                                                                        | $\begin{array}{l} \label{eq:main_stars} \begin{split} \textbf{MSUGRACMSSM} \\ & \vec{q}_{1}, \vec{q}_{-}, \vec{q}_{1}^{2}, \vec{q}_{1}, \vec{q}_{-}, \vec{q}_{1}^{2}, \vec{q}_{1}, \vec{q}_{-}, \vec{q}_{1}^{2}, \vec{q}_{1}, \vec{q}_{2}, \vec{q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.3 \ e, \mu/1{\cdot}2 \ \tau & 2 \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (SS) \\ 1{\cdot}2 \ r + 0{\cdot}1 \ \ell \\ 2 \\ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-10 jets/3<br>2-6 jets<br>1-3 jets<br>2-6 jets<br>2-6 jets<br>2-6 jets<br>4 jets<br>0-3 jets<br>0-2 jets<br>-<br>1 b<br>2 jets<br>2 jets<br>2 jets<br>mono-jet | b Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 20.3<br>13.3<br>13.3<br>13.3<br>13.2<br>13.2<br>13.2<br>3.2<br>20.3<br>13.3<br>20.3<br>20.3 | 1 000 GeV                                                                                                                                                                                                                                                                                                                        | 1.13         TeV         regime()           1.14         TeV         regime()         regime()           1.14         TeV         regime()         regime()           1.14         TeV         regime()         regime()           1.15         TeV         regime()         regime()           1.15         TeV         regime()         regime()           1.17         TeV         regime()         regime()           1.17         TeV         regime()         regime()           1.17         TeV         regime()         regime()           1.18         TeV         regime()         regime()         regime()           1.18         TeV         regime()         regime()         regime()         regime()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1827 08555<br>HLAS, COMF 5016 078<br>1604 07737<br>ATLAS COMF 5016 078<br>ATLAS COMF 5016 078<br>ATLAS COMF 5016 097<br>ATLAS COMF 5016 097<br>1627 50579<br>1507 05493<br>ATLAS COMF 5016 068<br>1503 02530<br>1502 0518 |  |  |
| 3 <sup>rd</sup> gen<br>§ med.                                                             | $\begin{array}{c} gg, g \rightarrow bb \overline{k}_1^0 \\ gg, g \rightarrow n \overline{k}_1^0 \\ gg, g \rightarrow b \overline{k}_1^1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0-1 e,µ<br>0-1 e,µ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 b<br>3 b<br>3 b                                                                                                                                               | Yes<br>Yes<br>Yes                                                    | 14.8<br>14.8<br>20.1                                                                        | 2<br>2<br>2<br>1.1                                                                                                                                                                                                                                                                                                               | 1.89 TeV m(χ <sup>2</sup> )=0 GeV<br>1.89 TeV m(χ <sup>2</sup> )=0 GeV<br>17 TeV m(χ <sup>2</sup> )=300 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATLAS-CONF-2016-052<br>ATLAS-CONF-2016-052<br>1407.0600                                                                                                                                                                   |  |  |
| 3 <sup>rd</sup> gen. squarks<br>direct production                                         | $\begin{array}{l} \tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1} {\rightarrow} b \tilde{k}_{1}^{0} \\ \tilde{b}_{1}b_{1},\tilde{b}_{1} {\rightarrow} b \tilde{k}_{1}^{0} \\ r_{1}r_{1},r_{1} {\rightarrow} b \tilde{k}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1},\tilde{r}_{1} {\rightarrow} b \tilde{k}_{1}^{0} \\ \tilde{r}_{2}\tilde{r}_{1},\tilde{r}_{2} {\rightarrow} \tilde{r}_{1} \\ \tilde{r}_{2}\tilde{r}_{2},\tilde{r}_{2} {\rightarrow} \tilde{r}_{1} + Z \\ \tilde{r}_{2}\tilde{r}_{2},\tilde{r}_{2} {\rightarrow} \tilde{r}_{1} + k \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>$2 e, \mu$ (SS)<br>$0-2 e, \mu$<br>$0-2 e, \mu$<br>0<br>$2 e, \mu$ (Z)<br>$3 e, \mu$ (Z)<br>$1 e, \mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 b<br>1 b<br>1-2 b<br>0-2 jets/1-2<br>mono-jet<br>1 b<br>1 b<br>6 jets + 2 b                                                                                   | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                        | 3.2<br>13.2<br>1.7/13.3<br>1.7/13.3<br>3.2<br>20.3<br>13.3<br>20.3                          | 8/0 GeV           8/0 GeV           8/10 GeV           82-7685 GeV           87-70 GeV           80-189 GeV           20-720 GeV           7, 90-198 GeV           20-320 GeV           7, 90-198 GeV           7, 90-198 GeV           7, 90-323 GeV           7, 150-600 GeV           7, 329-700 GeV           7, 320-620 GeV | m(\$\frac{1}{2})=10004V<br>m(\$\frac{1}{2})=m(\$\frac{1}{2})=m(\$\frac{1}{2})=m(\$\frac{1}{2})=m(\$\frac{1}{2},m(\$\frac{1}{2})=55 GeV<br>m(\$\frac{1}{2})=m(\$\frac{1}{2},m(\$\frac{1}{2})=55 GeV<br>m(\$\frac{1}{2})=160 GeV<br>m(\$\frac{1}{2})=150 GeV<br>m(\$\frac{1}{2})=150 GeV<br>m(\$\frac{1}{2})=150 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1606.08772<br>ATLAS-CONF-2016-037<br>1208_2102_ATLAS-CONF-2016-077<br>1506.08916_ATLAS-CONF-2016-077<br>1604.07773<br>1400.55222<br>ATLAS-CONF-2016-038<br>1506.08616                                                     |  |  |
| EW<br>direct                                                                              | $ \begin{array}{l} \tilde{t}_{1,R} \tilde{t}_{1,R}, \tilde{t} \! \rightarrow \! \ell X_1^0 \\ \tilde{x}_1^* \tilde{x}_1, \tilde{x}_1^* \! \rightarrow \! \ell \chi \ell_1 \\ \tilde{x}_1^* \tilde{x}_1, \tilde{x}_1^* \! \rightarrow \! \ell \chi \ell_1 \\ \tilde{x}_1^* \tilde{x}_1, \tilde{x}_1^* \! \rightarrow \! \ell \chi \ell_1 \\ \tilde{x}_1^* \tilde{x}_2^* \! \rightarrow \! \ell \tilde{x}_1^* \tilde{x}_2^* \ell_1 \\ \tilde{x}_1^* \tilde{x}_2^* \! \rightarrow \! W \tilde{x}_1^* \tilde{x}_1^* \\ \tilde{x}_1^* \tilde{x}_2^* \! \rightarrow \! W \tilde{x}_1^* \tilde{x}_1^* \\ \tilde{x}_1^* \tilde{x}_2^* \! \rightarrow \! W \tilde{x}_1^* \tilde{x}_1^* \\ \tilde{x}_1^* \tilde{x}_2^* \tilde{x}_1^* \tilde{x}_1^* \tilde{x}_1^* \\ \tilde{x}_1^* \tilde{x}_1^* \tilde{x}_2^* \tilde{x}_1^* \\ \tilde{x}_1^* \tilde{x}_1^* \tilde{x}_1^* \tilde{x}_1^* \tilde{x}_1^* \tilde{x}_1^* \\ \tilde{x}_1^* x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 e,μ<br>2 e,μ<br>2 τ<br>3 e,μ<br>2·3 e,μ<br>τ/γγ e,μ,γ<br>4 e,μ<br>1 e,μ + γ<br>2 γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0<br>0-2 jets<br>0-2 b<br>0                                                                                                                                | Yes s s s s s yes s yes yes s yes s s s s                            | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3                                | 90-335 GeV           1         140-475 GeV           1         355 GeV           1         355 GeV           1         17           2         17           2         17           3         15           3         10           3         15           3         115           4         590 GeV           W         590 GeV     | m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1)=0.Gav/<br>m(\$1) | 1403 5294<br>1403 5294<br>1407 0350<br>1402 7029<br>1403 5294, 1402 7029<br>1501 27110<br>1405 5096<br>1507 56483<br>1507 56483                                                                                           |  |  |
| Long-lived<br>particles                                                                   | $\begin{array}{l} \label{eq:constraints} & \operatorname{Direct} \hat{X}_1^+ \hat{X}_1^- \operatorname{prod.}, \operatorname{long-lived} j \\ & \operatorname{Direct} \hat{X}_1^+ \hat{X}_1^- \operatorname{prod.}, \operatorname{long-lived} j \\ & \operatorname{Stable}, Stab$ | $ \begin{array}{c} \stackrel{+}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}$ | 1 jet<br>1-5 jets<br>                                                                                                                                           | Yes<br>Yes<br>Yes<br>Yes                                             | 20.3<br>18.4<br>27.9<br>3.2<br>19.1<br>20.3<br>20.3<br>20.3                                 | 11         270 GeV           2         495 GeV           2         850 GeV           3         537 GeV           440 GeV         1.0 TeV           3         1.0 TeV                                                                                                                                                             | m(ເຖິ) m(ເຖິ) 160 MaV, r(ເ) ⊢0.2 ns<br>m(ເ) m(ເ) 160 MaV, r(ເ) ⊢0.2 ns<br>m(ເ) m(ເ) 160 MaV, r(c) +151 ns<br>m(i) 160 GaV, 100 cav (100 cav (100 m<br>100 cam)-50 ns<br>100 cam)-50 ns<br>100 cam)-50 ns<br>100 cav (100 cav (100 m)<br>100 cav (100 cav (100 m))<br>100 cav (100 cav (100 cav (100 m))<br>100 cav (100 cav (100 cav (100 m))<br>100 cav (100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1010.8075<br>1508.05332<br>1310.8584<br>1608.05129<br>1604.04520<br>1411.8785<br>1609.0542<br>1504.05162<br>1504.05162                                                                                                    |  |  |
| RPV                                                                                       | $\begin{array}{l} LFV \ pp \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\tau = e\mu, e\tau, \mu\tau$<br>$2 e, \mu (SS)$<br>$\mu\mu\nu = 4 e, \mu$<br>$\nu_{\tau} = 3 e, \mu + \tau$<br>$0 = 4 + \tau$<br>$0 = 4 + \tau$<br>$0 = 4 + \tau$<br>$2 e, \mu (SS)$<br>0<br>$2 e, \mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0-3 b<br>5 large-R ju<br>5 large-R ju<br>0-3 b<br>2 jets + 2 l<br>2 b                                                                                           | Yes<br>Yes<br>Yes<br>ats<br>ats<br>Yes                               | 3.2<br>20.3<br>13.3<br>20.3<br>14.8<br>14.8<br>13.2<br>15.4<br>20.3                         | n         1           a ≥         1           a ≥         1.14 Tc           a         450 GeV           a         1.08 TeV           a         1.08 TeV           a         1.08 TeV           a         410 GeV           β         410 GeV           β         6.44.0 TeV                                                      | 1.9 TeV         Align 0.11. Languages0.07           45 TeV         m(2/m)(2), resp. of 1.12           45 TeV         m(2/m)(2), resp. of 1.12           m(2/m)(2, resp. of 1.12)         m(2/m)(2, resp. of 1.12)           m(2/m)(2, resp. of 1.12)         m(2/m)(2, resp. of 1.12)           m(2/m)(2, resp. of 1.12)         m(2/m)(2, resp. of 1.12)           table TeV         m(2/m)(2, resp. of 1.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1607.80079<br>1404.250<br>ATLAS.COMF.2016.075<br>1405.5085<br>ATLAS.COMF.2016.057<br>ATLAS.COMF.2016.057<br>ATLAS.COMF.2016.054<br>ATLAS.COMF.2015.045F.2015.045F<br>ATLAS.COMF.2015.045F.2015.015                        |  |  |
| Other                                                                                     | Scalar charm, $\vec{c} \rightarrow o \vec{k}_1^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 c                                                                                                                                                             | Yes                                                                  | 20.3                                                                                        | 2 510 GeV                                                                                                                                                                                                                                                                                                                        | m(ξ <sup>0</sup> <sub>1</sub> )<200 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1501.01325                                                                                                                                                                                                                |  |  |
| "Only a selection of the available mass limits on new 10 <sup>-1</sup> 1 Mass scale [TeV] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                 |                                                                      |                                                                                             |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                           |  |  |

### ATLAS Preliminary

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$ 

### Summary & conclusions

- ▶ In the past months, 18 new results from searches for SUSY have been made public by ATLAS, using 13-18 fb<sup>-1</sup> of  $\sqrt{13}$  TeV data from 2015+2016
- Eight analyses are new in Run II, and many improvements have been made for the nine that were also released in March
- In general the data agree well with the background expectations ⇒ significant increase in excluded SUSY particle mass ranges
- The  $1\ell \ \tilde{t}$  search observes a modest excess  $\Rightarrow$  the rest of 2016 data will show if this persists or goes away.
- ► Increased integrated lumi  $\Rightarrow$  several analyses becoming affected by systematic uncertainties (e.g. MC modeling of  $t\bar{t}$ , Wt,  $t\bar{t}V$  vs  $t\bar{t}\gamma$ )  $\Rightarrow$  work ahead for results with full 2015+2016 dataset
- Technically challenging signatures (e.g. long-lived particles) now higher priority!

### Enormous thanks to the LHC for a very successful 2016!

The 2016 pp data-taking is now over - many more  $fb^{-1}$  to analyze for the winter conferences!

Back-up material

### Run I SUSY results

# ATLAS SUSY Searches\* - 95% CL Lower Limits Status: July 2015

|                                                   | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $e, \mu, \tau, \gamma$                                                                                                                                                                                                 | Jets                                                                                                                                                                                                                                                   | $E_{\rm T}^{\rm miss}$                                                                      | ∫£ dt[fb                                                            | Mass limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sqrt{s} = 7 \text{ TeV}$                                           | $\sqrt{s} = 8 \text{ TeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reference                                                                                                                                                                       |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inclusive Searches                                | $\begin{array}{l} \text{MSUGRACMSSM}\\ \begin{array}{l} \bar{q}\bar{q},\bar{q}-q\bar{q}_{1}^{S}\\ \bar{q},\bar{q},\bar{q}-q\bar{q}_{1}^{S}\\ \bar{q}\bar{q},\bar{q}-q\bar{q}_{1}^{S}\\ \bar{q}\bar{q},\bar{q}-q\bar{q}_{1}^{S}\\ \bar{q}\bar{q},\bar{q}-q\bar{q}_{1}^{S}\\ \bar{q}\bar{q},\bar{q}-q\bar{q}_{1}^{S}\\ \bar{q}\bar{q},\bar{q}-q\bar{q}_{1}^{S}\\ \bar{q}\bar{q},\bar{q}-q\bar{q}_{1}^{S}\\ \bar{q}\bar{q},\bar{q}=q\bar{q}_{1}^{S}\\ \bar{q}\bar{q}\bar{q}_{1}^{S}\\ \bar{q}\bar{q}\bar{q}_{1}^{S}\\ \bar{q}\bar{q}\bar{q}_{1}^{S}\\ \bar{q}\bar{q}\bar{q}_{1}^{S}\\ \bar{q}\bar{q}\bar{q}_{1}^{S}\\ \bar{q}\bar{q}\bar{q}\bar{q}_{1}^{S}\\ \bar{q}\bar{q}\bar{q}\bar{q}_{1}^{S}\\ \bar{q}\bar{q}\bar{q}\bar{q}_{1}^{S}\\ \bar{q}\bar{q}\bar{q}\bar{q}_{1}^{S}\\ \bar{q}\bar{q}\bar{q}\bar{q}_{1}^{S}\\ \bar{q}\bar{q}\bar{q}\bar{q}_{1}^{S}\\ \bar{q}\bar{q}\bar{q}\bar{q}_{1}^{S}\\ \bar{q}\bar{q}\bar{q}\bar{q}_{1}\\ \bar{q}\bar{q}\bar{q}\bar{q}\bar{q}_{1}\\ \bar{q}\bar{q}\bar{q}\bar{q}\bar{q}_{1}\\ \bar{q}\bar{q}\bar{q}\bar{q}_{1}\\ \bar{q}\bar{q}\bar{q}\bar{q}\bar{q}_{1}\\ \bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}_{1}\\ \bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}$ | $\begin{array}{c} 0.3 \ e, \mu/1.2 \ \tau \\ 0 \\ mono-jet \\ 2 \ e, \mu \ (off 2) \\ 0 \\ 0 \\ 0.1 \ e, \mu \\ 1.2 \ \tau + 0.1 \ i \\ 2 \ e, \mu \\ \gamma \\ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$ | 2-10 jets/3<br>2-6 jets<br>1-3 jets<br>2-6 jets<br>2-6 jets<br>2-6 jets<br>0-3 jets<br>0-2 jets<br>1 b<br>2 jets<br>2 jets<br>1 c<br>2 jets<br>1 c<br>2 jets<br>1 c<br>2 jets<br>1 c<br>2 jets<br>2 c<br>2 c<br>2 c<br>2 c<br>2 c<br>2 c<br>2 c<br>2 c | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 20.3<br>20.3<br>20.3<br>20.3<br>20<br>20<br>20<br>20.3<br>20.3<br>2 | 44 800 GeV<br>5 100-440 GeV<br>5 780 GeV<br>5 8<br>6 8<br>7 800 GeV<br>5 8<br>7 800 GeV<br>7 | 1.33 TeV<br>1.26 TeV<br>1.32 TeV<br>1.32 TeV<br>1.25 TeV<br>1.25 TeV | 23 TeV (mc)→m(2)<br>mc()→104 VC (m(1° pox, i)→m(2° pox, i)<br>mc()→104 VC (m(1° pox, i)→m(2° pox, i))<br>mc()→104 VC<br>mc()→104 VC<br>mc()→104 VC<br>mc()→104 VC<br>tarp → 20 GeV, m(1)→105 (m(1)→m(2))<br>mc()→104 VC<br>tarp → 20 GeV, m(1)→105 (m(1)→104 VC<br>tarp → 20 GeV, m(2)→105 (m(1)→104 VC<br>mc()→104 VC (m(1)→105 VC<br>mc()→104 VC | 1507.05525<br>1405.7875<br>1507.05525<br>1503.03230<br>1405.7875<br>1507.05525<br>1507.05525<br>1407.0803<br>1507.05403<br>1507.05403<br>1507.05403<br>1507.05403<br>1503.03230 |
| 3 <sup>rd</sup> gen.<br>§ med.                    | $\begin{array}{l} \tilde{g}\tilde{g}, \; \tilde{g} {\rightarrow} b \tilde{b} \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} {\rightarrow} t \tilde{t} \tilde{t}_{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} {\rightarrow} t \tilde{t} \tilde{t}_{1} \\ \tilde{g}\tilde{g}, \; \tilde{g} {\rightarrow} b \tilde{t} \tilde{t}_{1} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0-1 e, µ<br>0-1 e, µ                                                                                                                                                                                         | 3 b<br>7-10 jets<br>3 b<br>3 b                                                                                                                                                                                                                         | Yes<br>Yes<br>Yes                                                                           | 20.1<br>20.3<br>20.1<br>20.1                                        | 2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.25 TeV<br>1.1 TeV<br>1.34 TeV<br>1.3 TeV                           | m(1 <sup>0</sup> )<400 GeV<br>m(1 <sup>0</sup> )<550 GeV<br>m(1 <sup>0</sup> )<400 GeV<br>m(1 <sup>0</sup> )<500 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1407.0600<br>1308.1841<br>1407.0600<br>1407.0600                                                                                                                                |
| 3 <sup>rd</sup> gen. squarks<br>direct production | $ \begin{array}{l} b_1 b_1, \ b_1 \rightarrow b \tilde{\chi}_1^0 \\ b_1 b_1, \ b_1 \rightarrow i \tilde{\chi}_1^n \\ \tilde{r}_1 \tilde{r}_1, \ \tilde{r}_1 \rightarrow b \tilde{\chi}_1^n \\ \tilde{r}_1 \tilde{r}_1 (\operatorname{ratural GMSB}) \\ r_2 \tilde{r}_2, \ r_2 \rightarrow r_1 + Z \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>2 e, µ (SS)<br>1 · 2 e, µ<br>0 · 2 e, µ<br>2 e, µ (Z)<br>3 e, µ (Z)                                                                                                                                               | 2 b<br>0-3 b<br>1-2 b<br>0-2 jets/1-2<br>mono-jet/c-t<br>1 b<br>1 b                                                                                                                                                                                    | Yes<br>Yes<br>Ves<br>Yes<br>Yes<br>Yes<br>Yes                                               | 20.1<br>20.3<br>1.7/20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3    | in         100-620 GeV           in         (275-40 GeV)           in         10-167 GeV           in         20-460 GeV           in         90-240 GeV           in         290-600 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | $m(\tilde{t}_1^3)$ -30 GeV<br>$m(\tilde{t}_1^3) = 2m(\tilde{t}_1^3)$<br>$m(\tilde{t}_1^3) = 2m(\tilde{t}_1^3)$<br>$m(\tilde{t}_1^3) = 2m(\tilde{t}_1^3)$<br>$m(\tilde{t}_1^3)$ -35 GeV<br>$m(\tilde{t}_1^3)$ -35 GeV<br>$m(\tilde{t}_1^3)$ -35 GeV<br>$m(\tilde{t}_1^3)$ -250 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1308.2631<br>1404.2500<br>1209.2102,1407.0583<br>1506.08616<br>1407.0608<br>1403.5222<br>1403.5222                                                                              |
| EW<br>direct                                      | $ \begin{split} \tilde{t}_{L,R}\tilde{t}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{k}_{1}^{0} \\ \tilde{k}_{1}^{*}\tilde{k}_{1}^{*}, \tilde{k}_{1}^{*} \rightarrow \ell v(\ell) \\ \tilde{k}_{1}^{*}\tilde{k}_{1}^{*}, \tilde{k}_{1}^{*} \rightarrow \ell v(\ell) \\ \tilde{k}_{1}^{*}\tilde{k}_{1}^{*}, \tilde{k}_{1}^{*} \rightarrow \ell v(\ell) \\ \tilde{k}_{1}^{*}\tilde{k}_{2}^{*} \rightarrow W \tilde{k}_{1}^{0} Z \tilde{\ell}_{1}^{0} \\ \tilde{k}_{1}^{*}\tilde{k}_{2}^{*} \rightarrow W \tilde{k}_{1}^{0} Z \tilde{\ell}_{1}^{0} \\ \tilde{k}_{1}^{*}\tilde{k}_{2}^{*} \rightarrow W \tilde{k}_{1}^{0} \tilde{k}_{1}^{*} \\ \tilde{k}_{2}^{*}\tilde{k}_{2}^{*}, \tilde{k}_{2}^{*} \rightarrow \ell \tilde{k}_{2}^{*} \\ \tilde{G}GM (\text{win NLSP}) \text{ weak processing} \end{split} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 e,μ<br>2 e,μ<br>2 τ<br>3 e,μ<br>2·3 e,μ<br>τ/γγ e,μ,γ<br>4 e,μ<br>1. 1 e,μ+γ                                                                                                                                         | 0<br>0<br>0-2 jets<br>0-2 b<br>0<br>-                                                                                                                                                                                                                  | R R R R R R R R                                                                             | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3        | Z         99/35 GeV           1         140-455 GeV           1         100-350 GeV           1         100-350 GeV           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | $\begin{split} m(\tilde{t}_{1}^{2}) &= 0.GaV \\ m(\tilde{t}_{1}^{2}) &= 0.GaV (m(\tilde{t}_{1}^{2}) &= 0.5(m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2})) \\ m(\tilde{t}_{1}^{2}) &= 0.GaV (m(\tilde{t}_{1}^{2}) &= 0.5(m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2})) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= 0.6(m(\tilde{t}_{1}^{2}) &= 0.5(m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2})) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= 0.5(m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2})) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= 0.5(m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2})) \\ e^{-ee}(1m) \\ e^{-ee}(1m) \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1403.5294<br>1403.5294<br>1407.0350<br>1402.7029<br>1403.5294, 1402.7029<br>1501.07110<br>1405.5088<br>1507.05493                                                               |
| Long-lived<br>particles                           | Direct $k_1^+ k_1^-$ prod., long-lived.<br>Direct $k_1^+ k_1^-$ prod., long-lived.<br>Stable, stopped § R-hadron<br>Stable § R-hadron<br>GMSB, stable $\tau, \tilde{\chi}_1^0 \rightarrow \tau(\tilde{c}, \tilde{\mu}) \rightarrow$<br>GMSB, $\chi_1^0 \rightarrow q \tilde{c}$ , long-lived $k_2^0$<br>$gg, \tilde{\chi}_1^0 \rightarrow q q \mu \nu \mu \mu \nu$<br>GGM $gg, \tilde{\chi}_1^0 \rightarrow 2\tilde{G}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\tilde{t}_1^+$ Disapp. trk<br>$\tilde{t}_1^+$ dE/dx trk<br>0<br>trk<br>$r(e, \mu)$ 1·2 $\mu$<br>2 $\gamma$<br>displ. $ee/e\mu/\mu$<br>displ. vtx + je                                                                 | 1 jet<br>-<br>1-5 jets<br>-<br>-<br>-<br>-<br>ts -                                                                                                                                                                                                     | Yes<br>Yes<br>Yes<br>Yes                                                                    | 20.3<br>18.4<br>27.9<br>19.1<br>19.1<br>20.3<br>20.3<br>20.3        | 1         270 GeV           2         482 GeV           2         832 GeV           2         837 GeV           2         837 GeV           2         435 GeV           2         435 GeV           2         435 GeV           2         435 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.27 TeV<br>D TeV<br>D TeV                                           | $\begin{split} &m(\tilde{t}_{1}^{+}),m(\tilde{t}_{1}^{+})=160\;MeV,\; \tau(\tilde{t}_{1}^{+})=0.2\;ns\\ &m(\tilde{t}_{1}^{+}),m(\tilde{t}_{1}^{+})=160\;MeV,\; \tau(\tilde{t}_{1}^{+})=151\;m\\ &m(\tilde{t}_{1}^{+})=160\;GeV,\; 10\;\mu_{0}=\tau(\tilde{t}_{1}^{+})=100\\ &10\circ\tau mpc-50\\ &2\circ\tau(\tilde{t}_{1}^{+})<3\;ns,\;SPS8\;modal\\ &7<\tau(\tilde{t}_{1}^{+})<740\;mm,\; m(\tilde{t}_{1})=1.3\;TeV\\ &6<\tau(\tilde{\tau}_{1}^{+})<480\;mm,\; m(\tilde{t}_{1})=1.3\;TeV \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1310.3675<br>1506.05332<br>1310.6584<br>1411.6795<br>1401.6795<br>1409.5542<br>1504.05162<br>1504.05162                                                                         |
| RPV                                               | $ \begin{array}{l} LFV pp \rightarrow \tilde{r}_{7} + X, \tilde{r}_{7} \rightarrow q\mu/e\tau/\mu \\ Blinear \; RPV \; CMSSM \\ \tilde{\kappa}_{1}^{*}\tilde{r}_{1}, \tilde{\epsilon}_{1}^{*} \rightarrow Wr_{1}^{*}\tilde{r}_{1}^{*} \rightarrow err_{p}, err \\ \tilde{\kappa}_{1}^{*}\tilde{r}_{1}, \tilde{\epsilon}_{1}^{*} \rightarrow Wr_{1}^{*}\tilde{r}_{1}^{*} \rightarrow err_{p}, err \\ \tilde{g}_{2}, \tilde{g}_{2} \rightarrow qqg \\ \tilde{g}_{2}, \tilde{g}_{2} \rightarrow qqg \\ \tilde{g}_{2}, \tilde{g}_{2} \rightarrow qi_{1}, \tilde{r}_{1}^{*} \rightarrow bs \\ \tilde{i}_{1}\tilde{r}_{1}, \tilde{i}_{1} \rightarrow bs \\ \tilde{i}_{1}\tilde{r}_{1}, \tilde{i}_{1} \rightarrow bf \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\tau = e\mu, e\tau, \mu\tau$<br>$2 e, \mu$ (SS)<br>$\bar{\nu}_e = 4 e, \mu$<br>$\bar{\nu}_\tau = 3 e, \mu + \tau$<br>0<br>$2 e, \mu$ (SS)<br>0<br>$2 e, \mu$                                                          | 0-3 b<br>6-7 jets<br>6-7 jets<br>0-3 b<br>2 jets + 2<br>2 b                                                                                                                                                                                            | Yes<br>Yes<br>Yes<br>Yes                                                                    | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3        | γ.         750 GeV           δ <sup>2</sup> 750 GeV           δ <sup>2</sup> 450 GeV           σ         870 GeV           σ         870 GeV           σ         870 GeV           σ         850 GeV           δ <sub>1</sub> 100-308 GeV           δ <sub>1</sub> 0.411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3<br>1.35 TeV<br>eV<br>V<br>1<br>0 TeV                             | TeV         λ <sub>1</sub> ,μ=0.11, λ <sub>1</sub> ,μ <sub>1</sub> ,μ=0.007           m(a)m(a), n <sub>2</sub> ,μ=1 mm           m(q)^2)=0.2 mm(q), λ <sub>1</sub> ,μ <sub>1</sub> ,μ=0           m(q)^2)=0.2 mm(q), λ <sub>1</sub> ,μ <sub>1</sub> ,μ=0           B(h <sub>1</sub> )=B(h <sub>2</sub> )=B(h <sub>1</sub> )=B(h <sub>2</sub> )=B(h <sub>2</sub> )           m(q)^2)=0.0 GeV           BR(h <sub>1</sub> )=dh <sub>2</sub> /µB(h <sub>2</sub> )=B(h <sub>2</sub> )=B(h <sub>2</sub> )           BR(h <sub>2</sub> )=dh <sub>2</sub> /µB(h <sub>2</sub> )=B(h <sub>2</sub> )=B(h <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1503.04430<br>1404.2500<br>1405.5086<br>1405.5086<br>1502.05686<br>1502.05686<br>1404.250<br>ATLAS-CONF-2015-021<br>ATLAS-CONF-2015-021                                         |
| Other                                             | Scalar charm, $\tilde{c} \rightarrow c \tilde{t}_1^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                      | 2 c                                                                                                                                                                                                                                                    | Yes                                                                                         | 20.3                                                                | č 490 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | m( $\tilde{\ell}_1^0$ )<200 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1501.01325                                                                                                                                                                      |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                        |                                                                                             | 1                                                                   | ) <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                    | Mass scale [TeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |

ATLAS Preliminary  $\sqrt{s} = 7, 8 \text{ TeV}$ 

\*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1ar theoretical signal cross section uncertainty.

# Sensitivity of inclusive strong production searches to $\tilde{g}\tilde{g},\,\tilde{g}\to qqW\chi^0$



### Stop $1\ell$ details

 $3.3\sigma$  excess seen in SR\_DMlow (35 events observed,  $17\pm2$  expected):



Many checks done on background estimates, no obvious problems found.

More data already collected, will tell us whether this is a background fluctuation

### Stop $1\ell$ details



Figure 12: Expected (black dashed) and observed (red solid) 95% excluded regions in the plane of  $m_{\tilde{t}_1}$  versus  $m_{\tilde{\chi}_1^0}$  for direct stop pair production assuming  $b\tilde{\chi}_1^\pm$  decay with a branching ratio of 100%. The chargino mass is assumed to be twice the neutralino mass (left) or close to the stop mass,  $m_{\tilde{\chi}_1^\pm} = m_{\tilde{t}_1} - 10$  GeV(right). The excluded regions (gray shaded area) from previous publications, stop search in the one-lepton channel at 8TeV (left) [24] and ATLAS stop search at 8TeV (right) [25], are obtained under the hypothesis of mostly-left-handed stops, while new results are obtained with an unpolarized signal assumption.

### Summary of $t\bar{t}$ +DM exclusion limits

Similar limits for DM+ $t\bar{t}$  for  $0\ell$ ,  $1\ell$  and  $2\ell$  stop searches:

- Scalar mediator up to  $\sim 350~{\rm GeV}$
- $\blacktriangleright$  ...and for a pseudo-scalar mediator up to  $\sim 350~{\rm GeV}$



# Direct $\tilde{t}$ coverage for the five new results

